

Ю.П. СОЛНЦЕВ, С.А.ВОЛОГЖАНИНА, А.Ф. ИГОЛКИН

МАТЕРИАЛОВЕДЕНИЕ

УЧЕБНИК

Реномендовано
Федеральным государственным учреждением «Федеральный институт развития образования» в качестве учебника для использования в учебном процессе образовательных учреждений, реализующих программы среднего профессионального образования по специальностям «Техническое обслуживание и ремонт автомобильного транспорта», «Техническая эксплуатация подъемно-транспортных, строительных, дорожных машин и оборудования», «Техническая эксплуатация подвижного состава железных дорог»

Регистрационный номер рецензии 434
от 28 ноября 2010 г. ФГУ «ФИРО»

11-е издание, стереотипное

Рецензенты:

преподаватель, ГОУ СПО *Мытищинский машиностроительный техникум» О. И. Калаиникова; зая. кафедрод Материаловедение и технология художественных изделийш Северо-Западного государственного заочного технического университета, д-р техн. наук, проф. Е. И. Прахин

Солнцев Ю. ІІ.

С601 Материаловедение : учебник для студ. учреждений сред. проф. образования / Ю.П. Солнцев, С.А. Вологжанина, А. Ф. Иголкин. - 11 -е изд., стер. - М. : Издательский центр «Академия», 2016. - 496 с.

ISBN 978-5-4468-2788-6
Учебник создан в соответствии с Федеральньм государственным образовательным стандартом среднего профессионального образования по укрупненной группе специальностей «Техника и технология наземного транспорта»; ОП. 5 «Материаловедение».

Изожены физико-химические основы материаловедения. Рассмотрены технология термической обработки сталей, чугунов, цветных металлов и сплавов и закономерности формирования их структуры. Приведены методы испытаний механических свойств материалов, исследования их мик-ро- и макроструктуры. Рассмотрены процессы коррозии и эксплуатации материалов при низких и высоких температурах, в условиях динамического и усталостного нагружения. Описаны обцие принципы выбора и применения материалов для конкретных изделий.

Для студентов учреждений среднего профессионального образования.
УДК 620.22(075.32)
ББК 30.3я723
| Орисинал-макет данного издания является собственностью
ᄂ. Нъдамеаьсоддо центра «Академия», и е́го'воспроизведение любым способом без соаласия прdообаадателя запрещается
$+\cdots a д$ ателя за
© Солнцев Ю.П., Вологжанина С.А., Иголкин А. Ф., 2012

ISBN 978-5-4468-2788-6

ПРЕДИСЛОВИЕ

Курс «Материаловедение» является одним из основных курсов, определяющих подготовку студентов по машиностроительным специальностям. В данном курсе рассматриваются закономерности, определяющие структуру и свойства материалов в зависимости от их состава и технологии термической обработки.

Курс включает в себя четыре раздела:

- металловедение;
- керамические, композиционные и порошковые материалы;
- неметаллические материалы;
- износ и износостойкие материалы.

В учебнике кратко рассмотрены основные способы технологии производства и обработки материалов: процессы выплавки и литья, обработки давлением, сварки и обработки резанием. Приведены новые перспективные материалы: композиционные, порошковые, с памятью формы, с низким коэффициентом линейного расширения и др.

В даннном учебнике приняты следующие сокращения:

ККМ - керамические композиционные материалы
МКМ - металлические композиционные материалы
ПКМ - полимерные композиционные материалы
СЗ - скорость зарождения
CP - скорость роста
ТКЛР - температурный коэффициент линейного расширения
ТКМУ - температурный коэффициент модуля упругости
TМО - термомеханическая обработка
ХТО - химико-термическая обработка

РАЗДЕЛ I
 МЕТАЛЛОВЕДЕНИЕ

ГЛАВА 1

ОСНОВНЫЕ СПОСОБЫ ОБРАБОТКИ МЕТАЛЛОВ

1.1. Основы литейного производства

Общне сведення. Литье - это способ изготовления заготовки или изделия заполнением полости заданной конфигурации жидким металлом с последующим его затвердеванием. Заготовки или изделия, полученные методом литья, называют отливками.

Литейное производство - основная заготовительная база всех отраслей машиностроения. Литые заготовки являются наиболее дешевыми и, как правило, имеют минимальные припуски на механическую обработку.

Отливки изготавливают из чугуна и стали, сплавов цветных металлов на основе алюминия, магния, титана, меди и др. Выплавку большинства сплавов для литья осуществляют обычно в электрических печах. Кроме того, для выплавки литейного чутуна используют вагранки.

Литейные сплавы должны обладать высокой жидкотекучестью, которая определяет их способность заполнять литейную форму.

При затвердевании и охлаждении линейные и объемные размеры отливок уменышаются, металлы и сплавы претерпевают усадку. Сильная усадка может приводить к образованию усадочных раковин, пористости, трещин, коробления.

Јитье в песчаные формы. При изготовлении отливок в песчаных формах расплавленный металл заданного состава заливают в литейную форму, из которой после затвердевания и охлаждения извлекают готовую отливку.

Для изготовления песчаной формы отливки необходимо иметь модельный комплект, состоящий из модели, стержневых ящиков (если отливки имеют внутренние полости), модели элементов литниковой системы, прибыли, выпоров.

Эскиз литейной формы приведен на рис. 1.1, a. Литейная форма представляет собой систему элементов, образующих рабочую полость, при заливке которой расплавленным металлом формируется отливка.

Формовку производят в металлические рамы двух полуформ, называемых опоками (верхняя 3 и нижняя 7). Половину модели

Рис. 1.1. Литейная форма (a), модель (б), литейный стержень (в), стержневой ящик (2), отливка (д):
1 - канал для отвода газов; 2 - выпор; 3, 7 - верхняя и нижняя литейные опоки; 4, 11 - формовочная смесь; 5 - рабочая полость литейной формы; 6, 14 иттыр; 8 - литейный стержень; 9 - деревянное основание; 10,17 - вентиляционные нахолы; 12 - питатель; 13 - шлакоуловитель; 15 - стояк; 16 - чаша
(рис. 1.1, б) устанавливают внутри нижней опоки, плотно набивают формовочную смесь 11 (см. рис. 1.1, a), переворачивают и закрепляют верхнюю опоку. В верхней опоке устанавливают вторую половину модели, модель литниковой системы и снова плотно набивают формовочную смесь. После извлечения моделей две опоки соединяют. При необходимости получения внутренней полости устанавливают литейный стержень (рис. 1.1, в), который изготавливают набивкой стержневой смеси в разъемный стержневой ящик (рис. 1.1, г).

Модель отличается от отливки (рис. 1.1, д) на величину усадки металла, а также знаками, предназначенными для установки стержней. При индивидуальном и мелкосерийном производстве используют деревянные модели заготовок, при массовом - изготовленные из алюминиевых сплавов.

После затвердевания жидкого металла форму разрушают, извлекают отливку, удаляют стержень, отделяют элементы литниковой системы и отливку подвергают очистке.

K элементам литниковой системы относятся (см. рис. 1.1, a) стояк 15 , питатель 12 , шлакоуловитель 13 , выпор 2 для удаления газов из полости 5 формы и для контроля ее заполнения, чаша 16 для заливки металла.

Формовочные и стержневые смеси содержат огнеупорную основу, связующие и специальные добавки.

Основной материал огнеупорной основы формовочных смесей кварцевый песок. Кроме кварцевого песка используют магнезит, хромомагнезит, шамот и другие огнеупорные материалы.

Назначением связующих добавок является связывание между собой частиц огнеупорной основы для придания им прочности. Обычно в качестве связующих добавок используют формовочные глины, жидкое стекло, различные синтетические смолы и др.

Специальные добавки применяют для улучшения технологических и рабочих свойств смесей: газопроницаемости, податливости и выбиваемости. С этой целью вводят каменноугольную пыль, древесные опилки, торфяную и асбестовую крошку и др.

Специальнье способы литья. Особенностями отливок, получаемых специальными способами, по сравнению с отливками, получаемыми литьем в песчаные формы, являются, как правило, их более высокая точность, лучшее качество поверхности, меньшие величины припусков на механическую обработку. Специальные способы литья относятся к прогрессивным методам формообразования.

Литье в кокиль. Кокиль - это литейная форма, изготовленная из металла. Основные достоинства кокилей по сравнению с песчаными формами - многократное использование формы, более высокие производительность труда, точность отливок, качество их поверхности и стабильность размеров.

Материалы, используемые для изготовления кокилей, должны хорошо противостоять термическим ударам, возникающим при заливке металла, хорошо обрабатываться, быть недефицитными и недорогими. Наиболее полно этим требованиям удовлетворяет чугун, иногда используют сталь, алюминиевые и другие сплавы. Для мелких отливок из чугуна и стали в качестве материала кокилей используют легированный хромом и никелем чугун. Кокили для средних и крупных отливок из сплавов железа и других черных металлов изготавливают из сталей, легированных хромом, молибденом, никелем. Формы для отливок из алюминиевых и магниевых сплавов изготавливают из серого чугуна и алюминиевых сплавов.

Удаление газа из рабочей полости кокиля во время заливки металла осуществляют по разъему формы. Кроме того, в плоскости разъема делают специальные каналы, а в стенках формы - вентиляционные пробки, через которые дополнительно удаляют газ.

При высоком непрерывном темпе литья стенки кокиля нагреваются. Их охлаждение может быть естественным (воздушным) и принудительным (воздушным, водяным, масляным).

Подвод металла в кокилях осуществляют сверху, снизу сифоном или сбоку через щелевые питатели. При подводе металла сверху возможно его разбрызгивание в полости формы. Поэтому такой подвод осуществляют для несложных неответственных отливок небольшой высоты. При подводе металла снизу металл в полость формы поступает плавно. Для ослабления удара падающей струи применяют зигзагообразные стояки 2 (рис. 1.2). Для создания направленного (снизу вверх) затвердевания подвод металла осуществляют сбоку через щелевые питатели.

Для предотврашения физико-химического взаимодействия металла с формой на рабочую поверхность кокиля ровным слоем наносят огнеупорное покрытие. В качестве основы огнеупорного покрытия используют пылевидный кварц, шамот, графит, оксид цинка, тальк и другие материалы, связующим чаще всего служит жидкое стекло. При литье тугоплавких материалов на рабочие поверхности кокилей напыляют плазменным методом вольфрам и молибден. При литье чугунных отливок хорошие результаты получаются, если кокиль обрабатывать (коптить) ацетиленовым пламенем.

Литье по выниязяемьм моделям. Сущность способа состоит в получении специальных моделей из легкоплавких материалов, сборке их в бло-

Рис. 1.2. Эскиз кокиля:
1- чаша; 2 - стояк; 3 - ребра жесткости; 4- створки; 5- пальцы; 6-рабочая полость; 7- металлические стержни

ки (соединение моделей отливок с моделью литниковой системы), покрытии модельных блоков огнеупорной оболочкой, удалении моделей (выплавлением, растворением, выжиганием), прокаливании оболочковых форм и заливке в них жидкого металла. К достоинству литья по выплавляемым моделям относят возможность получения сложных отливок из разных сплавов, в том числе трудно обрабатываемых резанием и ковкой. Перевод поковок на литье по выплавляемым моделям снижает трудоемкость механической обработки на $30 \ldots 80 \%$, повышает коэффициент использования металла, снижает себестоимость изготовления деталей. Литъем по выплавляемым моделям получают отливки массой от нескольких грамм до 100 кт. Рассмотрим более подробно некоторые этапы этого метода формообразования.

Все модельные материалы в зависимости от механизма удаления моделей из оболочек можно разделить на выплавляемые, растворяемые и выжигаемые. Широко используемые составы выплавляемых моделей содержат парафин, стеарин, буроугольный и торфяной воски (битумы), этилцеллюлозу, натуральный и синтетический церезин и др. Основные составляющие растворяемых моделей - карбамид, нитриды и нитраты щелочных металлов и другие вещества. К вьғкигаемым модельным материалам относят вспенивающиеся и компактные термопласты (полистирол блочный, вспенивающийся, суспензионный и др.). Модельные материалы этой группы иногда также удаляют растворением в специальных органических растворителях. Из приведенньх исходньх материалов готовят различные модельные составы для получения моделей отливок и литниковой системы.

Изготовление моделей осуществляют свободной заливкой сплавленного модельного состава обычно в металлические пресс-формы, запрессовкой под давлением пастообразного модельного состава специальными шприцами и на машинах-автоматах. Готовые модели собирают в блоки (рис. 1.3), присоединяя их к модели литниковой системы пайкой или другими методами.

Огнеупорная оболочка, наносимая на поверхность модельного блока, может быть получена поочередным нанесением нескольких перемежающихся слоев (суспензии и обсыпки) и электрофорезом. При многослойном нанесении оболочки суспензия состоит из гидролизованного раствора этилсиликата и огнеупорного наполнителя. В процессе получения огнеупорной оболочки модельные блоки путем окунания смачивают суспензией, обсыпают зернистым огнеупорным материалом и сушат до отверждения. Таким образом наносят четыре - шесть слоев (при производстве крупных отливок - более десяти)

Модельный состав, его водный раствор или продукты термодеструкции удаляют через открытый торец литниковой воронки. Выплавление производят в воде, нагретой до температуры выше

Рис. 1.3. Типы модельных блоков:
1 - стояк; 2 - питаюший коллектор; 3 - прибыль; 4-утолщение

температуры плавления модельного материала, в расплавленном модельном материале (того же состава, что и модели), продувкой блоков горячим или перегретым водяным паром, нагревом блоков в термостатах или диэлектрическим нагревом, а также другими способами. После удаления (растворения) моделей оболочки промывают в проточной воде.

Для окончательного удаления остатков модельного состава оболочки прокаливают при температуре $800 \ldots 1000^{\circ} \mathrm{C}$ в окислительной атмосфере (для лучшего выгорания). При литье по выплавляемым моделям большинство сплавов заливают в горячие формы, позволяющие получить тонкостенные отливки.

Дентробежсное литье. При таком способе изготовления отливок расплавленный металл заливается во вращаюшуюся форму и затвердевает в ней под действием центробежных сил. Вращающуюся форму приводят в движение специальной машиной, называемой центробежной. Различают машины с вращением осей вокруг вертикальной и горизонтальной (или наклонной) осей (рис. 1.4).

Центробежным способом литья с вращением вокруг горизонтальной оси получают отливки типа тел вращения - трубы, кольца, втулки, гильзы и т.п.

Центробежные силы используют для улучшения заполняемости формы металлом и получения более плотной отливки. Центробежный способ литья позволяет изготавливать также двухслойные биметаллические отливки (отливки из двух различных сплавов), заливая сначала сплав одного состава, затем другого.

В России центробежным способом получают корпуса польхх валов из коррозионно-стойких сталей диаметром до 1500 мм, длиной до 10 m , массой до 60 т для бумагоделательньх машин; нала-

Рис. 1.4. Схемы изготовления отливок при вращении формы вокруг вертикальной (a) и горизонтальной (б) осей:
1 - литейная форма (изложница); 2 - расплавленный металл; 3-ковш; 4шпиндель; 5 - подвижный желоб; 6,7 - ролики; 8 - редуктор; 9 - электродвигатель

жено производство биметаллических прокатньх валков (с наружным слоем, имеющим повышенную износостойкость, и внутренним слоем с повышенной пластичностью); выпускают крупные биметаллические втулки диаметром более 1000 мм для подшипников жидкостного трения и другие отливки.

При центробежном литъе применяют в основном три типа литейных форм: металлические нефутерованные (кокили), металлические футерованные и разовые формы.

По сравнению с литьем в неподвижные формы центробежный способ имеет следующие преимущества: при изготовлении польх цилиндрических отливок исключается необходимость изготовления стержней, увеличивается выход годного металла вследствие отсутствия литниковой системы и прибылей (исключая фасонное литье), повышается плотность металла отливок, а следовательно, и механические свойства, улучшается заполняемость формы металлом и т.д. К недостаткам можно отнести ухудшение качества внутренней поверхности и уменьшение точности отливок.

Лишье под давлением. Сущность процесса состоит в том, что жидкий металл поступает в рабочую полость металлической формы (пресс-формы) под давлением $30 \ldots 300 \mathrm{M}$ Ма. Скорость впуска металла в полость формы составляет $0,5 \ldots 140 \mathrm{~m} / \mathrm{c}$. Литьем под давлением получают отливки массой от нескольких грамм до нескольких десятков килограмм из сплавов на основе свинца, олова, цинка, алюминия, магния, меди, железа, по сложности - от элементов замка «молния» до блока цилиндров к автомобилю. При массовом производстве литье под давлением является весьма рентабельным. Отливки, получаемые этим способом, имеют самый высокий коэффициент исполъзования металла. Получение ряда деталей литьем под давлением оказывается дешевле в 50 раз и более, чем их изготовление механической обработкой из проката.

При литье под давлением используют автоматические или полуавтоматические поршневые и компрессорные машины с горячей или холодной камерой прессования. Расположение камер может быть горизонтальным или вертикальным.

Работа машины с холодной вертикальной поршневой камерой прессования (рис. $1.5, a$) состоит в следующем. Ось камеры прессования 3 машины располагают параллельно плоскости разъема прессформы. Металл 2 заливают на нижний поршень камеры, который не позволяет металлу проникать в форму самотеком. Жидкий металл будет заходить в литниковое отверстие и полость формы после опускания вниз прессуюшего поршня 1 , в результате чего нижний поршень, отжимаясь вниз, откроет литниковое отверстие. Металл, войдя в контакт со стенками формы, затвердевает. Прессующий поршень поднимают вверх, освобождая путь нижнему поршню, который при подъеме отрезает пресс-остаток от литника, выталкивая его из камеры прессования. Форму открывают, извлекают отливку, форму очищают, смазывают и закрывают. Цикл повторяют.

Ось холодной горизонтальной камеры прессования 4 (рис. 1.5, б) располагают перпендикулярно плоскости формы. Горизонтальная камера связана с неподвижной частью формы 4. Жидкий металл 2

Рис. 1.5. Схемы холодной вертикальной (a) и горизонтальной (6) пориневых камер прессования машин литья под давлением:
1 - поршень; 2 - жидкий металл; 3- камера прессования; 4- неподвижная часть формы; 5- подвижная часть формы; 6 - литейный стержень; 7 - пятка; 8 - ковш

a

6

заливают в горизонтальную камеру через специальное окно. Порщень l, двигаясь влево, запрессовывает металл в полость формы. Пресс-остаток захватывается поршнем при холостом ходе и выбрасывается из камеры прессования.

Машины с холодной (вертикальной или горизонтальной) камерой прессования используют в основном для изготовления отливок из сплавов на основе алюминия, магния и меди. Машины с горячей камерой прессования применяют главным образом для изготовления отливок из легкоплавких сплавов на основе цинка, свинща и олова.

Литье в оболочковье формы. Литейная форма при данном способе литья представляет собой оболочку толщиной $6 \ldots 10$ мм, изготовленную из материала огнеупорной основы (наполнителя) и синтетической смолы в качестве связующего материала. Принцип получения оболочек заложен в свойствах связующего материала, способного необратимо отверждаться при нагревании. Литъем в оболочковые формы изготавливают отливки массой $5 \ldots 15$ кт (редко $100 \ldots 150$ кт) практически из любых сплавов.

В качестве огнеупорной основы широко используют кварцевый песок. Чем меньше в песке примесей, тем выше его качество. Повышенное содержание примесей приводит к увеличенному расходу связующего материала, повышенной газотворности смеси, пониженному качеству поверхности отливок.

Связующим материалом являются фенолформальдегидные синтетические термореактивные смолы.

Существует несколько способов изготовления оболочек - бункерный, пескодувный и др. При бункерном способе (рис. 1.6) на поворотном бункере 4 со смесью 5 закрепляется предварительно нагре-

Рис. 1.6. Бункерный способ получения оболочковых полуформ:
$a-в$ - последовательность технологических операций; 1 - модель; 2 - крышка;
3 - зажим-скоба; 4-бункер; 5-формовочная смесь; 6 - «сырая» оболочковая форма

тая до $200 \ldots 270^{\circ} \mathrm{C}$ модельная металлическая плита с моделью 1 (рис. 1.6, a), после чего бункер поворачивается на 180°. Смесь падает на модельную плиту, облегая всю ее рабочую поверхность (рис. 1.6, б). Синтетическая смола смеси, прилегающей к модельной плите, нагревается, расплавляется, затем отверждается. Толщина слоя зависит от времени выдержки смеси на модели, ее температуры и теплофизических свойств наполнителя. При достижении необходимой толщины бункер поворачивается в исходное положение (рис. 1.6, в). Непрореагировавшая смесь с модельной плиты ссыпается вниз. Для лучшего и более быстрого отверждения смеси модельную плиту с оболочкой подают в печь, нагретую до $280 \ldots 320^{\circ} \mathrm{C}$. После отверждения оболочку снимают с модельной плиты и направляют на сборку форм.

Одновременно по такой же технологии изготавливают вторую полуформу (оболочку), а также стержни, которые могут быть сплошными или полыми. Полые или оболочковые стержни в последние годы начали использовать не только при литье в оболочковые формы, но и при обычном литье в песчаные формы. Масса таких стержней на $40 \ldots 80 \%$ меньше массы сплошных, они легко выбиваются из отливок, формируют поверхность высокого качества.

Собранные формы перед заливкой устанавливают в металлические коробки (контейнеры), где для увеличения прочности формы свободное пространство между оболочками засыпают опорным материалом - песком или чугунной дробью. Заливка форм чаще всего происходит на конвейере. После заливки металла и затвердевания отливки оболочковые формы и стержни легко разрушаются. Литьем в оболочковые формы получают отливки повышенной точности и лучшего качества поверхности, чем при литье в песчаные формы.

1.2. Обработка металлов давлением

Общая характеристнка процесса. Процесс обработки металлов давлением (ОМД) - это придание материалу требуемой формы, размеров и физико-механических свойств без нарушения его сплошности путем пластической деформации. В зависимости от полноты восстановления исходной формы и размеров тела после прекращения воздействия внешних сил различают упругую (полное восстановление) и пластическую деформацию. В процессе пластической деформации происходйт изменение исходной структуры, при этом механические свойства материала резко повышаются. На современных металлургических заводах применяют штамповку, прокатку, волочение и прессование.

Процессы обработки давлением разделяют на две группы горячую и холодную деформацию.

Обработка металлов кузнечным способом включает в себя процессы свободной ковки, горячей и холодной штамповки. Для штамповки характерно применение специального инструмента - штам пов. Свободной ковкой производят единичные или мелкосерийные поковки. Мелкие и средние поковки массой до 1 т изготавливают на молотах, более крупные - на прессах.

Нагрев металла - одна из существенньхх операций технологического процесса ОМД. Строгое соблюдение режима нагрева оказывает значительное влияние на качество и точность геометрических размеров готового профиля, состояние обрабатывающего оборудования и технико-экономические показатели производства

Важным преимуществом получения готовых изделий с помо щью ОМД перед другими видами обработки металлов является то что при ОМД исправляются дефекты литого металла, преобразуется структура. Свойства материала при этом значительно улучшаются. Это происходит потому, что при обжатии устраняется пористость, завариваются усадочные раковины и даже мелкие трещины

Прокатка. Одним из наиболее распространенных видов ОМД является прокатка - процесс обжатия заготовки между вращающимися валками с целью придания ей необходимой формы и размеров. При продольной прокатке (рис. 1.7, a) металл заготовки 1 деформируется между двумя валками 2 , вращающимися навстречу друг другу.

Крупный сорт, профиль и толстый лист производят методом горячей продольной прокатки, тонкий лист, ленту, мелкий профиль точных размеров - методом холодной прокатки. Тонкий лист (толщиной 1,5 мм) производить ғорячей прокаткой затруднительно вследствие быстрого охлаждения металла. Горячая прокатка более производительна и экономически выгодна, чем холодная, однако холодная прокатка обеспечивает значительно более высокую точность и часто является чистовым этапом производства листов труб и профилей

Рис. 1.7. Схемы продольной (a), поперечной (б) и поперечно-винтовой (в) прокатки:

1 - заготовка; 2 - валки; 3 - оправка; Q - сила прижима заготовки к валкам

При поперечной (рис. 1.7, б) и поперечно-винтовой (косой) прокатке (рис. 1.7, в) валки вращаются в одну сторону. При косой прокатке металл получает не только поперечную, но и продольную деформацию за счет перекоса валков. В обоих случаях заготовка вращается вследствие вращения валков. Косая прокатка - процесс производства бесшовных горячекатаных труб, а поперечная специальных профилей периодического сечения. Эти виды прокатки, как правило, относятся к методам горячей обработки.

На рис. 1.7, в представлена прокатка гильзы, из которой затем получают бесшовную трубу. Пруток (заготовка) 1 подают в пространство между вращающимися в одну сторону валками 2 , установленными друг относительно друга под небольшим углом (от 8 до 24°). Пруток в этом случае нагревают. Между валками, на пути движущегося прутка, устанавливают конусную оправку 3 , обычно называемую дорном. Дорн образует внутреннюю полость цилиндрической формы. Получается пустотелый с толстыми стенками профиль - гильза. Этот процесс называют проиивкой. Гильза после прошивки имеет толстую стенку (20% диаметра трубы), на поверхности гильзы остаются следы валков и дорна в виде винтовых линий. После прошивки обработкой на других прокатных станах получают тонкостенную трубу заданного размера с гладкой поверхностью.

По назначению станы подразделяют на станы для прокатки полуфабриката, являющегося исходной заготовкой для получения сортового проката, и станы для выпуска готового проката.

К первому типу относят обжииные станы - блюминти и слябинги. Их используют для прокатки слитков весом до 25 т. На блюмингах получают блюмы - заготовки квадратного сечения (200×200 и 350×350 мм) и слябы - заготовки прямоугольного сечения (шириной до 1600 мм и толщиной до 300 мм).

Ко второму типу относят рельсобалочные станы - для получения сортового проката, проволочные станы - для получения проволоки диаметром $5 \ldots 10$ мм, листовые и трубные станы, а также станы для получения специальньх видов проката.

Сортаментом стана называется совокупность получаемых изделий по форме, сечению и размерам.

Основной сортамент прокатной продукции, изготавливаемой на станах продольной прокатки, представлен на рис. 1.8. Прокатку сорта и профиля осуществляют в калиброванных (ручьевых) валках, листы и полосы прокатывают в валках с гладкой бочкой. Врез на валке называется ручьем, два ручья образуют калибр. Калибровкой называется последовательное расположение на валках ручьев, обеспечивающее получение готового профиля заданных размеров.

В России прокатные изделия гостированы, имеются справочники, указатели технических условий и каталоги различного назна-

a

6

-

2

3

u

WाTMTMTMTO
∂
$\boldsymbol{\kappa}$

\boldsymbol{A}

\boldsymbol{w}

M

H

0

Рис. 1.8. Сортамент прокатной продукции:
a - круг; б - квадрат; в - шестигранник; г - полоса; ∂ - лист; e - сегмент;
$\boldsymbol{\kappa}$ - овал; з - трехгранник; u - равнобокий уголок; κ - неравнобокий уголок;
n - тавровая балка; $м$ - швеллер; \boldsymbol{n} - двутавровая балка; o - рельс

чения. Все прокатные изделия подразделяют на сорт; лист (до 4 мм тонкий, свыше 4 мм - толстый); трубы (горячекатаные и холоднокатаные); профили (простые и фланцевые); специальные виды проката:

Производство бесшовньх труб. Трубопрокатные заводы, как правило, имеют полный цикл производства и поставляют как горячекатаные, так и холоднокатаные, тянутые и сварные трубы. Центробежно-литые трубы используют в качестве заготовки и значительно реже поставляют в качестве готовой продукции. Горячекатаные трубы производят двумя методами - прокаткой и прессованием.

Горячекатаные трубы служат также заготовкой для изготовления всех видов холоднокатаных и холоднотянутых труб.

Большинство труб имеет круглое сечение, выпускают также трубы профильного и оребренного сечения (рис. 1.9).

Сортамент бесшовных труб характеризуется диаметром, чаще наружным (от 650 мм до нескольких миллиметров) и толщиной стенки (от 75 мм до десятых долей миллиметра). Бесшовные трубы по механическим, физическим и эксплуатационным свойствам превосходят литые и сварные, но значительно дороже.

Производство гнутых профилей. Особой разновидностью специальных станов являются гибочные роликовые станы. На этих станах изготавливают профили методом холодной гибки полосы (рис. 1.10). Получить такие профили горячей прокаткой зачастую просто невозможно из-за быстрого охлаждения тонкостенных из-

Рис. 1.9. Основные профили бесшовных труб

делий и сложности их формы. Гнутые профили можно изготавливать и штамповкой, но этот способ менее производителен и ограничивает длину профиля. Многоклетьевые гибочные станы имеют 6-20 последовательно расположенных клетей (пар валков) непрерывного типа. В каждой паре гибочных валков сечение полосы изменяется, постепенно приобретая к последней клети заданную форму. В гибочных станах практически нет изменения площади сечения, меняется только его форма. Применение гнутых профилей в строительстве и машиностроении взамен катаных позволяет экономить до 40% металла.

Производство сварных труб. Сварные трубы изготавливают на трубосварочных агрегатах различными способами, из которьх древ-

a

6

6

Рис. 1.1 Осңфвные виды тнутых профитеи:
$a-$ с элементом двойной толшины; $6^{*}-$ замкнутого

Рис. 1.11.Схема технологического процесса производства электросварных труб:
1- рулонполосы; 2 - зачистка кромки полосы; 3 - формовка (свертывание); 4 - сдавлівание кромок; 5 - сварка кромок; 6- зачистка грата; 7-калибровка трубы по диаметру; 8 - охлаждение; 9 - резка на ходу

нейшимявляется печная сварка. Особенностью современньх способов явиется использование различных методов электрической сварки, ислородно-ацетиленовой сварки, пайки. Процесс производства сварных труб состоит из операции валковой или прессовой форжовки - гибки исходной ленты (штрипса) в трубу с последующей сваркой по стыку. Трубосварочный агрегат представляет собой коплекс механизмов и машин в виде поточной линии производств труб, их резки, транспортирования, контроля, отделки и отгрузки. В линию входят несколько многоклетъевых станов: формовочный и сварочный, калибровочный, редукционный.

Процесс электрической сварки холоднодеформируемых труб являетсяболее современным и широко распространенным (рис. 1.11). Исходныи материалом служит холоднокатаная лента или полоса, формиремая в трубу в шести и более клетьевых станах со сваркой шва в конце процесса.

Для получения труб диаметром больше ширины исходного штрипсаиспользуют метод спиральной навивки.

Сварвые трубы производят в широком сортаменте по диаметру ($5 \ldots 16$ V. мм и более) и толщине стенки ($0,5 \ldots 40$ мм и более).

Волотние. Сущность процесса волочения состоит в деформации металла путем протягивания его через сужающийся по длине канал крупюго, квадратного или более сложного профиля (рис. 1.12). Волочилный инструмент, волоку (матрица, фильера), изготавливают из закаленной стали, твердых сплавов, а для прецизионных изддий - из алмаза (вставки в металлическое кольцо).

Рис. 1.12. Основные схемы процесса волочения:
a - круглого сплошного профиля; б - фасонного сплошного профиля; в круглой трубы без оправки (редуцирование); z, ∂ - круглой трубы на короткой и на длинной оправках с уменьшением по диаметру и утонением стенки; 1 волока; 2 - протягиваемое изделие; 3 - упор стержня; 4 - стержень короткой оправки; 5 - оправка; F - усилие протяжки

Волочение на оправке позволяет не только уменьшить диаметр, но и сделать стенку трубы более тонкой.

Прессование. Процесс выдавливания (экструзии) находящегося в полости контейнера металла через выходное отверстие - очко матрицы называют прессованием. Методом горячего прессования в настоящее время изготавливают широкий сортамент изделий: прутки диаметром $3 \ldots 250$ мм, трубы диаметром $20 \ldots 560$ мм (с толщиной стенки $1,5 \ldots 15$ мм) и самые разнообразные профили сложного сечения.

Прессование чаще применяют для обработки цветных металлов, в том числе тугоплавких (вольфрам, ниобий и др.) и сплавов на их основе; реже стали. Прессованию подвергают как слитки, так и деформированный металл.

При прессовании имеет место самая благоприятная схема напряженного состояния обрабатываемого металла по сравнению с другими процессами ОМД, что позволяет обрабатывать малопластичные и даже хрупкие металлы без опасности разрушения. Известна обработка недеформируемых чугунов другими способами обработки давлением (производство труб).

Методом прессования изготавливают очень широкий сортамент сплошных и полых профилей, труб и панелей, в том числе

Рис. 1.13. Схемы прессования сплошного (a) и полого (б) профилей и примеры профилей, полученных прессованием (в):
1 - пуансон; 2-контейнер; 3-заготовка (прессуемый материал); 4-матрица с отверстием (каналом); 5 - игла; 6 - выдавливаемая часть; 7 - пресс-шайба; F - сила давления пуансона

оребренных. Практически любой вид профильного проката может быть изготовлен прессованием. Процесс универсален относительно перехода с размера на размер и одного типа профиля на другой. Существуют два метода прессования - прямой и обратный (рис. 1.13).

При прямом прессовании металл выдавливается в направлении движения пуансона 1 (пресс-остаток $18 \ldots 20 \%$), при обратном металл движется из контейнера 2 навстречу движению пуансона 1 (пресс-остаток $5 \ldots 6 \%$). При прямом прессовании качество поверхности выше, чем при обратном, но обратное прессование требует менышего усилия.

Инструмент для прессования состоит из контейнера 2, матрицы 4, пуансона 1 (штемпеля), иглы 5 и иглодержателя (при прессовании польх профилей и труб).

Свободная ковка. Процесс свободного течения металла под воздействием периодических ударов или статических воздействий инструмента называется свободной ковкой (рис. 1.14).

Свободной ковкой изготавливают детали массой от нескольких грамм до 250 т и более и размерами от нескольких сантиметров до десятков метров. Свободная ковка разделяется на ручную и машинную. Древнейший способ ОМД (ручная ковка) сохранился в настоящее время в мелких ремонтных мастерских.

Свободная машинная ковка осуществляется на молотах и прессах.
Объемная и листовая шттамповка. Штамповка - это способ изготовления изделий давлением с помощью специального инструмента (штампа), рабочая полость которого определяет конфигурацию конечной штамповки (изделия). Штамповки по своим размерам, точности, допускам и припускам значительно лучше аналогичных деталей, изготавливаемых свободной ковкой. Штампован-

Рис. 1.14. Схемы основных операций свободной ковки части заготовки: a - осадка без истечения материала; 6, в - осадка с истечением материала; г двусторонняя прошивка; ∂ - сквозная прошивка; e - гибка; ж, з - протяжка плоскими бойками; u - протяжка вырезными бойками; κ - разгонка бойками; л - протяжка с оправкой; м - раскатка на оправке; н - отрубка; 1 - верхняя плита; 2 - заготовка; 3 - поковка; 4- нижняя плита; 5 - плоские бойки; 6 зажимы; 7 - вырез; 8 - коническая оправка; 9 - цилиндрическая оправка; 10 - подставка; d_{0}, d_{x} - диаметр соответстненно заготовки и поковки; D диаметр отверстия в плите; H_{0}, H_{k} - высота соответственно заготовки и поковки; F - усилие ковки

ные заготовки значительно приближены по форме и размерам к готовой детали.

Различают объемную и листовую штамповку. При объемной штамповке используют сортовую или профильную заготовку, при листовой штамповке заготовкой служит металл в виде листа. Методами объемной штамповки изготавливают заготовки сложной конфигурации (шестерни, коленчатые валы, кронштейны, рычаги и т.п.). Для листовой штамповки характерно получение различных корпусных изделий (детали обшивки и корпуса легковых и грузовых автомобилей, гнутые корпусные судостроительные детали, коробчатые изделия сложной конфигурации и др.).

Объемная цтамповка бывает горячей и холодной. Сущность процесса горячей объемной штамповки заключается в том, что нагретую до оптимальной температуры заготовку помещают в полость одной из половин штампа, где она при воздействии второй половины приобретает заданную форму. Штамповка в открытых шттампах сопровождается образованием облоя (заусенца), поэтому при расчете объем заготовки нужно увеличить относительно объема готовой штамповки на величину облоя. Облой облегчает заполнение штампа металлом и позволяет использовать при штамповке одинаковых деталей заготовки, несколько различающиеся по объему. Для получения облоя в верхнем ручье вытачивают специальную канавку. В открытых штампах делают специальные штамповочные уклоны в ручъях для облегчения извлечения готовой штамповки.

Штамповку в закрытых штампах осуществляют без облоя. В этом случае штамп и при наличии уклонов не обеспечивает свободного извлечения штамповки, поэтому применяют специальное выталкивающее устройство. К безоблойным штампам относятся также прошивные штампы и штампы для выдавливания по типу прессования. Основные типы штампов для горячей объемной штамповки представлены на рис. 1.15.

Рис. 1.15. Типы штампов для объемной штамповки:
а - открытый; σ - закрытый; в - для выдавливания; 1 - облойная канавка; 2 , 4 - соответственно подвижная и неподвижная часть матришы; 3 -- поковка; 5 пуансон; 6 - выталкиватель F, Q - усилие пуансона и движушейся части матриды соответственно

В холодном состоянии штамповку осуществляют в тех же штампах, которые применяются для горячей обработки. Основное достоинство холодной штамповки состоит в возможности деформирования заготовок малой толщины (полоса) и поперечного сечения (пруток, проволока).

Примерами холодной объемной штамповки являются процессы холодной высадки для изготовления из прутка изделий типа болтов, гвоздей, шурупов и шариков.

Листовой штамповкой изготавливают изделия для автомобилей, тракторов, самолетов, сельскохозяйственных машин, холодильников. Особенно велик объем применения листовой штамповки в судостроении (корпусное производство, двери, настилы, переборки). Удельный вес листовой штамповки по расходу материалов в основных отраслях машиностроения и производства товаров народного потребления составляет 60 ... 98%.

Схемы основных операций листовой штамповки приведены на рис. 1.16.

При обычных процессах ОМД повышение скорости деформации способствует снижению пластичности металла. Однако при высокоскоростной обработке достигается не только повышение прочности, но и увеличение пластичности металла.

Использование положительного влияния высоких скоростей деформации реализуется при электрогидравлической штамповке взрывом (рис. 1.17). Энергия ударной волны взрывчатых веществ передается через жидкость.

Рис. 1.17. Схема шга̀мповки взрывом деталей из плоской (а) и трубной (б) заготовки в стационарном бассейне:
1- заготовка; 2 - заряд взрывчатого вешества; 3 - бассейн; 4 - передающая среда; 5 - прижимное кольцо; 6 - матрица; 7 - вакуумная система

Способ позволяет деформировать малопластичные материалы и с высокой точностью изготавливать детали сложной формы.

1.3. Сварочное производство

Обцие сведения. Сваркой называют технологический процесс получения механически неразъемных соединений, характеризующихся непрерывностью структур - непрерывной структурной связью.

Сваркой изготавливают все основные конструкции гидротехнических сооружений, паровых и атомных электростанций, автодорожные, городские и железнодорожные мосты, вагоны, надводные и подводные корабли, крупные узы машиностроительных конструкций, автомобили, ракеты, искусственные спуутники Земли, электрическую и радиотехническую аппаратуру и многие другие изделия.

Многообразие свариваемьх конструкций и свойств материалов, используемых для их изготовления, заставляют применять разные способы сварки и сварочные источники теплоты. Для сварочного нагрева и формирования сварного соединения используют энергию, преобразованную в тепловую посредством дугового разряда, электронного луча, квантовых генераторов; джоулево тепло, выделяемое протекающим током по твердому или жидкому проводнику; химическую энергию горения; механическую энергию; энергию ультразвука и других источников.

Сварка - один из важнейших технологических процессов в металлообработке. Качество сварных конструкций зависит от того, насколько сварное соединение по своей природе подобно свариваемому металлу.

Электрическая дуговая сварка. В зависимости от материала сварной конструкции, ее габаритных размеров, толщины свариваемого металла и других особенностей свариваемого изделия используют разные виды электрической дуговой сварки. Так, при изготовлении конструкций из углеродистых и низколегированных конструкционных сталей наибольшее применение находят ручная дуговая сварка качественными электродами с толстым покрытием, автоматическая и полуавтоматическая сварка под флюсом, а также сварка в углекислом газе; при сварке конструкций из высоколегированных сталей, цветных металлов и сплавов на их основе предпочтительно использование аргонодуговой сварки, хотя при определенных условиях применяют и некоторые другие разновидности электрической дуговой сварки.

Ручная дуговая сварка плавящимися толстопокрытыми электродами из всех способов дуговой сварки наиболее распространена. Схема процесса сварки приведена на рис. 1.18 , а. Питание дуги 2 осуществляется от сварочного генератора или выпрямителя постоянным током или от сварочного трансформатора - переменным током. Наиболее широкое применение находит постоянный ток. В настоящее время применяют только толстопокрытые электроды, т.е. такие, у которых на металлический пруток определенных размеров (стержень) наносится обмазка (электродное покрытие). Состав покрытия при расплавлении вместе со стержнем обеспечивает защиту от окисления и азотирования металла шва и легирование наплавленного металла для придания ему необходимых механических свойств, а также устойчивость горению дуги.

При питании дуги постоянным током в зависимости от марки электрода может применяться прямая или обратная полярность подключения.

Прямой полярностью называют такую, когда отрицательный полюс источника питания подключают к электроду, положительный - K изделию, при обратной полярности наоборот. Для большинства марок качественных электродов рекомендуется обратная полярность.

Ручная дуговая сварка неплавяцимися (угольными) электродами дугой прямого действия используется при сварке тонколистовой углеродистой конструкционной стали, а также при сварке некоторых цветных металлов и сплавов на их основе. Схема процесса сварки приведена на рис. $1.18,6$. Сварка производится при питании дути постоянным током прямой полярности, что обеспечивает наилучшую стабильность процесса. В настоящее время этот способ сварки применяют редко.

Ручная дуговая сварка угольными электродами дугой косвенного действия применяется только при сварке тонких деталей из стали, некоторых цветных металлов и сплавов на их основе. Схема процесса сварки приведена на рис. 1.18, в, г. Сварной шов в этом слу-

Рис. 1.18. Схемы электрической дуговой сварки:
а, б - ручная дуговая сварка соответственно плавящимся и неплавящимся электродом; $\boldsymbol{\varepsilon}, \boldsymbol{z}$ - ручная дуговая сварка дугой косвенного действия соответственно постоянным или трехфазным током; д - автоматическая сварка под флюсом; е, ж аргонодуговая сварка вольфрамовым электродом соответственно с ручной и механической подачей присадочного материала; з - плазменная сварка; 1- электрод; 2 - дуга; 3 - основной металл; 4 присадочная проволока; 5- механизм подачи; 6электродная проволока; 7- токоподвод; 8- жидкий шлак; 9 - флюс; 10 - шлаковая корка; 11 сварной шов; 12 - жидкий металл; 13 - рукоять горелки; 14 - мундштук; 15 - атмосфера защитного газа; 16 - сопло; 17 - корпус горелки; 18 кассета с проволокой; 19 - заготовка

чае, как правило, образуется за счет расплавления отбортованных кромок без участия присадочного (добавочного) металла. Так как расход электродов при питании дуги постоянным током оказывается неодинаковым (электрод, являющийся анодом, вследствие большого тепловыделения на нем расходуется значительно быстрее), питание дуги в этом случае осуществляется переменным током, что позволяет обеспечить равномерный расход электродов.

Автоматическая и полуавтоматическая сварка под флюсом используется для сварки углеродистых низколегированных и некоторых марок высоколегированных сталей. В небольшом объеме этот способ используется при сварке некоторых цветных металлов и сплавов на их основе.

При сварке под флюсом (рис. $1.18, \partial$) дуга горит в пузыре из расплавленного флюса, который толстым слоем ($40 . . .60$ мм) насыпается на стык свариваемых металлов. Так как при сварке дуга закрыта расплавленным и нерасплавленным порошкообразным флюсом, плотность тока по сравнению со сваркой открытой дугой без опасения разбрызгивания металла может быть увеличена в несколько раз, что определяет существенное (в несколько раз) увеличение производительности процесса. По сравнению с ручной дуговой сваркой расширяется диапазон толщин, свариваемых встык без скоса кромок, что сокращает время на подготовку деталей к сварке.

Питание дуги может осуществляться как переменным, так и постоянныМ током.

Так как объем сварочной ванны (расплавленного металла и флюса) достаточно велик, во избежание их стекания сварка этим способом осуществляется только в нижнем положении. Сварной шов располагается в горизонтальной плоскости или при очень небольших наклонах свариваемьх листов, как правило, не более 7° к горизонту. Это несколько ограничивает область применения данного способа сварки.

Аргонодуговая сварка неплавящиися вольфрамовым электродом (рис. $1.18, e, ж$) производится следующим образом. Вольфрамовый электрод закрепляют в токоподводящем мундштуке специальной горелки, к которой по шлангам подводят токоведущий привод и инертный газ - аргон. Истекающая из сопла 16 горелки струя аргона оттесняет воздух и надежно защищает электрод, дугу и сварочную ванну от окисления и азотирования. Таким образом, процесс осуществляется при струйной защите зоны сварки от контакта с воздухом. Если возникает необходимость в добавочном (присадочном) металле для усиления шва (валика), в дугу подают присадочную проволоку, как правило, того же или близкого состава, что и свариваемый металл.

Так как при такой схеме процесса имеет место весьма надежная изоляция сварочной ванны (и, если нужно, остывающего шва) от кислорода и азота воздуха, этот способ применяют главным обра-

зом при сварке изделий из металлов и сплавов, обладаюцих большим сродством к газам - компонентам воздуха (например, из титана, циркония, алюминия, магния и других химически активных металлов) или при изготовлении конструкций ответственного назначения из коррозионно-стойкой стали и некоторьх других материалов.

Плазменная сварка (рис. 1.18 , з) является разновидностью аргонодуговой сварки. В отличие от аргонодуговой, где дуга между электродом и изделием горит в свободно истекающем из сопла горелки потоке аргона, при плазменной сварке дуга обжимается потоком газа, проходящем через узкое отверстие в горелке, называемой плазмотроном.

Обжатие дуги приводит к повышению температуры ее столба: при свободно горящей дуге эта температура составляет примерно $5730^{\circ} \mathrm{C}$, при горении сжатой дуги температура повышается до $14730 \ldots 24730^{\circ} \mathrm{C}$. Вследствие этого возрастает степень ионизации газа, что в свою очередь создает более высокую эффективность локального нагрева свариваемого металла.

Кроме плазмообразующего через горелку подается также зацитный газ, обеспечивающий надежную изоляцию зоны сварки от контакта с воздухом. Плазменная сварке применяется для соединения тех же материалов, что и аргонодуговая.

Сварка в углекислом газе применяется преимущественно при изготовлении конструкций из углеродистых и низколегированных конструкционных сталей как общего назначения, так и машиностроительных. Обычно сварка производится электродной проволокой, в составе которой имеется достаточное количество раскислителей - кремния и марганца. Это необходимо в связи с тем, что при высокой температуре углекислый газ диссоциирует на оксид углерода и кислород, причем содержание последнего в зоне сварки может достигать 20% и более. Таким образом, углекислый газ в зоне сварки представляет собой сильный окислитель и фактически защищает сварочную ванну только от азотирования. При наличии в сварочной ванне достаточного количества кремния и марганца эти элементы выступают как раскислители и тем самым позволяют получить наплавленный металл требуемого состава, а надежная защита потоком газа от контакта сварочной ванны с воздухом исключает возможность образования нитридов.

Газовая сварка. При газовой сварке (рис. $1.19, a$) кромки металла, подлежащие сварке, нагреваются до расплавления теплотой экзотермической реакции, протекающей в пламени 4 сварочной горелки 3 между горючим газом (как правило, ацетиленом $\mathrm{C}_{2} \mathrm{H}_{2}$) и кислородом. Ацетилен получают из карбида кальция при его взаимодействии с водой.

Строение пламени при горении ацетилена в смеси с кислородом характеризуется наличием трех зон: ядра (I), средней зоны (II) и

Рис. 1.19. Схема процесса газовой сварки (a) и распределение температуры t в пламени по его длине l (б):
1 - заготовка; 2 - присадочная проволока; 3 - сварочная горелка; 4- газовое пламя; I - ядро; II - средняя зона; III - факел пламени

факела (III) (рис. 1.19, б). Наивысшая температура (2730... $2300^{\circ} \mathrm{C}$) имеет место в зоне II, поэтому при сварке горелку располагают так, чтобы ядро пламени касалось поверхности сварочной ванны.

Газовая сварка применяется как при изготовлении изделий из тонколистовой стали, так и при сварке чугуна (при ремонтных работах) и некоторых цветных металлов и сплавов на их основе.

Термитная сварка. Данный вид сварки осушествляется за счет тепловой энергии, выделяемой при обменной реакции компонентов термита - смеси оксидов железа (примерно 80%) и измельченного алюминия (приблизительно 20%).

Термит загружают в специальный тигель, сообщающийся с формой, облегающей свариваемый стык (рельсов, стальных приводов, гребньх валов судов и других изделий), и поджигают магниевым или электрическим запалом. В результате горения перегретый металл затекает в стык.

Кроме термитной сварки плавлением в некоторых случаях используют термитную сварку давлением, характеризующуюся тем, что разогретые и оплавленные шлаком кромки соединяемых деталей сдавливают специальным приспособлением.

Контактная сварка. По форме выполняемьх соединений разиичают термитную три основных вида контактной сварки - стыковую, точечную и шовную, или роликовую (рис. 1.20).

При стыковой сварке (рис. 1.20, а) через стык соединяемых деталей пропускают электрический ток. После разогрева зоны сварки производят осадку.

При точечной сварке (рис. 1.20, б) соединяемые детали, чаще всего листы, собирают внахлестку и зажимают между двумя медными охлаждаемыми изнутри проточной водой электродами, подводящими ток к месту сварки и имеющими вид усеченного конуса.

Рис. 1.20. Виды контактной сварки:
a - стыковая; σ - точечная; в - шовная; 1,2 - соединяемые детали; 3 сварочный трансформатор; 4 - электроды; F - усилие сжатия

Ток проходит от одного электрода к другому через толшу соединяемых металлов и контакт между ними и производит их местный нагрев (вплоть до температуры расплавления). Усилием F, приложенным к электродам, производят осадку. Полученное сварное соединение, называемое точкой, в плане имеет форму пятна диаметром несколько миллиметров.

При шовной сварке электроды, подводящие ток к изделию и осуществляющие осадку, имеют форму роликов, катящихся по изделию, в связи с чем эту разновидность контактной сварки называют также роликовой (рис. 1.20, в). При шовной сварке листы соединяются непрерывным плотным швом.

Все разновидности электрической контактной сварки широко используются в промышленности, а в ряде отраслей (например, в автомобилестроении) находят наибольшее применение по сравнению с другими способами сварки.

Сварочные материалы. Электрод для ручной дуговой сварки представляет собой пруток из специальной проволоки, называемый стержнем электрода (в подавляющем большинстве случаев - из низкоуглеродистой стали), на который нанесен слой покрытия. Электроды диаметром $4 ; 5 ; 6$ мм имеют стандартную длину 450 мм.

В состав любого электродного покрытия входят материалы, выполняющие соответствуюцие функции: шлакообразующие (например, марганцевая руда, гематит, гранит, мрамор, рутил и др.); флюсующие, т.е. придающие шлаку жидкотекучесть (плавиковый шпат); газообразующие (мрамор, магнезит, органические вещества); раскисляющие (ферросплавы элементов, обладающих большим сродством к кислороду); легирующие (ферросплавы различных элементов). Наиболее широко применяют электроды марки УОНИ-13/45.

Флюсы для автоматической и полуавтоматической сварки должны обеспечивать защиту сварочной ванны от контакта с воздухом, раскисление и легирование металла сварочной ванны, необходимое формирование швов и стабилизацию горения дуги. Почти исключительное применение имеют так называемые плавленые флюсы, представляющие собой крупинки, состоящие из сплава различных оксидов и фторидов. Чаще всего при сварке углеродистых и низколегированных конструкционных сталей используют флюсы марок ОСЦ-45 и АН-348А.

Защитные газы, используемые при сварке, - аргон и углекислый газ. Аргон газообразный чистый используется трех сортов: высшего, первого и второго. Содержание аргона составляет соответственно 99,$99 ; 99,98$ и 99,95 \%. Примеси - кислород, азот, влага. Аргон хранится и поставляется в баллонах под давлением 15 МПа. Баллоны окрашены в серый цвет, надпись «Аргон чистый» зеленого цвета.

Углекислый газ поставляется в баллонах черного цвета вместимостью 40 л под давлением 7 МПа. В такой баллон заливается сжиженная углекислота массой 25 kr , дающая при испарении примерно 12,5 м 3 газа.

Пайка и газокислородная резка металлов. Пайкой называют процесс соединения металлов в твердом состоянии припоями, которые при температуре пайки находятся в расплавленном состоянии, смачивают паяемые поверхности, заполняют зазор между ними и в результате кристаллизации образуют паяный шов.

Пайке поддаются все углеродистые и легированные стали, твердые сплавы, чугун, медь, никель, алюминий и др.

Способы пайки определяются используемыми источниками нагрева, типом спая и технологией получения паяных швов.

K широко используемым способам для нагрева относятся нагрев в печах электросопротивления, газопламенных печах, нагретым блоком (паяльником периодического нагрева, электрическим паяльником), в электролитических ваннах (с расплавленными солями определенного состава), в расплаве припоя (погружением). Достаточно часто применяют также нагрев в индукционных печах, токами высокой и промышленной частоты, в контактных (сварочных) машинах, газовыми горелками, паяльными лампами.

Газокислородная резка металлов является процессом сквозного прожигания твердого металла струей чистого кислорода. В технически чистом кислороде при температуре, необходимой для начала резки, интенсивность окисления металла становится настолько большой, что начинается горение металла. Для непрерывности процесса горения необходимо соблюдение определенных условий: контакт окислителя с неокисленным металлом поверхности; непрерывный подогрев неокисленного меташа до температуры воспламенения; достаточно высокая концентрация кислорода в газовой среде, вступающей в контакт с метащлом.

Для получения качественной (гладкой) поверхности реза необходимо, чтобы разрезаемый металл удовлетворял определенным требованиям:

- температура горения металла должна быть ниже температуры его плавления, чтобы при горении сам металл не плавился;
- продукты горения металла должны быть жидкими, чтобы легко удалялись из реза, оголяя поверхность металла для непрерывного контакта со струей кислорода при перемещении резака вдоль линии реза.

Таким требованиям удовлетворяют железо, углеродистые и низколегированные конструкционные стали при невысоком содержании углерода: температура плавления железа $1536^{\circ} \mathrm{C}$, температура горения $1200^{\circ} \mathrm{C}$, температура плавления оксида железа $1370^{\circ} \mathrm{C}$.

Худшими характеристиками обладают никель и медь; так, температура плавления меди $1083^{\circ} \mathrm{C}$, оксида меди $-1230^{\circ} \mathrm{C}$.

Совершенно не удовлетворяют изложенным выше требованиям алюминий, магний, имеющие температуру плавления, ${ }^{\circ} \mathrm{C}$: алюминий - 658; оксид алюминия -2050 ; магний -651 ; оксид магния -2500 .

Схема инжекторной газовой горелки приведена на рис. 1.21. Для подогрева места начала реза до температуры воспламенения металла вентилями 7 и 6 открывают подачу соответственно ацетилена и кислорода для создания нагревательного пламени, горящего

Рис. 1.21. Схема инжекторной газовой горелки:
1 - мундштук; 2 - наконечник; 3 - камера смешения; 4 - инжекторная камера; 5 - инжектор; 6 - кислородный вентиль; 7 - ацетиленовый вентиль; 8 ацетиленовый канал

на выходе смеси из кольцевого канала, образуемого мундитуком 1. После разогрева места начала реза до необходимой температуры подают струю режуцего кислорода.

1.4. Обработка резанием

Общие сведения. Практически все детали машин и приборов приобретают окончательные формы и размеры, заданные чертежом, только после механической обработки, т.е. после обработки резанием. До обработки будущая деталь называется заготовкой; в процессе обработки с заготовки необходимо удалить лишний металл, который называется припуском на обработку.

Движения, при которых с заготовки срезается припуск или изменяется состояние обработанной поверхности, называются основными или движениями резания. Основных движений два: главное движение и движение подачи. Главное движение определяет скорость отделения стружки. Его скорость значительно больше скорости движения подачи. Движение подачи обеспечивает возможность непрерывного врезания режущего инструмента в новые слои металла и снятия стружки со всей обрабатываемой поверхности.

Различают следующие виды обработки резанием:

- токарная обработка (точение), предназначенная для точения наружных и внутренних цилиндрических и конических поверхностей, нарезания наружных и внутренних резьб, подрезания торцов и т.д. При токарной обработке заготовка совершает вращательное движение, а режущий инструмент (резец, сверло) - поступательное, параллельно (рис. 1.22, a), перпендикулярно или под углом к оси вращения заготовки;
- фрезерная обработка (фрезерование), применяемая для получения плоских, фасонных и винтовых поверхностей многолезвийными режущими инструментами - фрезами, совершающими вращение при поступательном движении заготовки (рис. 1.22, б);
- сверлильная обработка (сверление), предназначенная для получения и обработки отверстий с помощью сверла, зенкера, развертки и метчика, совершающих вращательное и поступательное движения (рис. 1.22, в);
- строгальная обработка (строгание), позволяющая получать плоские и фасонные поверхности, канавки, пазы и выемки. Особенностью процесса строгания является возвратно-поступательное движение обрабатываемой заготовки или инструмента (резца), который поочередно совершает рабочий и холостой ход (рис. 1.22, г). Производительность строгания ниже, чем фрезерования;
- шлифование, относящееся к отделочным (доводочным) операциям механической обработки, позволяющее достичь высокой точности и низкой шероховатости обработанных поверхностей. В ка-

Рис. 1.22. Схемы обработки металлов резанием:
a - точение; 6 - фрезерование; в - сверление; г - строгание; ∂ - круглое шлифование; e - плоское шлифование; $ж$ - протягивание; D_{r} - главное движение; $D_{S T p}, D_{S \mathrm{I}}$ - дөижения подачи

честве режущего инструмента при щлифовании используют шлифовальные круги (рис. $1.22, д$, е) и бруски, режущая способность которых обеспечивается острыми гранями абразивных зерен и их связкой, а также структурой абразивного инструмента;

- протягивание, представляющее собой высокопроизводительный процесс обработки отверстий, нарезания пазов, шлицов и канавок с помощью многолезвийного инструмента - протяжки (рис. $1.22, ж$). Режущая кромка каждого последующего зуба у протяжки выше, чем у предыдущего, что обеспечивает съем болышого количества тонких стружек и высокую чистоту обработанных поверхностей.

Токарная обработка. K числу наиболее распространенньх методов обработки резанием относится токарная обработка. В общем парке металлорежуцего оборудования доля токарных станков со-

Рис. 1.23. Схема токарного резца:
I - рабочая часть (головка резца); II - присоединительная часть (державка, тело резца); $A B C D B_{1}$ - передняя поверхность; $A B E F, A B_{1} E_{1} F$ - задние поверхности; $A B$ - режущая кромка

ставляет $30 \ldots 40 \%$. Работа резания любого режущего инструмента основана на действии клина, который внедряется в тело заготовки и последовательно скалывает заданные участки припуска. В зависимости от метода обработки (точение, сверление, фрезерование и т.д.) режущие инструменты значительно различаются по конструкции, однако правила формирования их режущих элементов практически одинаковы. Поэтому изучение геометрических параметров режущих инструментов удобно рассматривать на примере наиболее простого токарного проходного резца.

Токарный резец (рис. 1.23) состоит из двух частей: рабочей, осуществляющей работу по срезанию стружки, и присоединительной - стержня, служащего для закрепления инструмента на станке. Рабочая часть резца состоит из нескольких элементов: передняя поверхность, по которой сходит образующаяся в процессе резания стружка; главная задняя поверхность, обращенная в сторону поверхности резания; вспомогательная задняя поверхность, обращенная в сторону обработанной поверхности. Эти поверхности, пересекаясь под заданными углами, образуют режущие кромки.

Главная режущая кромка образуется пересечением передней и главной задней поверхностей. Вспомогательная режущая кромка образуется пересечением передней и вспомогательной задней поверхностей. Точка пересечения главной и вспомогательной режущих кромок образует вершину резца. Так как острая вершина резца хрупкая, на практике ее несколько притупляют.

В процессе резания могут образоваться три вида стружки: сливная, скалывания и надлома (рис. 1.24). Сливная стружка (рис. 1.24, a)

Рис. 1.24. Виды стружки:
a - сливная; 6 - скалывания; в - надлома; D_{r} - главное движение

образуется при обработке пластичных материалов (мягкой стали, меди, алюминия и т.п.) и имеет вид сплошной гладкой ленты. Отдельные элементы стружхи довольно прочно связаны с другом. Стружка скалывания (рис. 1.24, б) образуется при обработке менее вязких материалов (сталей повышенной твердости, некоторых видов латуней). У нее отчетливо видны плоскости скалывания между отдельными элементами, а верхняя сторона имеет пилообразную форму.

Главными характеристиками процесса является скорость резания, глубина резания и скорость подачи. Скорость резания определяется расстоянием, пройденным точкой режущей кромки инструмента относительно заготовки в направлении главного движения в единицу времени.

Между стружкой и поверхностью резца возникает трение, приводящее к разогреву и разупрочнению режущей кромки. Поэтому инструментальные материалы должны обладать твердостью, износостойкостью и теплостойхостью. Для уменьшения отрицательного влияния нагрева применяют смазочно-охлаждающие жидкости.

Фрезерная обработка. С помощью фрезерования обрабатывают плоские поверхности, пазы, уступы, канавки. При фрезеровании режущий инструмент (фреза) совершает вращательное движение, а заготовка - поступательное движение подачи. Фреза представляет собой многолезвийный инструмент. Зубья фрезы отделяют от обрабатываемой детали стружку. Различные типы фрез приведены на рис. 1.25.

Сверлильная обработка. Сверлением (рис. 1.26, а) обрабатывают цилиндрические отверстия за счет врацательного движения инст-

румента (главного движения) и одновременного движения инструмента вдоль оси (движение подачи).

При сверлении заготовки 1 для выдерживания определенного направления оси отверстия обычно используют кондукторную плиту 2 с втулкой 3. Применение втулки 3 уменьшает смещение заданного положения оси отверстия. Обычно число режущих кромок у сверла 4 равно двум, а спиральные канавки служат для отвода стружки.

Для увеличения точности и повышения качества обработки внутренней поверхности отверстия применяют операцию, называемую зенкерованием (рис. 1.26, б). Зенкер 5 является многолезвийным инструментом с

Рис. 1.26. Сверление (a), зенкерование (б), развертывание (в):
1- заготовка; 2- кондукторная плита; 3-втулка; 4- сверло; 5 - зенкер; 6 - развертка числом режущих кромок $3-6$, поэтому при обработке обеспечивается более высокая точность, а шероховатость снижается в 2 раза.

После зенкерования часто применяют финишную обработку, которую называют развертыванием (рис. 1.26, в). Развертка 6 имеет число режущих кромок 6-12. При развертывании снимается очень тонкий слой металла.

Строгальная обработка. Обработка строганием характеризуется прямолинейным возвратно-поступательным главным движением и прерывистым движением подачи. Главное возвратно-поступательное движение состоит из двойных ходов. Во время прямого хода с заготовки срезается стружка (рабочий ход), а во время обратного (холостого хода) происходит возврацение исполнительных органов (стола или резца) в исходное положение и стружка не снимается. В зависимости от конструктивного исполнения различают по-перечно- и продольно-строгальные станки. На поперечно-строгальном станке (рис. $1.27, a$) главное возвратно-поступательное движение совершает режуший инструмент, а заготовка - периодическое движение подачи поперек направления главного движения. При обработке вертикальньх или наклонных поверхностей периодическое движение подачи сообщается режущему инструменту. По-перечно-строгальные станки применяют для обработки малых и средних заготовок. Схема обработки на продольно-строгальных станках (рис. $1.27, \sigma$) характеризуется главным возвратно-поступательным перемещением заготовки и периодическим движением пода-

Рис. 1.27. Схемы обработки на поперечно-строгальном (a), продольнострогальном (6) и долбежном (в) станках: D_{r} - главное движение; D_{S} - движение подачи

чи режущего инструмента в горизонтальном, вертикальном и наклонном направлениях.

Разновидностью строгания является долбление (рис. 1.27, в), которое характеризуется главным возвратно-поступательным движением режущего инструмента в вертикальном направлении, периодическим перемещением заготовки в горизонтальной плоскости.

Шлифование. Процесс резания материалов с помощью абразивного инструмента, режуцими элементами которого служат зерна абразивных материалов называется шлифованием. Шлифование применяется как для черновой, так и для чистовой и отделочной обработки. При шлифовании главным движением является вращение режущего инструмента (чаще шлифовального круга) с очень большой скоростью. Каждое абразивное зерно, удерживаемое связуюшим материалом, работает как зуб фрезы, снимая стружку.

К естественным абразивным материалам относятся алмаз, корунд, наждак и др. Однако ввиду того, что свойства этих материалов нестабильны, а запасы их ограничены, основное применение в промышленности получили искусственные абразивные материалы: элек-

Рис. 1.28. Схема процесса резания при шлифовании:
1- заготовка; 2 - связующие материалы; 3 - шлифовальный крут; 4 - абразивные зерна; D_{r} - главное движение; $D_{\text {STр }}$ - движение подачи рокорунд, карбид бора, синтетические алмазы и сверхтвердые материалы, полученные на основе кубического нитрида бора.

Схема резания при шлифовании приведена на рис. 1.28. Существует несколько схем шлифования.

При круглом шлифовании вращающаяся заготовка имеет воз-вратно-поступательное движение, в процессе которого обработка ведется с помощью вращающегося шлифовального круга.

Плоское шлифование может осуществляться периферией круга, вращающегося относительно перемещающейся возвратно-поступательно заготовки, которая обычно закрепляется на рабочем столе с помощью притягивающих магнитов. Для плоского шлифования применяют также обработку торцом вращаюшегося шлифовального круга. При этом заготовка имеет, как и в предыдущем случае, возвратно-поступательное движение.

K описанным методам шлифования можно отнести отделочные операции. Их выполняют для получения высокой точности и малой шероховатости обрабатываемой поверхности. К отделочным операциям относят хонингование, суперфиниширование и полирование.

С помощью хонингования можно получить высокую точность и очень малый параметр шероховатости. Хонингованием можно устранить весьма небольшие овальность и конусность отверстий, но нельзя исправить положение осей отверстий. Хонингование применяют для обработки внутренних поверхностей отверстий с помощью абразивных брусков. Схема хонингования представлена на рис. 1.29 , a. Отверстия в заготовке 4 обрабатывают специальными инструментами - хонами. Хон совершает одновременно два типа движений: вращательное и возвратно-поступательное. В результате совмещения движений на обрабатываемой поверхности образуется мелкая сетка пересекаюшихся рисок - следов резания абразивных эерен. Эта сетка хорошо удерживает смазочный материал.

Для уменьшения параметров шероховатости и увеличения точности наружной цилиндрической поверхности применяют суnepфиниширование (рис. 1.29,). Подвергаемая суперфинишной обработке поверхность заготовки 4 контактирует с шлифовальными

Рис. 1.29. Хонингование (а) и суперфиниширование (6):
1- приводное звено; 2 - обойма; 3-шлифовальный брусок; 4 - заготовка; S-державка; D_{r} - главное движение; D_{S} - движение подачи; $D_{\text {ос }}$ - осциллирующее движение; F - усилие прижима

брусками 3, закрепленными в специальной державке 5. При этом бруски прижимаются малым усилием. Обработка производится при колебагельньх движениях брусков.

Одним из самых распространенных методов снижения шероховатости обрабатываемой поверхности является полирование. При этом поверхности придается зеркальный блеск. Чаще всего полирование производят с помощью полировальных мягких (например, фетровых или войлочных) кругов с применением специальных паст, в состав которых входят мелкозернистые абразивные порошки.

Контрольные вопросы

1. Какими способами можно получать заготовки?
2. Какими свойствами должны обладать литейные сплавы?
3. Какие существуют виды сварки?
4. Что такое обработка резанием?
5. Почему при обработке резанием необходимо производить охлаждение и смазывание заготовки и инструмента?
6. Какие виды работ можно производить на токарных станках?
7. На каких станках можно получать и обрабатывать отверстия?
8. Какие виды работ можно производить на фрезерных станках?
9. Что такое строгание?
10. С какой целью производят шлифование?

ГЛАВА 2

СТРОЕНИЕ И СВОЙСТВА МЕТАЛЛОВ

2.1. Общая характеристика металлов и сплавов

Металлы и их сплавы повсеместно используют для изготовления конструкций машин, оборудования, инструмента и т.д. Несмотря на широкий круг искусственно созданных материалов, керамики, клеев, металлы служат основным конструкционным материалом и в обозримом будущем по-прежнему будут доминировать. В природе металлы встречаются как в чистом виде, так и в рудах, оксидах и солях. В чистом виде встречаются химически устойчивые элементы ($\mathrm{Pt}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Hg}, \mathrm{Cu}$).

Из 109 открытых элементов, представленных в Периодической системе элементов Д.И. Менделеева, 22 являются неметаллами.

Металлические материалы обьчно подразделяют на две большие группы: железо и сплавы железа (сталь и чугун) называют черными металлами, а остальные металлы и их сплавы - цветными. Кроме того, все цветные металлы, применяемые в технике, в свою очередь, подразделяют на следующие группы:

- легкие металлы ($\mathrm{Mg}, \mathrm{Be}, \mathrm{Al}, \mathrm{Ti}$) с плотностью до 5 г/см ${ }^{3}$;
- тяжелые металлы (Pb , Mo, Ag, Au, Pt, W, Ta, Ir, Os) с плотностью, превышающей $10 \mathrm{r} / \mathrm{cm}^{3}$;
- легкоплавкие металлы ($\mathrm{Sn}, \mathrm{Pb}, \mathrm{Zn}$) с температурой плавления соответственно $232 ; 327 ; 410^{\circ} \mathrm{C}$;
- тугоплавкие металлы ($\mathrm{W}, \mathrm{Mo}, \mathrm{Ta}, \mathrm{Nb}$) с температурой плавления существенно выше, чем у железа (свыше $1536^{\circ} \mathrm{C}$);
- благородные металлы ($\mathrm{Au}, \mathrm{Ag}, \mathrm{Pt}$) с высокой устойчивостью против коррозии;
- урановые металлы, или актиноиды (актиниды), используемые в атомной технике;
- редкоземельные металлы - лантаноиды, применяемые для модифицирования стали;
- щелочные и шелочноземельные металлы ($\mathrm{Na}, \mathrm{K}, \mathrm{Li}, \mathrm{Ca}$), в свободном состоянии применяемые в качестве жидкометаллических теплоносителей в атомных реакторах; натрий также используется в качестве катализатора в производстве искусственного каучука, а литий - для легирования легких и прочных алюминиевых сплавов, применяемых в самолетостроении.

Свойства металлов разнообразны. Ртуть замерзает при температуре $-38,8^{\circ} \mathrm{C}$; вольфрам выдерживает рабочую температуру до $2000^{\circ} \mathrm{C}$ (температура плавления $3410^{\circ} \mathrm{C}$); литий, натрий, калий

легче воды; иридий и осмий в 42 раза тяжелее лития; электропроводность серебра в 130 раз выше, чем у марганца. Вместе с тем металлы имеют характерные обшие свойства. К ним относятся:

- высокая пластичность;
- высокая теплопроводность;
- высокая электропроводность;
- положительный температурный коэффициент электрического сопротивления, означаюший рост сопротивления с повышением температуры, и сверхпроводимость многих металлов при температурах, близких к абсолютному нулю;
- хорошая отражательная способность (металлы непрозрачны и имеют характерный металлический блеск);
- термоэлектронная эмиссия, т.е. способность к испусканию электронов при нагреве;
- кристаллическое строение в твердом состоянии.

2.2. Кристаллическое строение металлов

Общее свойство металлов и сплавов - их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристаллической структуры используют понятие кристаллической решетки, являющейся воображаемой пространственной сеткой с ионами (атомами) в узлах.

Атомно-кристаллическая структура может быть представлена изображением не рядом периодически повторяющихся объемов, а одной элементарной ячейкой - ячейкой, повторяющейся во всех трех измерениях. Трансляцией этого наименьшего объема можно полностью воспроизвести структуру кристалла (рис. 2.1).

В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где

Рис. 2.1. Кристаллическая решетка с параметрами a, b, c центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; их называют узлами решетки. Расстояния a, b и с между центрами атомов, находящихся в соседних узлах решетки, называют параметрами или периодами решетки. Величина их в металлах примерно $0,1 \ldots 0,7$ нм, размеры элементарных ячеек $0,2 \ldots 0,3$ нм.

На рис. 2.2 показаны три типа элементарных ячеех кристаллических решеток, наиболее характерных для ме-

Рис. 2.2. Типы элементарных ячеек кристаллических решеток металлов и схемы упаковки в них атомов:
a - объемно-центрированная кубическая; σ - гранецентрированная кубическая; в - гексагональная плотноупакованная решетка

таллов: объемно-центрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГПУ), а также схемы упаковки в них атомов. В ОЦК решетке атомы расположены в вершинах куба, а один атом - в центре его объема (рис. 2.2, a). В ГЦК решетке атомы расположены в вершинах куба и в центре каждой грани (рис. 2.2, б). В ГПУ решетке атомы расположены в вериинах и в центре шестигранньх оснований призмы, а три атома - в средней плоскости призмы (рис. 2.2, в).

Некоторые металлы при разных температурах могут иметь разную кристаллическую решетку. Способность металла существовать в различных кристаллических формах носит название полиморфизма. Принято обозначать полиморфную модификацию, устойчивую при более низкой температуре, индексом α (например, Fe_{α} или $\alpha-\mathrm{Fe}$), при более высокой β, затем γ и т.д.

Известны полиморфные превращения железа: $\mathrm{Fe}_{\alpha} \leftrightarrow \mathrm{Fe}_{\gamma}(\alpha-\mathrm{Fe}$ $\leftrightarrow \gamma-\mathrm{Fe})$, титана: $\mathrm{Ti}_{\alpha} \leftrightarrow \mathrm{Ti}_{\gamma}(\alpha-\mathrm{Ti} \leftrightarrow \gamma-\mathrm{Ti})$ и других элементов.

Температура превращения одной кристаллической модификации в другую называется температурой полиморфного превращения.

При полиморфном превращении меняются форма и тип кристаллической решетки - происходит перекристаллизация. Так, при температуре ниже $911^{\circ} \mathrm{C}$ устойчиво α-железо, в интервале температур $911 \ldots 1392^{\circ} \mathrm{C}$ устойчиво γ-железо. При нагреве выше $911^{\circ} \mathrm{C}$ атомы ОЦК решетки перестраиваются, образуя ГЦК решетку. На явлении полиморфизма основана термическая обработка.

При переходе из одной полиморфной формы в другую меняются свойства, в частности плотность и, соответственно, объем вещества. Например, плотность γ-железа на 3% болыше плотности
α-железа, а удельный объем соответственно меньше. Эти изменения объема необходимо учитывать при термической обработке.

Полиморфизм олова явился одной из причин гибели полярной экспедиции анғлийского исследователя Роберта Скотта. Оловом были запаяны канистры с керосином. При низкой температуре произошло полиморфное превращение пластичного белого олова с образованием хрупкого порошка серого олова. Горючее вылилось, и на обратном пути экспедиция осталась без топлива. Превращение белого олова в серое называют оловянной чумой.

Исследование физико-химической природы этого явления позволило разработать способы борьбы с ним. Добавки в олово таких элементов, как висмут, свинец и сурьма, противодействуют восприимчивости олова к оловянной чуме.

Типы кристаллических решеток важнейших металлов приведены в табл. 2.1 и 2.2.

Свойства материалов зависят от природы атомов, из которых они состоят, и силы взаимодействия между ними. Аморфные материалы характеризуются хаотическим расположением атомов. Поэтому свойства их в разных направлениях одинаковы, другими словами, аморфные материалы изотропны.

В кристалических материалах расстояния между атомами в разных кристаллографических направлениях различны. Напгимер, в ОЦК решетке в кристаллографической плоскости, проходящей через грань куба, находится всего один атом, так как четыре атома в вершинах одновременно принадлежат четырем соседним элементарным ячейкам: $(1 / 4) \cdot 4=1$. В то же время в плоскости, проходящей через диагональ куба, будут находиться два атома: $1+(1 / 4) \cdot 4=2$. Из-за неодинаковой плотности атомов в разных направлениях кристалла наблюдаются разные свойства. Различие свойств в кристалле в зависимости от направления испाтания называется анизотропией.

Разница в физико-химических и механических свойствах в разных направлениях может быть весьма существенной. При измерении в двух взаимно-перпендикулярных направлениях кристалла цинка значения температурного коэффициента линейного расширения (ТКЛР) различаются в 3-4 раза, а прочности кристалла железа - более чем в 2 раза.

Анизотропия свойств характерна для одиночных кристаллов, или так называемых монокристаллов. Большинство же технических литых металлов, затвердевиих в обычных условиях, имеют поликристаллическое строение. Такие металлы состоят из большого числа кристаллов или зерен (рис. 2.3, a). При этом каждое отдельное зерно анизотропно. Различная ориентация отдельных зерен приводит к тому, что в целом свойства поликристаллического металла являются усредненными.

Поликристаллическое тело характеризуется квазиизотропностью - кажушейся независимостью свойств от направления испы-

Таблица 2.1. Тишы кристаллических решетох важнейших металлов с одним ттпом репетки

Металы	Тип решетки
$\mathrm{Ag}, \mathrm{Au}, \mathrm{Pt}, \mathrm{Cu}, \mathrm{Al}, \mathrm{Pb}, \mathrm{Ni}$	ГЦК
$\mathrm{Na}, \mathrm{K}, \mathrm{V}, \mathrm{Nb}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$	ОЦК
$\mathrm{Be}, \mathrm{Mg}, \mathrm{Zn}, \mathrm{Cd}$	ГПУ

Таблица 2.2. Типы кристаллических решеток важнейших металлов
с полиморфным превращением

Металл	Тип решетки	Аллотропическая форма	Диапазон температур существования данной модификации, ${ }^{\circ} \mathrm{C}$
Fe	ОЦК	α	До 911
	ГЦК	γ	911... 1392
	ОЦК	δ	$1392 \ldots 1536$
Co	ГПу	α	До 477
	ГЦК	β	477... 1430
Sn	Алмазная	α	До 13
	Тетрагональная объем-но-центрированная	β	13... 232
Mn	Кубическая сложная многоатомная	α	До 700
	Кубическая сложная многоатомная	β	$700 \ldots 1079$
	Тетрагональная гранецентрированная	γ	1079... 1143
	ОЦК	δ	1143... 1244
Zr	ГПУ	α	До 862
	ОЦК	β	$862 \ldots 1852$
Ti	ГПУ	α	До 882
	OLK	β	$882 \ldots 1668$
U	Ромбическая	α	До 663
	Тетрагональная объем-но-центрированная	β	$663 . .764$
	ОЦК	γ	$764 . .1130$

Рис. 2.3. Ориентация кристаллических решеток в зернах литого металла (a) и после обработки давлением (б)

тания. Квазиизотропность сохраняется в литом состоянии. При обработке давлением (прокатка, ковка), особенно если она ведется без нагрева, большинство зерен металла приобретает примерно одинаковую ориентировку - так называемую текстуру (рис. 2.3, б), после чего металл становится анизотропным. Свойства деформированного металла вдоль и поперек направления главной деформации могут существенно разичаться. Анизотропия может приводить к дефектам металла (расслой, волнистость листа). Анизотропию необходимо учитывать при конструировании и разработке технологии получения деталей.

2.3. Дефекты строения кристаллических тел

Общие сведения. Идеальная кристаллическая решетка представляет собой многократное повторение элементарных кристаллических ячеек. Для реального металла характерно наличие большого количества дефектов строения, нарушающих периодичность расположения атомов в кристаллической решетке, что оказывает существенное влияние на свойства материала.

Различают три типа дефектов кристаллического строения: точечные, линейные и поверхностные.

Точечные дефекты. Такие дефекты (рис. 2.4) характеризуются малыми размерами во всех трех измерениях. Величина их не превышает нескольких атомных диаметров. К точечным дефектам относятся свободные места в узлах кристаллической решетки - вакансии (рис. $2,4, a$); атомы, сместившиеся из узлов кристаллической решетки в межузельные промежутки, - дислоцированные атомы (рис. 2.4, б); атомы других элементов, находящиеся как в узлах, так и в междоузлиях кристаллической решетки, - примесные атомы (рис. 2.4, в). Точечные дефекты примесных и дислоцированных атомов могут располагаться обособленно или образовывать цепочки. Точечные дефекты образуются в процессе кристал-

Рис. 2.4. Точечные дефекты в кристаллической решетке:
a - вакансия; σ - дислоцированный атом; в - примесный атом внедрения

лизации под воздействием тепловых, механических, электрических воздействий, а также при облучении нейтронами, электронами, ренттеновскими лучами. Вакансии и дислоцированные атомы могут появляться вследствие теплового движения атомов. В характерных для металлов решетках энергия образования дислоцированных атомов значительно больше энергии образования тепловых вакансий. Поэтому основными точечными дефектами в металлах являются тепловые вакансии. При комнатной температуре концентрация вакансий сравнительно невелика и составляет 1 вакансия на 10^{18} атомов, но резко повышается при нагреве, особенно вблизи температуры плавления. Точечные дефекты не закреплены в определенных объемах металла, они непрерывно перемещаются в кристаллической решетке в результате диффузии.

Косвенным доказательством образования вакансий в кристаллической решетке может служить простой эксперимент с нагревом двух одинаковых образцов алюминия до температуры, на несколько градусов меньшей его температуры плавления. Если охлаждение этих образцов провести с разной скоростью, при комнатной температуре объем быстро охлажденного (закаленного) образца будет на $0,2 \%$ больше, чем объем медленно охлажденного (отожженного) образца. Объясняется это тем, что при температуре, близкой к температуре плавления, благодаря диффузии части атомов к поверхности в металле образуется большое число вакансий. В случае медленного охлаждения большинство атомов успевает вернуться в исходное положение. При быстром охлаждении эти вакансии не успевают вернуться в исходное состояние и остаются в структуре закаленного образца. Если же закаленньй образец вновь нагреть и медленно охладить, разница между объемами образцов исчезнет.

Присутствие вакансий объясняет возможность диффузии - перемещения атомов на расстояния, превышаюцие средние межатомные расстояния для данного металла. Перемещение атомов осуществляется путем обмена местами с вакансиями.

Линейные дефекты. Такие дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третъем измерении. Наиболее важный вид линейных дефектов - дислокации.

Теория дислокаций позволила объяснить природу прочности и пластичности металлов. Ее использование дало возможность объяснить огромную разницу между теоретической и практической прочностью металлов.

На рис. 2.5 приведена схема участка кристаллической решетки с одной лишней атомной полуплоскостью, т.е. краевой дислокацией. Линейная атомная полуплоскость $P Q Q^{\prime} P^{\prime}$ называется экстраплоскостью, а нижний край экстраплоскости $Q Q^{\prime}$ - линией дислокации. Если экстраплоскость находится в верхней части кристалла, дислокацию называют положительной и обозначают знаком \perp, если в нижней - отрицательной и обозначают знаком Т. Различие между дислокациями чисто условное. Перевернув кристалл, мы превращаем положительную дислокацию в отрицательную. Знак дислокации позволяет оценить результат их взаимодействия. Дислокации одного знака отталкиваются, а противоположного - притягиваются.

Помимо краевых дислокаций в кристаллах могут образовываться винтовые дислокации. Винтовые дислокации могут быть получены частичным сдвигом атомных слоев по плоскости, который нарушает параллельность атомных слоев.

Вблизи линии дислокации атомы смещены со своих мест и кристаллическая решетка искажена, что вызывает образование поля напряжений: выше линии дислокации решетка сжата, а ниже растянута. Дислокации образуются уже при кристаллизации металлов, а также в ходе пластической деформации и фазовых превращений. Плотность дислокаций может достигать большой величины Под плотностью дислокаций р обычно понимают суммарную длину дислокаций $\sum l$, приходящуюся на единицу объема V кристалла: $\rho=\sum l / V$. Таким образом, плотность дислокаций ρ выражается в см $/$ см 3, или см $^{-2}$. Для отожженных металлов плотность дислокаций составляет $10^{3} \ldots 10^{6} \mathrm{~cm}^{-2}$, после холод-

Рис. 2.5. Краевая дислокация ной деформации она увеличивается до $10^{11} \ldots 10^{12} \mathrm{~cm}^{-2}$, что соответствует примерно 1 млн км дислокаций в $1 \mathrm{~cm}^{3}$. Плотность дислокаций может быть определена экспериментально при больших увеличениях подсчетом числа выходов дислокаций на единицу площади предварительно протравленного металлографического шлифа, а также при изучении структуры тонких пленок на просвет в электронном микроскопе.

Установлено, что дислокации притягивают в свою зону атомы иримесей, которые осаждаются в виде цепочки вдоль края экстраплоскости. Такие атомы снижают уровень упругих искажений дислокационной структуры. Цепочки инородных атомов образуют так назыниемые атмосферы Коттрелла, или облака Коттрелла. С повышением лемпературы облака Коттрелла рассеиваются. При понижении температуры до температуры, соответствующей пределу растворимости, они могут образовывать дисперсные выделения второй фазы.

Использование теории дислокаций позволило объяснить больное расхождение между теоретической и фактической прочностью металлов. Теоретическая прочность должна быть пропорциональна произведению сил межатомной связи на число атомов в сечении кристалла.

Расчетное усилие для смешения одной части кристалла относительно другой оказалось на 2-3 порядка выше фактически затрачиваемого при пластической деформации металла. Так, теоретическая прочность железа составляет примерно 13000 МПа, а фактическая - $250 \mathrm{MПа}$. Такое расхождение теоретической и фактической прочности объясняется тем, что деформация происходит не вследствие одновременного смещения целых атомных плоскостей, а вследствие постепенного перемещения дислокаций.

Влияние дислокаций на процесс пластической деформации на иримере краевых дислокаций показано на рис. 2.6. Пластический сдвиг является следствием постепенного перемещения дислокаций в глоскости сдвига. Распространение скольжения по плоскости скольжения происходит последовательно. Каждый элементарный акт перемещения дислокации из одного положения в друтое совершается путем разрыва лишь одной вертикальной атомной плоскости. Для перемещения дислокаций требуется значительно меньшее усилие, чем для жесткого смещения одной части кристалла относительно другой в плоскости сдвига. При движении дислокации вдоль направления сдвига через весь кристалл происходит смещение верхней и нижней его частей на одно межатомное расстояние. В результате перемещения дислокация выходит на поверхность кристалла и исчезает. На поверхности остается ступенька скольжения

В лекции о роли дислокаций Эгон Орован в качестве аналогии движения дислокаций указывал способы перемещения таких представителей животного мира, как дождевой червь или змея. Эти животные скользят по поверхности земли, последовательно перемещая участки своего тела. При этом участки, через которые прошла волна возмущения, восстанавливают исходную форму. В случае пластического сдвига позади переместившейся дислокации атомная структура верхних и нижних слоев восстанавливает свою исходную конфигурацию.

Другой аналогией движения дислокаций является перемещение складки на ковре (рис. 2.7). Последовательное перемещение

Рис. 2.6. Схема пластической деформации путем последовательного перемещения дислокации в простой кубической решетке:
a - исходное состояние краевой дислокации (\perp); б - контур Бюргерса вокруг дислокации: b - вектор Бюргерса; x - направление перемещения; в - контур Бюргерса для неискаженной решстки после скольжения

складки потребует значительно меньше усилий, чем перемешение всего ковра по поверхности пола, хотя в обоих случаях будет достигнут один и тот же результат - ковер переместится на одинаковое расстояние.

Дислокации легко перемещаются в направлении, перпендикулярном экстраплоскости. Чем легче перемещаются дислокации, тем ниже прочность металла, тем легче идет пластическая деформация.

Таким образом, причиной низкой прочности реальных металлов является наличие в структуре материала дислокаций и других

Рис. 2.7. Схема движения дислокации по аналогии с перемещением складки на ковре

несовершенств кристаллического строения. Получение бездислокационных кристаллов приводит к резкому повышению прочности материалов (рис. 2.8). Левая ветвь кривой (штриховая линия) соответствует созданию совершенньх бездислокационных нитевидных кристаллов (так называемых усов), прочность которых близка к теоретической.

При ограниченной плотности дислокаций и других искажений кристаллической решетки процесс сдвига происходит тем легче, чем больше дислокаций находится в объеме металла. С ростом напряжений возрастает число источников дислокаций в металле,

Рис. 2.8. Влияние искажений кристаллической решетки на прочность кристаллов и их плотность увеличивается. Помимо параллельных дислокаций возникают дислокации в разных плоскостях и направлениях. Дислокации воздействуют друг на друга, мешают друг другу перемещаться, происходит их аннигиляция (взаимное уничтожение) и т.д. С повышением плотности дислокаций их движение становится все более затрудненным, требуется увеличение прилагаемой нагрузки для продолжения деформации. В результате металл упрочняется, что соответствует правой ветви кривой (сплошная линия) на рис. 2.8.

Упрочнению способствуют и другие несовершенства кристаллического строения, также тормозящие движение дислокаций. К ним относятся атомы растворенных в металле примесей и легирующих элементов, частицы выделений второй фазы, границы зерен или блоков и т.д. На практике препятствие движению дислокаций, т.е. упрочнение, создается введением других элементов (легированием), наклепом, термической или термомеханической обработкой. Снижение температуры также препятствует свободному перемещению дислокаций. При низких температурах прочность растет, а пластичность падает. Металл становится более прочным, но хрупким.

Таким образом, повышение прочности металлов и сплавов может быть достигнуто двумя путями: получением металлов с более близким к идеальному строением кристаллической решетки, т.е. металлов, в которых отсутствуют дефекты кристаллического строения или же их число крайне мало, либо наоборот увеличением числа структурных несовершенств, препятствуюших движению дислокаций.

Поверхностные дефекты. Такие дефекты имеют малую толшину и значительные размеры в двух других измерениях. Обычно это места стыка двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов. Соседние зерна по своему кристаллическому строению имеют неодинаковую пространственную ориентацию решеток. Блоки повернуты относительно друг друга на угол от нескольких секунд до нескольких минут, их размер 10^{-5} см. Фрагменты имеют угол разориентировки θ не более 5°. Если угловая разориентировка решеток соседних зерен меньше 5°, такие границы называют малоугловыми границами (рис. 2.9). Все субзеренные границы (границы фрагментов и блоков) - малоугловые. Строение границ зерен оказывает большое влияние на свойства металла.

Граница между зернами представляет собой узкую переходную зону шириной $5-10$ атомных расстояний с наружным порядком расположения атомов. В граничной зоне кристаллическая решетка одного зерна переходит в решетку другого (рис. 2.10). Неупорядоченное строение переходного слоя усугубляется скоплением в этой зоне дислокаций и повышенной концентрацией примесей.

Плоскости и направления скольжения в соседних зернах не совпадают. Скольжение первоначально развивается в наиболее благоприятно ориентированных зернах. Разная ориентация систем скольжения не позволяет дислокациям переходить в соседние зерна, и, достигнув границы зерен, они останавливаются. Напряжения от скопления дислокаций у границ одних зерен упруго распространяются через границы в соседние зерна, в результате чего в них приводятся в действие источники образования новых дислокаций. Происходит передача деформации от одних зерен к другим, подобно передаче эстафеты в легкоатлетических соревнованиях.

Рис. 2.9. Схема малоугловой границы между блоками

Рис. 2.10. Схема строения зерен и границы между ними

Рис. 2.11. Шкалы ($1-10$) для определения величины зерна при 100 -кратном увеличении

Вследствие того что границы зерен препятствуют перемещению дислокаций и являются местом повышенной концентрации примесей, они оказывают существенное влияние на механические свойства металла.

Под размером зерна принято понимать величину его среднего диаметра, выявляемого в поперечном сечении. Это определение условно, так как действительная форма зерна в металлах меняется в широких пределах - от нескольких микрометров до миллиметров. Средний размер зерна оценивается 10 баллами по специальной стандартизованной шкале и характеризуется числом зерен, приходящихся на 1 мм 2 поверхности шлифа, при увеличении в 100 раз (рис. 2.11).

Процесс пластического течения, а следовательно, и предел текучести зависят от длины свободного пробега дислокаций до «непрозрачного» барьера, т.е. границ зерен металла. Предел текучести σ_{τ} связан с размером зерна d уравнением Холла - Петча: $\sigma_{\mathrm{T}}=\sigma_{0}+k d^{-1 / 2}$, где σ_{0}, k - постоянные для данного металла. Чем мельче зерно, тем выше предел текучести и прочность металла. Одновременно при измельчении зерна увеличиваются пластичность и вязкость металла. Последнее особенно важно для металлических изделий, работающих при низких температурах. Повышенная пластичность и вязкость обусловлены более однородным составом и строением мелкозернистого металла, отсутствием в нем крупных скоплений, структурных несовершенств, способствующих образованию трещин.

Помимо перечисленных дефектов в металле имеются макродефекты объемного характера: поры, газовые пузыри, неметаллические включения, микротрешины и т.д., которые снижают прочность металла.

2.4. Процесс кристаллизации

Общая характеристнка процесса. Еще Д. К. Черновым было установлено, что процесс кристаллизации состоит из двух элементарных процессов: зарождения центров кристаллизации и роста кристаллов из этих центров.

При температурах, близких к температуре затвердевания, в жидком металле образуются небольшие группировки атомов, так называемые флуктуации, в которых атомы упакованы так же, как в твердых кристаллах. Из части этих флуктуаций образуются зародыши, или центры кристаллизации. С увеличением степени переохлаждения возрастает число центров кристаллизации, образующихся в единицу времени. Вокруг образовавшихся центров кристаллизации начинают расти кристаллы. Одновременно в жидкой фазе образуются новые центры кристаллизации. Увеличение общей массы затвердевшего металла происходит как за счет возникновения новых центров кристаллизации, так и за счет роста существующих. Схема последовательных этапов процесса затвердевания приведена на рис. 2.12.

Взаимным ростом кристаллов объясняется неправильная форма зерен. Реальные твердые кристаллы неправильной формы называются кристалитами.

Суммарная скорость кристаллизации зависит от хода обоих элементарных процессов и определяется скоростью зарождения (СЗ) центров кристаллизации и скоростью роста (СР) кристаллов из этих центров (рис. 2.13). Величины СЗ и СР зависят от степени переохлаждения ΔT. При равновесной температуре $\Delta T=0 ; C 3=0$; $\mathrm{CP}=0$. С увеличением ΔT растет разность свободньх энергий $\Delta F=F_{\text {ж }}$ - $F_{\text {тв }}$, где $F_{\text {ж }}, F_{\text {тв }}$ - свободная энергия жидкого и твердого металла соответственно, и при хорошей подвижности атомов СЗ и СР увеличиваются и доститают максимума. Последующее уменьшение СЗ и СР объясняется снижением подвижности атомов при снижении температуры. При мальх значениях коэффициента диффузии затруднена перестройка атомов жидкости в кристаллическую решетку твердого тела. При очень сильном переохлаждении СЗ и СР рав-

Рис. 2.12. Схема кристаллизации металла:
$a-z$ - этапы затвердевания металла

ны нулю, жидкость не кристаллизуется, а преврацается в аморфғое тело.

Для реальных металлов, как правило, реализуются линь восходяцие ветви кривых СЗ и СР, и с ростом стенени переохлаждения увеличиваются скорости обоих процессов.

Если раныше аморфное состояние достигалось лишь для солей, силикатов, органических веществ, то в настоящее время с использованием специальных приемов достигаются высокая скорость охлаждения (более $10^{6}{ }^{\circ} \mathrm{C} / \mathrm{c}$) и стеклообразное состояние металла. Металлы в стеклообразном состоянии характеризуются особыми физико-механическими свойствами

От соотношения СЗ и СР зависит размер зерен. При малом переохлаждении, например при заливке металла в земляную форму с малой теплопроводностью или подогретую металлическую форму, СР велика, СЗ мала. В этом случае в объеме образуется небольшое количество крупных кристаллов. При увеличении ΔT в случае заливки жидкого металла в холодные металические формы СЗ возрастает, что приводит к образованию большого количества мелких кристаллов.

Размер зерна определяется не только степенью переохлаждения. Важную роль играют температура нагрева и разливки металла, его химический состав и особенно присутствие посторонних примесей. В реальных условиях самопроизвольное зарождение кристаллов в жидком металле затруднено. Источником образования зародышей служат различные твердые частицы: неметаллические включения, оксиды, продукты раскисления.

Чем больше примесей, тем больше центров кристаллизации, тем мельче зерна. Иногда в металл специально вводят вещества, которые при кристаллизации способствуют измельчению зерна. Эту операцию называют модифицированием. При введении в магниевые сплавы магнезита зерно уменьшается более чем в 10 раз: от $0,2 \ldots 0,3$ мм до $0,01 \ldots 0,02$ мм. Для стали модификаторами являются алюминий, ванадий, титан, для чугуна - магний

При кристаллизации реальных слитков и отливок важную роль играет направление отвода теплоты. Кристаллизация начинается от стенок формы или изложницы. В направлении отвода теплоты, т.е. перпендикулярно стенке формы, кристалл растет быстрее, чем

Рис. 2.14. Схема дендритного кристалла (по Д. К. Чернову):
1,2,3- оси соответственно первого, второго и третьего порядков

в других направлениях. При этом образуются оси первого порядка. Одновременно на их ребрах происходит зарождение и рост перпендикулярных им осей второго порядка, затем третьего порядка ит.д. В результате образуется разветвленный древовидный кристалл, называемый дендритом (рис. 2.14).

Так как при затвердевании имеет место так называемая избирательная кристаллизация, т.е. в первую очередь затвердевает более чистый металл, границы зерен более обогащены примесями. Неоднородность химического состава в пределах дендрита называется дендритной ликвацией. В большей степени, чем другие элементы, ликвации подвержены углерод, сера, фосфор.
Строение слитка спокойной стали. Схема строения слитка спокойной стали приведена на рис. 2.15. Структура слитка состоит из трех зон: наружной мелкозернистой зоны I, зоны столбчатых кристаллов II и зоны равноосных кристаллов III.

Наружная мелкозернистая

Рис. 2.15. Строение слитка спокойной стали с характерными зонами I-III зона состоит из неориентированных в пространстве мелких кристаллов. Ее образование обусловлено резким перепадом температур: жидкий металл - холодные стенки изложницы. Металл в этой зоне сильно переохлаждается, в нем образуется большое число центров кристаллизации, и он приобретает мелкозернистое строение.

После образования корковой зоны условия теплоотвода меняются, температурный градиент в прилегающем слое жидкого металла падает и снижается степень переохлаждения. В результате из сравнительно небольшого числа центров кристаллизации в на-

правлении отвода теплоты, т.е. перпендикулярно стенке изложницы, начинают расти столбчатые кристаллы; образующие вторую зону. Развитие их в стороны сдерживается соседними дендритами.

Третья зона - зона равноосных кристаллов. В центре слитка нет определенной направленности отвода теплоты. Здесь зародышами обычно являются различные мелкие твердые частицы, оттесненные при кристаллизации к центру слитка. Относительное распределение в объеме слитка столбчатой и равноосной зон очень важно. В зоне столбчатых кристаллов металл более плотный, но в местах их стыка он имеет малую прочность. Кристаллизация, при которой зоны столбчатых кристаллов стыкуются, называется транскристаллизацией.

Для цветных металлов транскристаллизация полезна, так как металл становится плотнее и при его высокой пластичности трещины при деформации не образуются. Транскристаллизация стали нежелательна, поскольку на стыке двух кристаллов при деформации могут образоваться трещины.

Основными дефектами слитка являются усадочная раковина, усадочная пористость и ликвация. Усадочная пористость обычно образуется вблизи усадочной раковины и по оси слитка. Образование усадочной раковины и усадочной пористости обусловлено тем, что все металлы кроме висмута имеют в твердом состоянии меньший удельный объем, чем в жидком.

2.5. Свойства металлов и сплавов

Различают физические, химические, технологические и механические свойства материалов.

Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. К физическим свойствам относятся плотность, теплоемкость, температура плавления, термическое расширение, магнитные характеристики, теплопроводность, электропроводность.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Характерным примером химического взаимодействия среды и металла является коррозия.

Технологические свойства металлов и сплавов характеризуют их способность подвергаться горячей и холодной обработке, в том числе при выплавке, горячем и холодном деформировании, обработке резанием, термической обработке и особенно сварке.

При конструировании изделий в первую очередь руководствуются механическими свойствами материалов. Механические свойства материалов характеризуют их способность сопротивляться деформированию и разрушению под воздействием различного рода

нагрузок. Механические нагрузки могут быть статическими, динамическими и циклическими. Кроме того, материалы могут подвергаться деформации и разрушению как при разньх температурах, так и в различных, в том числе агрессивных, средах.

Целесообразность применения тех или иных материалов определяется не только их свойствами, но и их стоимостью.

2.6. Упругая и пластическая деформация

Деформацией называется изменение формы и размеров тела под действием напряжений. Деформация, возникаюшая при сравнительно небольших напряжениях и исчезающая после снятия нагрузки, называется упругой, а сохраняющаяся - остаточной или пластической. При увеличении напряжений деформация может заканчиваться разрушением.

На диаграмме растяжения (рис. 2.16) упругая деформация характеризуется линией $O A$. Выше точки A нарушается пропорциональность между напряжением σ и деформацией ε. Рост напряжения приводит не только к упругой, но и к пластической деформации

Упругая и пластическая деформации в своей физической основе принципиально отличаются одна от другой. При упругой деформации происходит обратимое смещение атомов из положений равновесия в кристаллической решетке. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла. После снятия нагрузки сместившиеся атомы под действием сил притяжения (при растяжении) или отталкивания (при сжатии) возвращаются в исходное

Рис. 2.16. Диаграмма растяжения:
$\sigma_{\text {в }}$ - временное сопротивление; $\sigma_{0,2}$,
$\sigma_{\text {т }}$ - соответственно условный и физический предел тягучести; σ_{y}, $\sigma_{\text {п }}$ предел упругости и предел пропорциональности равновесное положение, и кристаллы приобретают первоначальную форму и размеры. Упругие свойства материалов определяются силами межатомного взаимодействия.

В основе пластической деформации лежит необратимое перемещение одних частей кристалла относительно других. После снятия нагрузки исчезает лишь упругая составляющая деформации. Пластичность, т.е. способность металлов перед разрушением претерпевать значительную пластическую деформацию, является одним из важнейших свойств металлов. Благодаря пла-

стичности осуществляется ОМД. Пластичность позволяет перераспределять локальные напряжения равномерно по всему объему металла, что уменьшает опасность разрушения.

Величина напряжения, необходимого для осуществления пластической деформации, зависит от скорости деформирования и температуры. С увеличением скорости деформирования достижение заданной деформации требует больших напряжений, а при повышении температуры значение необходимых напряжений снижается. Таким образом, пластическая деформация является термически активируемым процессом. При понижении температуры предел текучести большинства металлов растет. Металлы с ГЦК решеткой имеют значительно меньшую зависимость предела текучести от температуры, чем металлы с другими типами решеток.

2.7. Хрупкое и вязкое разрушение

Заключительная стадия деформирования материалов - стадия разрушения - стала объектом исследования сравнительно недавно, так как раньше считали, что после появления трещин в материале изделие нельзя использовать. Разрушение рассматривалось как заключительная мгновенная стадия нагружения, которая не может быть остановлена. В настоящее время выявлено, что стадия разрушения с момента появления повреждения может составлять цо 90% долговечности конструкции.

Толчком к систематическому изучению механики разрушения явились участившиеся случаи аварий и катастроф судов, мостов, резервуаров, летательных аппаратов и других конструкций, обусловленные применением высокопрочных материалов и усложнением условий их работы.

Разрушение твердого тела представляет собой процесс разделения его на части под действием нагрузки, который также может сопровождаться термическими, радиационными, коррозионными и другими воздействиями. На атомном уровне разрушение представляет собой разрыв межатомных связей с образованием новых поверхностей. Если разрыв межатомных связей происходит перпендикулярно плоскости разрушения, возникает разрушение сколом или отрывом. Если разрыв связей происходит под действием силы, приложенной параллельно плоскости разрушения, возникает разрушение сдвигом или скольжением. В металлах может иметь место и тот и другой вид разрушения, что определяется главным образом их кристалической структурой. Кроме того, характер разрушения зависит от температуры, скорости деформации, напряженного состояния, чистоты металла и т.д.

В зависимости от степени пластической деформации перед разрушением различают два основных вида разрушений: хрупкое и

вязкое. При вязком разрушении металл претерпевает перед разрушением не только упругую, но и значительную пластическую деформацию. При отсутствии пластической деформации или при ее незначительном развитии происходит хрупкое разрушение.

Хрупкое разрушение происходит путем отрыва или скола, когда плоскость разрушения перпендикулярна нормальным напряжениям (рис. 2.17). Под действием нормальных напряжений происходит упрутая деформация кристаллической решетки, а после достижения предельной степени ее искажения происходит последовательный разрыв межатомных связей с отрывом одной атомной плоскости от другой, т.е. разрушение металла. Разрушение начинается от какого-либо дефекта, вблизи которого развивается концентрация напряжений, превосходящих теоретическую прочность металла. Коэффициент концентрации напряжений k пропорционален остроте дефекта и его длине: $k=2 \sqrt{l / r}$, где l - длина дефекта; r радиус закругления в его вершине. Концентрации напряжений способствует образование как внутренних, так и наружных дефектов - надрезов различной остроты и длины (рис. 2.18).

У достаточно пластичных металлов, характеризующихся релаксацией напряжений, местной концентрации напряжений вблизи несплошностей оказывается недостаточно, и развитие трещин скола не происходит.

Вязкое разрушение происходит путем сдвига под действием касательных напряжений. Плоскость скольжения расположена под углом 45° к направлению главных норматьных напряжений.

Чисто сдвиговое вязкое разрушение характерно для аморфных материалов, например глине; чисто хрупкое разрушение свойственно идеально упругим материалам, например алмазу. Однако большинству реальных материалов одновременно присуще и вязкое, и

a

σ

B

Рис. 2.17. Схема разрушения путем отрыва силой F : a - исходное состояние; б - упругая деформация; в - хрупкое разрушение (отрыв)

Рис. 2.18. Концентрация напряжений $\sigma_{\max }$ в устье дефекта:
a - трещина; $б$ - острый надрез; в - закругленный надрез; l - глубина трещи-
ны; r - радиус надреза; $r_{1}<r_{2}<r_{3} ; \sigma_{c p}$ - средний уровень напряжений

хрупкое разрушение, а разделение на отдельные виды разрушения условно проводится по преобладанию того или иного типа.

Характерными признаками вязкого и хрупкого разрушения являются энергоемкость, т.е. величина работы разрушения, вид трещины и поверхности излома, скорость распространения трещины.

При хрупком разрушении затрачивается значительно меньшая работа на процесс самого разрушения, чем при вязком. Начавшееся хрупкое разрушение является самопроизвольным процессом - оно происходит за счет высвобождения накопленной в системе упругой энергии, поэтому для распространения трещины не требуется подвод энергии извне. При хрупком разрушении затраты энергии на образование новых поверхностей в результате раскрытия трещины меньше, чем освобождающаяся при этом накопленная упругая энергия.

При вязком разрушении затрачивается значительно бо́льшая работа. Для развития вязкого разрушения необходим непрерывный внешний подвод энергии, расходуемой на пластическое деформирование металла впереди растущей трещины и преодоление возникающего при этом упрочнения. Работа, затрачиваемая на пластическую деформацию, значительно превышает работу собственно разрушения.

При хрупком разрушении магистральная разделяющая тело трещина имеет малый угол раскрытия (острая трещина), пластическая деформация вблизи поверхности разрушения почти полностью отсутствует (рис. 2.19, a). При вязком разрушении трещина имеет большой угол раскрытия (тупая трещина), поверхность разрушения характеризуется значительной степенью пластической деформации (рис. 2.19, б).

Рис. 2.19. Вид трещины и схемы разрушения (сечение перпендикулярно поверхности излома):
a - хрупкое разрушение; 6 вязкое разрушение

При низких температурах межзеренные границы обычно прочнее самих зерен, поэтому у большинства металлов при низких температурах разрушение имеет транскристаллитный характер и проходит по зернам, а не по границам между ними. При повышенных температурах межзеренные границы обычно слабее зерен, поэтому разрушение имеет, как правило, межкристаллитный характер.

Макроизлом при хрупком разрушении имеет блестящую гладкую поверхность. Плоские грани расколотых кристаллических зерен придают металлический блеск хрупкому излому. Элек-тронно-микроскопическое исследование обнаруживает «речные узоры», или ручьистое строение излома (рис. $2.20, a$), являюшееся следствием взаимодействия движущейся трещины с дефектами кристалла, а также наличие пред-

B

Рис. 2.20. Микроструктура изломов:
$a-$ хрупкий ручьистый излом; 6 вязкий чашечный излом; в - вязкохрупкое разрушение литой стали при температуре 77 K

почтительных кристаллографических ориентаций фасеток скола. Излом при вязком разрушении имеет матовый волокнистый характер без металлического блеска. Электронно-микроскопическое исследование обнаруживает характерное чашечное строение излома (рис. 2.20, б).

Для хрупкого разрушения характерна высокая скорость распространения трещины, достигающая приблизительно 0,4 скорости распространения звука в металле (соответственно скорость распространения хрупкой трешины для стали должна составлять примерно $2 \cdot 10^{3} \mathrm{~m} / \mathrm{c}$). Скоростъ распространения вязкой трешины значительно ниже и определяется скоростью нарастания напряжений.

С помощью рассмотренных признаков можно определить характер разрушения детали или конструкции (вязкий или хрупкий механизм) (рис. 2.20, в). Необходимость идентификации характера разрушения в каждом отдельном случае обусловлена тем, что меры борьбы с вязким и хрупким разрушением принципиально различны. В случае вязкого разрушения необходимо повышать прочность материала. При хрупком разрушении следует наоборот увеличивать вязкость и пластичность, при необходимости даже снижая прочность. Наиболее опасно хрупкое разрушение.

Разрушение сколом можно разделить на три фазы: зарождение микротрещины; ее подрастание до критического размера; распространение микротрешины через соседние зерна. Уровень разрушающих напряжений определяется наиболее энергоемкой фазой. В относительно чистых металлах - это зарождение и начальное подрастание трещины. В металлах, содержащих включения, первые две стадии протекают сравнительно легко, но затем трещина сдерживается границами зерен. По этой причине в таких металлах часто наблюдают зарождение и торможение множества трещин до момента неустойчивого распространения одной из них.

2.8. Факторы, определяющие характер разрушения

Общие сведения. Один и тот же материал в зависимости от условий деформации может разрушаться по хрупкому или вязкому механизму. Характер разрушения зависит от влияния различных факторов как связанных, так и не связанных со свойствами материала.

Различают внешние и внутренние факторы. К внешним факторам относятся температура, тип надреза или концентратора напряжений, условия и скорость нагружения, характер окружающей среды, форма и размеры детали. К внутренним факторам, присущим материалу, относятся тип кристаллческой решетки, химический состав, структура и размер зерна, зависящие от технологии предшествующей обработки.

Рис. 2.21. Схема Иоффе - Давиденкова вязко-хрупкого перехода:
$\sigma_{\text {ог }}$ - разрушающее напряжение; σ_{τ} предел текучести; $t_{\text {кр }}$ - критическая температура хрупкости

Внешние факторы. Влияние температуры на характер разрушения хорошо иллюстрируется схемой, предложенной А. Ф.Иоффе и развитой Н.Н. Давиденковым (рис. 2.21). Согласно этой схеме смена одного вида разрушения другим определяется соотношением значений предела текучести $\sigma_{\text {т }}$ и разрушающего напряжения $\sigma_{\text {отр }}$. Температурные зависимости σ_{T} и $\sigma_{\text {огр }}$ имеют различный характер, так как в соответствии с этой схемой предел текучести и разрушающее напряжение друг с другом не связаны. С понижением температуры предел текучести резко возрастает. В противоположность этому в первом приближении разрушающее напряжение является температурно независимым.
В процессе нагружения при определенной температуре напряжение может достичь раньше величины либо σ_{τ}, либо $\sigma_{\text {орр }}$. Если раньще будет достигнуто σ_{τ}, произойдет пластическая деформация, которая при дальнейшем росте напряжения приведет к разрушению. Если раньше будет достигнуто $\sigma_{\text {отр }}$, произойдет хрупкое разрушение. Точка пересечения σ_{T} и $\sigma_{\text {от }}$ делит схему Иоффе - Давиденкова на две температурные области: левее этой точки располагается область хрупких разрушений материала ($\sigma_{\text {огр }}<\sigma_{\mathrm{T}}$), правее - область вязких разрушений ($\sigma_{\text {отр }}>\sigma_{\text {т }}$). Температуру, при которой предел текучести становится равным разрушающему напряжению, называют температурой вязко-хрупкого перехода или критической температурой хрупкости и обозначают $t_{\text {кр }}$.

Способность материала хрупко разрушаться с понижением температуры называется хладноломкостью. Помимо температуры она зависит от влияния многих факторов. Хладноломкость проявляется при определенных условиях и является не свойством, а состоянием материала. Основной характеристикой хладноломкости является критическая температура хрупкости. С помощью этой характеристики оценивают сопротивление хрупкому разрушению материала. Критическая температура хрупкости не является константой материала и определяется целым рядом факторов.

Анализ причин хрупких разрушений показал, что трещины хладноломкости обычно начинаются от надрезов, являющихся концентраторами напряжений. Надрезом является любое нарушение непрерывности металла. К надрезам относятся дефекты сварных

соединений (пористость, непровары, пустоты по сечению шва), поверхностные царапины, неметаллические включения, газовые раковины. Надрезами могут быть технологические отверстия и резкие переходы сечений в детали. Надрезы создают в металле сложное напряженное состояние, стесненность пластической деформации и концентрацию напряжений.

Стесненность пластической деформации приводит к увеличению сопротивления пластической деформации, т.е. к росту $\sigma_{\text {т }}$. Чем острее и глубже надрез, тем более стеснена пластическая деформация, тем выше $\sigma_{т}$. Под влиянием надрезов металл разрушается хрупко при более высокой температуре.

Чувствительность к надрезу и трещине, являющейся предельным выражением надреза, относится к числу важнейших характеристик работоспособности металла. С повышением прочности металла растет чувствительность к надрезу.

С увеличением скорости нагружения также возрастает опасность хрупкого разрушения. Чем ниже температура металла, тем более сильное влияние оказывает скорость деформирования.

Окружающая среда может влиять на изменение поверхностной энергии разрушения материала и оказывать коррозионное воздействие. Кроме того, в среде, содержащей водород, происходит водородное охрупчивание металлов. Растрескивание при коррозии под напряжением и насыщенность водородом увеличивают хрупкость металла и смещают критическую температуру хрупкости в область более высоких значений.

Чем больше сечение образца, тем больше стесненность пластической деформации. Увеличение объемности напряженного состояния приводит к повышению предела текучести.

Появление дефектов в материале подчиняется вероятностным законам, вследствие чего прочность детали должна иметь статистическую природу. С увеличением размера образца возрастает вероятность появления опасньх дефектов.

На ослабление сечений с увеличением размеров накладывается действие металлургических факторов из-за большего развития ликвации, пористости, различия в размерах зерен, меньшей степени проработки структуры при ковке, прокатке или термической обработке.

Внутренние факторы. Склонность к хрупкому разрушению при низких температурах зависит от кристаллической структуры металла. Металлы с кристаллической ОЦК решеткой (стали на основе α-железа, вольфрам, хром, молибден и др.), а также некоторые металлы с ГПУ решеткой (цинк, кадмий, магний) относятся к хладноломким материалам. Чистый титан имеет ГПУ решетку, но сохраняет пластичность и при низких температурах. Металлы с ГЦК решеткой (аустенитные стали на основе γ-железа, медь, алюминий, никель) не склонны к хладноломкости.

Размер зерна металла имеет важное значение для предела текучести, сопротивления хрупкому разрушению и температуры вяз-ко-хрупкого перехода. Измельчение зерна существенно понижает критическую температуру хрупкости.

Процесс течения металла зависит от среднего расстояния, на которое перемещаются дислокации, прежде чем они будут заблокированы у границ зерен.

Изменением технологии выплавки и разливки, пластической деформации и термической обработки можно влиять на размер зерна и тем самым управлять свойствами металла и его хладостойкостью.

2.9. Наклеп и рекристаллизация

Наклеп. После снятия нагрузки, превышающей предел текучести, в образце останется остаточная деформация. При повторном нагружении возрастает предел текучести металла и уменьшается его способность к пластической деформации, т.е. происходит упрочнение металла. Упрочнение металла под действием пластической деформации называется наклепом. При деформации зерна меняют свою форму и ориентацию, образуя волокнистую структуру с преимущественной ориентацией кристаллов. Происходит разворот беспорядочно ориентированных зерен осями наибольшей прочности вдоль направления деформации. Зерна деформируются и сплющиваются, вытягиваясь в направлении действующих сил F, образуя волокнистую или слоистую структуру (рис. 2.22). Ничтожно малый размер пачек скольжения создает иллюзию ровной границы деформированного зерна (на рис. 2.22, б показана штриховой линией). Преимущественная кристаллографическая ориента-

Рис. 2.22. Изменение формы зерен в результате деформации при действии силы F.
a, σ - схема формы зерен соответственно до и после деформации; $\boldsymbol{\varepsilon}$ - микроструктура низкоутлеродистой стали 15 после деформации, увеличение в 150 раз

ция зерен вдоль направления деформации называется текстурой металла. Чем больше степень деформации, тем бо́льшая часть зерен получает преимущественную ориентацию. Образование текстуры способствует появлению анизотропии свойств вдоль и поперек направления волокон.

С ростом степени деформации механические свойства (характеристики прочности: временное сопротивление разрушению σ_{H}, предел текучести σ_{τ}, твердость HB), характеризующие сопротивление деформации, повышаются, происходит деформационное упрочнение, а способность к пластической деформации (относительное удлинение δ и относительное сужение ψ) падает (рис. 2.23). Предел текучести растет более интенсивно, чем временное сопротивление, и по мере увеличения степени пластической деформации значения обеих характеристик сближаются. В результате наклепа механические свойства меняются весьма существенно: например, при степени деформации $\varepsilon=70 \%$ среднеуглеродистой стали ее временное сопротивление $\sigma_{\text {в }}$ увеличивается примерно в 2 раза, а относительное удлинение δ уменьшается с 30 до 2%. Стальная проволока, полученная холодным волочением при степени деформации $80 \ldots 90 \%$, приобретает значение $\sigma_{\text {в }}=4000 \mathrm{MПа}$, что не может быть достигнуто легированием и термической обработкой.

Упрочнение при наклепе объясняется существенным повышением плотности дислокаций, характерным для процесса пластической деформации. Плотность дислокаций после холодной деформации увеличивается на несколько порядков по сравнению с плотностью дислокаций отожженного металла, достигая величины

Рис. 2.23. Влияние степени пластической деформации на механические свойства низкоуглеродистой стали
$10^{11} \ldots 10^{12} \mathrm{~cm}^{-2}$. Одновременно в процессе пластической деформации увеличивается количество точечных несовершенств - вакансий и дислоцированных атомов, что затрудняет свободное перемещение дислокаций. Дополнительные барьеры для перемещения дислокаций создаются за счет деформации зерен и дробления блоков. Все эти факторы способствуют упрочнению металла при наклепе.

Одновременно в результате пластической деформации существенно изменяются физико-механические свойства металлов. Наклепанный металл имеет меньшую плотность, более высокое электрическое сопротивление, меньшую теплопроводность, у него падает устойчивость к коррозии. Металлы с ГЦК решеткой при наклепе упрочняются сильнее, чем металлы с ОЦК решеткой.

Рекристалиизационные процессы в металлах и сплавах. Рост числа дефектов кристаллического строения и возникновение внутренних напряжений в результате наклепа приводит к тому, что свободная энергия металла растет и он приходит в неравновесное, неустойчивое состояние. Длительная выдержка при комнатной температуре, а тем более нагрев должны способствовать переходу металла в более устойчивое структурное состояние.

Прежде всего уже при небольшом нагреве (до $400^{\circ} \mathrm{C}$ для железа) происходит снятие искажений кристаллической решетки, уменьшение плотности дислокаций за счет их аннигиляции, уменьшение количества вакансий, снижение внутренних напряжений. Однако видимых изменений структуры не происходит и вытянутая форма зерен сохраняется. Этот процесс называют возвратом металла. При возврате прочность уменьшается на $20 \ldots 30 \%$ по сравнению с исходным состоянием, а пластичность несколько увеличивается. В зернах поликристалла образуются субграницы, разделяющие субзерна, свободные от дислокаций. Укрупнение субзерен с увеличением длительности выдержки или повышении температуры нагрева металла приводит к дальнейшему снижению прочности. При последующем нагреве происходит изменение микроструктуры наклепанного металла (рис. 2.24). С ростом температуры подвижность атомов растет и об-

разуются новые зерна вместо ориентированной волокнистой структуры. Образование новых равноосных зерен называется рекристаллизацией.

Процесс рекристаллизации протекает в две стадии. Различают первичную и собирательную рекристаллизацию. Первичной рекристаллизацией называют процесс образования новых равноосных зерен. Новые зерна возникают на границах блоков и старых зерен там, где решетка наиболее искажена при наклепе. В результате первичной рекристаллизации наклеп металла снимается, и свойства приближаются к исходным значениям. Плотность дислокаций также уменышается до первоначального уровня.

Температуру начала рекристаллизации называют температурным порогом рекристализации.

Последующий рост температуры приводит к собирательной рекристализации, заключающейся в росте вновь образовавнихся новых зерен. Большое количество мелких зерен имеет большой запас поверхностной энергии. При укрупнении зерен общая поверхность их границ уменьшается, что способствует переходу металла в более равновесное состояние. Движущей силой собирательной рекристаллизации является снижение поверхностной энергии.

Размер зерен, образовавшихся в процессе рекристаллизации, оказывает большое влияние на свойства металла. Образование крупных зерен снижает его механические свойства. Величина зерна при собирательной рекристаллизации зависит от температуры нагрева, степени предшествующей пластической деформации и длительности выдержки при нагреве. Наиболее крупные зерна образуются при небольшой предварительной деформации (до 15%), которую называют критической. При малых степенях деформации имеет место неоднородность наклепа, а следовательно, неоднородность дефектов решетки и напряжений. При этих условиях границы зерен приобретают возможность быстрого перемещения на относительно большие расстояния, что способствует укрупнению зерен.

Деформация может быть холодной и горячей. Холодная деформация проводится при температуре ниже температуры рекристаллизации и сопровождается наклепом металла. Горячая деформация осуществляется при температуре выше температуры рекристаллизации. Для горячей деформации характерно полное или частичное снятие упрочнения. Таким образом, при обработке давлением имеют место два процесса: упрочнение за счет пластической деформации и последующее разупрочнение при рекристализации.

Существуют металлы, которые при комнатной температуре не подвергаются наклепу и испытывают горячую деформацию. Примером является свинец, имеющий температуру рекристаллизации ниже комнатной температуры. Для молибдена, имеющего температуру рекристаллизации примерно $900^{\circ} \mathrm{C}$, деформация при нагреве до
$800^{\circ} \mathrm{C}$ еще является холодной деформацией. На практике горячую деформацию обычно проводят при температуре ($0,7 \ldots 0,75$) $t_{\text {пт }}$, где $t_{\text {пл }}$ - температура плавления металла.

2.10. Методы исследований и испытаний материалов

Исследование микроструктуры. При изучении строения металла различают макроструктуру - строение металла, видимое невооруженным глазом, и микроструктуру - строение металла, определяемое металлографическими методами, т.е. с использованием различных типов микроскопов (оптических, электронньх и ионных).

Путем исследования макроструктуры металла можно определить:
нарушение сплошности металла: усадочную рыхлость, пористость, газовые пузыри и раковины, подкорковые пузыри, межкристаллитные трещины; трещины и пустоты в литом металле; трещины, возникшие при обработке давлением и термической обработке, флокены; дефекты сварки (в виде непровара, газовых пузырей, пустот);

дендритное строение и зону транскристаллизации в литом металле, размер зерна;

химическую неоднородность литого металла (ликвацию);
волокнистую структуру деформированного металла;
структурную или химическую неоднородность металла после обработки давлением, термической, термомеханической или хи-мико-термической обработки;

вид излома: вязкий, хрупкий, нафталинистый, камневидный ит.д.

Для изучения микроструктуры металла используют оптические, электронные и ионные микроскопы. В оптическом микроскопе изображение формируется в отраженном свете. В современных оптических микроскопах используется увеличение от 100 до 2500 раз. С их помощью можно различать структурные составляющие и фазы размером не менее 0,2 мкм.

Большинство металлографических исследований с использованием оптических микроскопов основаны на применении светопольного (вертикального) освешения

Изучение микроструктуры обычно начинают с рассмотрения специально приготовленного образца (шлифа) в нетравленом виде, т. е. после его полирования и промывки. В этом случае можно изучать неметаллические включения, мелкие поры, некоторые структурные составляющие, характерные для некоторых сплавов (например, графит в сером чутуне). Количество и характер распределения неметаллических включений определяют сравнением наблюдаемых изображений на шлифе при увеличении в 100 раз со стан-

дартными шкалами. После этого проводят травление шлифа. Реактивы дл травления выбирают в зависимости от состава изучаемого сплава и задачи исследования.

Существуют переносные и стационарные микроскопы. Переносные микроскопы используют для исследования поверхности металла непосредственно на изделии (без вырезки образца). Стационарные микроскопы подразделяют на вертикальные и горизонтальные. Общим для всех является верхнее расположение предметного столика. Металлографический микроскоп имеет довольно сложное устройство, включающее в себя механическую, оптическую (объективы, окуляры), осветительную системы и фотографическую аппаратуру. Наиболее широкое применение в исследовательских и заводских лабораториях нашли микроскопы МИМ-7, МИМ-8, «Неофот-21».

Микроскопическое исследование специально подготовленного образца позволяет изучать такие структурные особенности, как форма, размер, распределение фаз и неметаллических включений, размер зерна, ликвационные области, дислокации с использованием ямок травления и др. Разработано несколько типов микроскопов для изучения микроструктуры металлов и сплавов в различных температурных условиях. С их помощью можно проводить наблюдения за ростом зерна в металле при нагреве, фазовыми превращениями, процессом спекания, поверхностными явления ми. Существуют приспособления, позволяющие проводить деформацию нагретого образца и дающие возможность наблюдать за процессами скольжения, двойникования, релаксации, фазовыми превращениями, происходящими в материале образца.

Испытания механнческих свойств. Поведение металлов под действием внешних нагрузок характеризуется их механическими свойствами, которые позволяют определить пределы нагрузки для каждого конкретного материала, произвести сопоставимую оценку различных материалов и осуществить контроль качества металла в заводских и лабораторных условиях.

К испытаниям механических свойств предъявляется ряд требований. Температурно-силовые условия проведения испытаний должны быть по возможности приближены к условиям работы материалов в реальных машинах и конструкциях. Вместе с тем методы истытаний должны быть достаточно простыми и пригодными для массового контроля качества металлургической продукции. Поскольку необходимо иметь возможность сопоставления качества разных конструкционных материалов, методы испытаний механических свойств должны быть строго регламентированы стаңдартами.

Результаты определения механических свойств используют в расчетной конструкторской практике при проектировании машин и конструкций. Наибольшее распространение имеют следующие виды механических испытаний:

- статические кратковременные испытания однократным нагружением на одноосное растяжение - сжатие, твердость, изгиб и кручение;
- динамические испытания с определением ударной вязкости и ее составляющих - удельной работы зарождения трещины и удельной работы развития трещины;
- испытания переменной нагрузкой с определением предела выносливости материала;
- испытания на термическую усталость;
- испытания на ползучесть и длительную прочность;
- испытания на сопротивление развитию трещины с определением параметров вязкости разрушения;
- испытания в условиях сложнонапряженного состояния, натурные испытания деталей, узлов и готовых конструкций.

Статические испытания. Наиболее часто проводят испытания на растяжение (ГОСТ 1497-84). Обычно применяют малый пятикратный образец круглого сечения (диаметр 5 мм, расчетная длина 25 мм). На рис. 2.25 приведены два вида диаграммы растяжения: с площадкой и без площадки текучести в координатах нагрузка P - удлинение Δl (соответственно рис. 2.25, $a, 2.25, \sigma$). Диаграмма просто преобразуется в диаграмму в координатах напряжение σ относительная деформация δ. При этом $\sigma=P / A_{0} ; \delta=\left(\Delta l / l_{0}\right) 100 \%$, где A_{0}, l_{0} - соответственно начальная площадь сечения и длина образца до испытания.

Диаграмма растяжения состоит из трех участков: упругой деформации $O A$, равномерной пластической деформации $A B$ и сосредоточенной деформации шейки $B C$. Участок упругой деформации имеет прямолинейный вид и характеризует жесткость материала. Чем меньшую упругую деформацию претерпевает материал под действием нагрузки, тем выше его жесткость, которая характеризуется модулем упругости: $E=\sigma / \delta$.

Рис. 2.25. Диаграммы растяжений:
a - с площадкой текучести; $б$ - без площадки текучести; в - диаграмма истинных напряжений $S_{\mathrm{r}}, S_{\mathrm{k}}$

Модуль упругости - структурно нечувствительная характеристика, определяемая силами межатомного взаимодействия, является константой материала. Упругие свойства зависят от температуры металла. При понижении температуры межатомные расстояния уменьшаются, кристаллы сжимаются, что приводит к увеличению модуля упругости. Основной рост модуля упругости происходит в области температур до 77 K , ниже температуры жидкого азота рост замедляется, а вблизи абсолютного нуля модуль упругости становится температурно независимым.

Наименьшее напряжение, при котором образец деформируется без заметного увеличения нагрузки («течет»), называется физическии пределом текучести σ_{T} :

$$
\sigma_{\mathrm{T}}=P_{\mathrm{T}} / A_{0} .
$$

Если площадка текучести отсутствует, определяют условный предел текучести $\sigma_{0,2}$, при котором образец получает остаточное удлинение, равное $0,2 \%$ первоначальной расчетной длины.

Іредел текучести - основной показатель прочности при расчете допустимых напряжений, характеризующих сопротивление малым пластическим деформациям.

Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению, называется временным сопротивлением σ_{B} :

$$
\sigma_{\mathrm{T}}=P_{\mathrm{t}} / A_{0} .
$$

Величина пластической деформации к моменту разрушения характеризует пластичность материала. Различают две характеристики пластичности: относительное удлинение $\delta, \%$, и относительное сужение $\psi, \%$:

$$
\delta=\left[\left(l-l_{0}\right) / l_{0}\right] 100,
$$

где l - длина образца после разрыва; l_{0} - первоначальная длина образца;

$$
\psi=\left[\left(A_{0}-A\right) / A_{0}\right] 100,
$$

где A - площадь сечения разрушившегося образца в месте разрыва; A_{0} - первоначальная площадь сечения образца.

Условно принято считать металл надежным при $\delta \geq 15 \% ; \psi \geq 45 \%$.
Более точно зависимость между деформацией образца и напряжением отражают диаграммы истинных напряжений (рис. 2.25, в). Истинное напряжение определяют делением нагрузки на площадь поперечного сечения образца в момент испытания.

Наиболее простым методом испытания свойств является измерение твердости. Твердостью называют свойство материала оказывать сопротивление деформации в поверхностном слое при местных контактных воздействиях. Различают следующие методы опре-

Рис. 2.26. Схемы определения твердости образца:
a - по Бринеллю; 6 - по Роквеллу; в - по Виккерсу; D - диаметр образца; d диаметр отпечатка; $P_{0}, P-$ предварительная и основная нагрузка; h_{0}, h - глуби на отпечатка после действия предварительной и основной нагрузки

деления твердости: по Бринеллю (по диаметру отпечатка шарика) по Роквеллу (по глубине вдавливания алмазного конуса или закаленного шарика); по Виккерсу (для деталей малой толщины или тонких поверхностных слоев твердость определяют по диагонали отпечатка алмазной пирамиды). Схемы этих методов приведены на рис. 2.26

Испытание по методу Бринелля (рис. $2.26, a$) состоит во вдавливании в испытуемое тело стального шарика диаметром D под действием постоянной нагрузки P и измерении диаметра отпечатка d. Число твердости по Бринеллю НВ определяется величиной нагрузки P, деленной на сферическую поверхность отпечатка. Чем меньше диаметр отпечатка, тем выше твердость металла. На практике твердость определяют не по формулам, а по специальным таблицам исходя из диаметра отпечатка d. Из опасения возможной деформации шарика метод Бринелля не рекомендуется применять для материала с твердостью более 450 HB .

Временное сопротивление и число твердости по Бринеллю свя заны между собой: для стали $\sigma_{\mathrm{B}}=0,34 \cdot \mathrm{HB}$, для медных сплавов $\sigma_{\mathrm{B}}=0,45 \cdot \mathrm{HB}$, для алюминиевых сплавов $\sigma_{\mathrm{B}}=0,35 \cdot \mathrm{HB}$

При испытании по методу Роквелла (рис. $2.26,6$) алмазный конус (для более мягких материалов маленький стальной шарик) вдавливают в металл двумя последовательными нагружениями предварительным $P_{0}=100 \mathrm{H}$ и основным P. Имеются три шкалы. При испытании алмазным конусом и нагрузке $P=1400 \mathrm{H}$ - шкала С, твердость обозначается HRC, то же при $P=500 \mathrm{H}$ - шкала A (HRA), а при испытании стальным шариком и $P=900 \mathrm{H}-$ шкала B (HRB). Единица твердости по Роквеллу - безразмерная величина, соответствующая осевому перемещению индикатора на 0,002 мм. По шкале С определяют значения твердости более твердых материалов, чем методом Бринелля (твердость более 450 HB).

Твердость по Виккерсу (рис. 2.26, в) определяют путем вдавливания правильной четырехгранной пирамиды под действием нагрузки P и измерения диагонали отпечатка d. Нагрузка меняется от

10 до 1000 H . Чем тоньше материал, тем меньше должна быть прилагаемая нагрузка. Число твердости по Виккерсу HV определяют с помощью специальньх таблиц по величине диагонали отпечатка.

В некоторых случаях определяют микротвердостъ отдельньх участков металла. Этот метод используют для измерения твердости отдельньх зерен или очень тонких слоев.

Динамицеские испытания. Основным динамическим испьтанием является метод испытания на ударный изгиб (ГОСТ 9454-78) с определением ударной вязкости металла.

Метод основан на разрушении образца с надрезом одним ударом маятникового копра (рис. 2.27).

Образец устанавливают на опорах копра и наносят удар по стороне образца, противоположной надрезу. Работу, затраченную на разрушение образца, определяют по формуле

$$
K=m g(H-h)=m g l\left(\cos \alpha_{2}-\cos \alpha_{1}\right),
$$

где m - масса маятника; g - ускорение свободного падения; H, h - высота подъема маятника до удара и после разрушения образца; l - длина маятника; α_{2}, α_{1} - угол подъема маятника до удара и после разрушения образца соответственно.

Величины m, H, l, α_{1} - постоянны, поэтому при испытаниях значение работы разрушения определяют с помощью специальных таблиц по значению $\alpha_{2}(h)$.

Ударная вязкость $K С$, Дж/см², определяется как отношение работы разрушения K, затраченной на деформацию и разрушение ударным изгибом надрезанного образца, к начальной площади поперечного сечения образца в месте надреза A_{0} по формуле $K C=K / A_{0}$.

В зависимости от вида концентратора напряжений различают образцы трех типов: с радиусом дна надреза 1 мм (тип U); 0,25 мм (тип V) и инициированной трещиной (тип T) (рис. 2.28).
 на ударную вязкость

a

R0,25

Рис. 2.28. Основные виды образцов для испытаний вязкости (ГОСТ 9454-78):
$a-$ тип U (тип Менаже); $6-$ тип V (тип Шарпи); в -
тип T (с инициированной трещиной)
Введение при ударных испытаниях образцов с трещинами является следствием того, что работоспособность материала определяется не столько сопротивлением зарождению трецины, сколько сопротивлением ее распространению. Обычные образцы имеют сечение 10×10 мм, но для особо ответственных случаев и оценки работоспособности крупных деталей применяют образцы сечением 25×25 мм с инициированной трещиной. Чем острее надрез, тем более жестким испытаниям подвергается металл. Вид надреза входит в обозначение работы удара и ударной вязкости. Работу удара обозначают двумя буквами KU, KV, KT, а ударную вязкость тремя буквами KCU, KCV, KCT. В этих обозначениях последние буквы являются символами концентраторов напряжений.

Испытания ударной вязкости широко применяют для оценки склонности металла к хрупкому разрушению при низких температурах. Достоинствами этого метода являются простота эксперимента, учет влияния скорости нагружения и концентраций. Для оценки хладноломкости обычно проводят испытания серии образцов при понижающихся температурах. Кривые зависимости ударной вязкости от температуры называют сериальными кривыми хладноломкос$m u$ (рис. 2.29). С помощью этих кривых определяют температурный порог хладноломкости. При температуре эксплуатации ниже порога хладноломкости металл применять не следует.

Техническими условиями на поставку металлопродукции ответственного назначения обычно оговаривают минимально допустимое значение ударной вязкости при заданной температуре.

Оценку хладноломкости можно также проводить по виду излома разрушившегося образца. Метод основан на определении

соотношения площадей вязких и хрупких участков излома ударных образцов. Вязкий излом имеет характерное волокнистое строение с пепельным оттенком. С понижением температуры количество волокнистой составляющей в изломе снижается, появляются кристаллические блестящие участки. Обычно за критическую температуру принимают температуру, при которой доля волокнистой составляющей структуры равна 50%.

В ряде случаев целесообразно определять не только общую ра-

Рис. 2.29. Изменение ударной вязкости KCU стали Ст3 при изменении температуры t испытаний боту разрушения при ударном изгибе KC, но и ее составляющие - работу зарождения трешины KC_{3} и работу развития трещины KC_{p}, при этом $\mathrm{KC}=\mathrm{KC}_{3}+\mathrm{KC}_{\mathrm{p}}$. Работа зарождения трешины зависит от радиуса надреза. Чем острее надрез, тем меньшая работа нужна для зарождения трещины. Работа развития трешины мало зависит от геометрии надреза и лучше характеризует склонность металла к хрупкому разрушению. Для ее определения обычно используют образцы с заранее инициированной трещиной.

Однако следует иметь в виду, что при испытании пластичных материалов работа разрушения образца с трещиной превышает истинную работу развития трещины на величину работы пластической деформации, расходуемой на изгибную и поперечную макродеформации.

Работу зарождения и работу развития трещины удобно определять при испытаниях на ударный изгиб с помощью диаграмм нагрузка - прогиб, полученных фотографированием с экрана осциллографа.

Известен приближенный метод определения составляющих ударной вязкости, основанный на предположении о линейной зависимости ударной вязкости от радиуса надреза и равенстве нулю работы зарождения трещины для образцов с радиусом надреза, равным нулю, или с трещиной. Тогда экстраполяция данных испытаний образцов всего двух типов с радиусом 1 и 0,25 мм на нулевое значение радиуса надреза дает значение работы развития трещины. Определение составляющих ударной вязкости позволяет выявить влияние различных факторов на обе стадии разрушения.

Испытания долговечности. Долговечность металлов определяется истытаниями на усталость, ползучесть и длительную прочность, износ, коррозию и др.

Рис. 2.30. Внешний вид излома от усталости:
I- зона прогрессивного развития; 2 - остаточный излом

Усталостные испытания (ГОСТ 25502-79). Усталость представляет собой процесс постепенного накопления повреждений в металле под действием переменных напряжений, приводящих к образованию и развитию усталостньх трещин. Изза различной ориентации зерен и блоков, макро- и микродефектов напряжения в металле распределяются неравномерно. При расчетной нагрузке ниже временного сопротивления в отдельных перенапряженных локальных объемах происходит пластическая деформация и, как следствие ее предельного развития, возникают микротрещины. Микротрещины постепенно сливаются, образуя макротрещину, с течением времени распространяющуюся на все сечение.

Внешний вид излома от усталости показан на рис. 2.30. Схема усталостного излома приведена на рис. 2.31. Усталостные изломы имеют признаки, отличающие их от изомов другого рода. В изломе можно выделить несколько характерных зон. Фокус излома локальная зона, в которой возникает зародышевая макроскопическая трещина усталости и от-

Рис. 2.31. Схема усталостного излома:
1 - зона долома; 2 - участок ускоренного развития трещины; 3-5 зона собственно усталостного развития (3 - зона избирательного развития; 4очаг разрушения; $5-$ фокус излома); 6 - ступеньки и рубцы; 7 - пасынковые трешины и вторичные ступеньки и рубшы; 8 - усталостные линии или полосы; 9 - рубцы; 10 - скос куда начинается ее развитие. Очаг разрушения - небольшая зона, прилегающая к фокусу излома, в котором сформировалась начальная (зародышевая) макроскопическая трещина усталости. Очаг разрушения характеризуется небольшим блеском и наиболее гладкой поверхностью. Зона собственно усталостного развития трещины характеризуется тем, что в ней от очага разрушения как из центра расходятся линии усталости - следы фронта продвижения трешины. Зона долома образуется на последней стадии усталостного разрушения и имеет ярко выраженные признаки махрохрупкого разрушения.

Усталостные характеристики ири комнатной темлературе обычно определяют при испытании образцов круглого сечения на изгиб с вращением (рис. 2.32). Испытывают серию образцов при разной нагрузке P и определяют разрушающее напряжение и соответствующее ему число

Рис. 2.32. Схема испытаний на усталость циклов нагружения.

Максимальным $\sigma_{\max }$ или минимальным $\sigma_{\min }$ напряжением цикла является наибольшее или наименьшее по алгебраической величине напряжение. Характеристикой цикла служит коэффициент асимметрии: $R=\sigma_{\min } / \sigma_{\max }$. При равенстве максимального и минимального напряжений по абсолютной величине $R=-1$. В этом случае цикл является симметричным, а предел выносливости, характеризующий сопротивление усталости, обозначают σ_{-1}. В зависимости от условий работы изделия испытания проводят при комнатной, высокой и низкой температурах, при симметричных и асимметричных циклах, при наличии или отсутствии агрессивных сред и концентраторов напряжений на испытуемых образцах.

При испытании строят кривую усталости - график, характеризующий зависимость между максимальными или амплитудными напряжениями (деформации) цикла и долговечностью серии одинаковых образцов, испытанных при одинаковом среднем напряжении (деформации) цикла или при одинаковом коэффициенте асимметрии цикла. Типичная зависимость между уровнем действующих циклических напряжений и числом циклов до разрушения N имеет три характерньх участка (рис. 2.33). Участок I называют участком квазистатического разрушения, так как в этой области разрушение мало отличается от разрушения при однократном приложении нагрузки. Участок II характеризует малоцикловую усталость, при которой разрушение сопровождается пластической

Рис. 2.33. Зависимость действующих напряжений от числа циклов до разрушения:
I - квазистатическое разрушение; II - малоцикловое разрушение; III - многоцикловое усталостное разрушение

деформацией. На участке III имеет место многоцикловое усталостное разрушение, проходящее при почти полном отсутствии пластической деформации.

Деление на мало- и многоцикловую усталость носит условный характер. Принято считать, что при малоцикловой усталости полное разрушение происходит в упругопластической области до $5 \cdot 10^{4}$ циклов, а при многоцикловой - от $5 \cdot 10^{4}$ циклов и более.

Для кривых усталости, имеющих горизонтальный участок, определяют предел выносливости σ_{R} - наибольшее напряжение цикла, которое выдерживает металл без разрушения. Кроме того, в пределах спадающего участка кривой может быть определен предел ограниченной выносливости. Для стали предел выносливости обычно определяют по числу циклов нагружения $N=10^{7}$, для цветных металлов $N=10^{8}$. Предел выносливости, определенный в стандартньх условиях, обозначают σ_{-1}. Величина предела выносливости углеродистых сталей при симметричном цикле обычно составляет $0,6 \sigma_{\text {в }}$.

Важной характеристикой выносливости металла является также усталостная долговечность, определяемая числом циклов нагружения образцов перед разрушением при заданном напряжении.

Различают три стадии усталостного разрушения: зарождение усталостной трещины; ее медленный рост до критического размера; быстрый долом оставшегося сечения образца или детали. Процесс зарождения усталостных трешин зависит от качества поверхности детали и свойств поверхностного слоя. Чем выше чистота обработки и твердость поверхностного слоя, тем меньше опасность усталостного разрушения. При круглом шлифовании хромомолибденовой стали и высоте гребешков на поверхности образцов $0,4 \ldots 0,6$ мкм предел выносливости σ_{-1} составил 640 M Ма, при плоском шлифовании и высоте гребешков $0,2 \ldots 0,4$ мкм - 790 M Ма, при полировании и высоте гребешков менее 0,05 мкм - 820 МПа. После зарождения трещины каждый последующий цикл нагружения приводит к ее постепенному увеличению. Направление роста усталостной трещины зависит от характера нагружения. При циклической нагрузке растяжение - сжатие трещина развивается под прямым углом к направлению приложенного напряжения, при кручении под углом 45° к направлению напряжения.

Усталость ответственна примерно за 50% случаев всех аварийных разрушений, встречающихся в инженерной практике.

Термической усталостью называют усталость металлов, вызванную напряжениями от циклических колебаний температуры. Tepмическая усталость отличается от силовой меньшим числом циклов и сравнительно высоким уровнем напряжений.

В холодильной и криогенной технике температурные градиенты и соответствующие термические напряжения могут возникать вследствие нагрева или охлаждения конструкций при заполнении или сливе охлаждающей жидкости, при попадании криогенных продуктов

на относительно теплую поверхность металла емкостей, трубопроводов, деталей арматуры, вследствие различия теплофизических свойств, входящих в конструкцию деталей из разных материалов. Особенно опасно многократное наложение термических напряжений на напряжения от внешних нагрузок. Кроме того, некоторые металыы могут претерпевать структурные превращения при охлаждении. Bсе это может явиться причиной преждевременного разрушения детали.

Испытания на ползучесть (ГОСТ 3248-81). Многие детали должны работать под нагрузкой в течение длительного времени при определенной температуре. При этом происходит медленная пластическая деформация металла под действием постоянной нагрузки, создающей в детали напряжения, превышающие предел упругости, но менышие, чем предел текучести материала детали при данной температуре. Такая деформация называется ползуиестью.

Различают ползучестъ при высоких и низких температурах. Более подробно изучена высокотемпературная ползучесть. При деформации нагретого металла в нем развиваются два противоположных процесса: упрочнение за счет наклепа при пластической деформации и разупрочнение в результате нагрева. Если второй процесс преобладает, в металле начинают развиватъся диффузионные разупрочняющие процессы - отдых, коагуляция фаз, рекристаллизация, способствующие ползучести. Если при высоких температурах ползучесть происходит в результате диффузионных процессов, при низких температурах она осуществляется за счет движения и размножения дислокаций, имеет термоактивированную природу и зависит от ряда факторов, из которых наибольшую роль играют температура испытаний и структура металла.

Ос'новными критериями жаропрочности металлов являются предел длительной прочности и предел ползучести. Схема установки для испытания на ползучесть приведена на рис. 2.34. Образец помещают в электрическую печь, нагревают до заданной температуры и прикладывают к нему определенную постоянную нагрузку. Возникающую в образце деформацию измеряют и по результатам испытаний серии образцов строят кривые длительной прочности (рис. 2.35, a) и ползучести (рис. 2.35, б).

Пределом длительной прочности называют напряжение, которое приводит к разрушению образца при заданной температуре за определенное время, соответствующее условиям эксплуатации изделия. Предел длительной прочности обо-

Рис. 2.34. Схема установки для испытания на ползучесть:
I- образец; 2- захваты машины; 3 - термопара; 4 печь; 5 - зеркальный индикатор для измерения деформация; 6 - рычаг; 7 - груз

Рис. 2.35. Кривые длительной прочности (a) и ползучести (б)
значают σ_{τ}^{t}, где индексы t и τ обозначают соответственно температуру и время испытаний. Например, $\sigma_{200}^{700}=300$ МПа означает, что длительная прочность металла при испытании в течение 200 ч при температуре $700^{\circ} \mathrm{C}$ составляет 300 M Ма.

Кривая ползучести состоит из четырех участков. Участок $O A$ соответствует упругой и пластической деформации, возникшей в момент приложения нагрузки. Участок $A B$ характеризует неустановившуюся ползучесть, где металл деформируется с неравномерной скоростью, участок $B C$ - установившуюся ползучесть, и участок $C D$ - ускоренное разрушение, связанное с образованием шейки.

Пределом ползучести назьвают напряжение, вызывающее заданную суммарную деформацию за определенное время при данной температуре. Предел ползучести обозначают $\sigma_{\delta / \tau}^{f}$, где t - температура; δ - суммарное удлинение; τ - время. Например, $\sigma_{1 / 1000}^{400}=350 \mathrm{M}$ Ма означает, что предел ползучести металла при деформации 1% за 1000 ч при температуре испытаний $400^{\circ} \mathrm{C}$ составляет 350 M Ма.

Для деталей, длительное время работаюших при повышенных температурах, задается обычно скорость ползучести на установившейся стадии процесса, например $0,1 \%$ за 10^{4} ч или за 10^{5} ч.

Условия эксплуатации многих изделий, работающих при низких температурах, предусматривают их длительную (более 10 лет) безаварийную работу под нагрузкой. В таких изделиях, как резервуары и емкости для хранения и транспортирования криогенных жидкостей, обладающих повышенным запасом упругой энергии в системе, деформация, обусловленная ползучестью, может способствовать значительному росту напряжений в отдельных зонах конструкции. При этом, учитывая действие низких температур эксплуатации, суцественно усиливается опасность хрупкого разрушения.

При низкотемпературных испытаниях ползучести необходимая температура создается за счет того, что образец находится в среде охлаждающей жидкости, а постоянное нагружение передается на образец через верхний или нижний захват испытательной машины.

Таблица 2.3. Обозначевия основных механнческих свойств материалов но отечественным и зарубежным стандартам

Свойство	Обозначение по стандарту		Определение, единица измерения
	отечественному	зарубежному	
Модуль упругости (elastic modulus)	E	E	Отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации, МПа
Предел текучести физический (yield strength)	σ_{τ}	Re	Напряжение, при котором материал изменяет свою длину при постоянной нагрузке, МПа
Предел текучести условный (yield strength)	$\sigma_{0,2}$	$\mathrm{Rp}_{0,2}$	Напряжение для материалов, не имеющих площадки текучести, при котором остаточное удлинение составляет $0,2 \%$ первоначальной длины, МПа
Временное сопротивление, или предел прочности (tensile strength)	σ_{θ}	R_{m}	Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца
Относительное удлинение (specific elongation)	δ	$\mathrm{A}_{5}, \mathrm{~A}_{10}$	Отношение приращения расчетной длины образца после разрушения к начальной расчетной длине, \%
Относительное сужение (reduction of area)	ψ	Z	Отношение разности первоначального сечения и минимальной площади поперечного сечения образца после разрушения к первоначальной площади, \%
Предел ползучести (creep limit)	$\mathrm{\sigma}_{0,2 / 100}^{700}$	$\mathrm{R}_{0,2 / 100}^{700}$	Пример: напряжение, вызывающее деформацию $0,2 \%$ за 100 ч испытания при температуре $700^{\circ} \mathrm{C}$, МПа
Предел длительной прочности (stress-rupture strength)	σ_{1000}^{700}	R_{1000}^{700}	Пример: напряжение, вызывающее разрушение металла за 1000 ч испытания при постоянной температуре $700^{\circ} \mathrm{C}$, МПа

Окончание табл. 2.3

Свойство	Обозначение по стандарту		Определение, единица измерения
	отечественному	зарубежному	
Предел выносливости (fatigue strength)	σ_{R}	σ_{k}, τ_{k}	Максимальное напряжение, которое выдерживает материал не разрушаясь при достаточно большом числе повторно-переменных нагружений (циклов), МПа
Твердость по Бринеллю (hardness)	HB	HB	Отношение нагрузки, вдавливающей стальной шарик в испытуемый материал, к площади поверхности получаемой сферической лунки в металле
Ударная вязкость (impact strength)	$\begin{aligned} & \text { KCT, } \\ & \text { KCU, } \\ & \text { KCV } \end{aligned}$	$\begin{aligned} & \hline \mathrm{KCT}, \\ & \mathrm{KCU}, \\ & \mathrm{KCV} \end{aligned}$	Работа удара, отнесенная к начальной площади поперечного сечения образца в месте концентратора (T - трещина; U - надрез с радиусом $1 \mathrm{~mm} ; \mathrm{V}$ - надрез с радиусом $0,25 \mathrm{mм}$), Д*/ m^{2}

В табл. 2.3 приведены отечественные и зарубежные обозначения основных механических свойств материалов и их наименования на русском и английском языке.

Трибологические испытания. При трибологических испытаниях (испытаниях на износ, износостойкость) основными понятиями являются изнашивание, износ и износостойкость. Износ конкретных деталей и узлов определяется природой контактирующих материалов и условиями трения.

Большое число факторов, влияющих на процесс изнашивания деталей машин, обусловливают использование следующих этапов испытаний:

- обычные лабораторные испытания физических и механических свойств материалов;
- испытание материалов на трение и износ на лабораторных установках;
- стендовые испытания узлов трения;
- натурные (эксплуатационные) испытания деталей машин и механизмов.

Наиболее надежной проверкой правильности выбора материала или способов его обработки применительно к конкретной детали являются испытания этой детали в изделии в реальных условиях эксплуатации этого изделия (натурные испытания). Такие ис-

пытания, как правило, являются обязательными при оценке работоспособности деталей или узлов, изготовленных из новых материалов или по новой технологии, но, так как они дорогостоящи, связаны с практическими трудностями (длительность испытаний, необходимость разборки узлов изделия для определения износа детали, трудность точного определения величины износа) и с невозможностью проведения многовариантных испытаний, этому виду испытаний всегда предшествуют какие-либо из первых трех видов, а иногда и все три.

При изучении на первом этапе физических и механических свойств материалов и прогнозировании на их базе износостойкости этих материалов обычно основываются на том, что между износостойкостью и твердостью, износостойкостью и модулем упругости или коэффициентом жесткости существует зависимость, близкая к линейной.

На втором этапе испытаний обычно производят оценку влияния уровня заданных физико-механических свойств материалов в сочетании с выбранными режимами трения на износостойкость этих материалов.

Трещиностойкость металлов и коэффициент интенсивности напряжений. Традиционные методы конструирования механизмов, машин и инженерных сооружений, основанные на курсе сопротивления материалов, исходят из предположения о материале как сплошном теле, свободном от дефектов. Однако таких идеальных материалов практически нет. Еще до нагружения в конструкционных материалах присутствуют трещиноподобные дефекты в виде инородных включений, газовой пористости и других несплошностей. Типичными примерами трещиноподобных дефектов в металлах являются трещины, образующиеся при затвердевании сварных швов и отливок, в зонах термического влияния при сварке, в стальном прокате вокруг неметаллических включений, а также трещины, возникающие вследствие усталости и коррозии под напряжением.

Такие дефекты можно обнаружить, используя ультразвуковой контроль или какой-либо другой метод неразрушающего контроля, и с помощью методов механики разрушения определить максимально допустимый размер дефекта, при котором катастрофическое разрушение может быть предотвращено. В определенных условиях эти дефекты могут инициировать разрушение даже при нагрузках, значительно меньших прочностных свойств материала, определенных при обычных механических испытаниях. Основная задача механики разрушения - выявить условия, при которьх может произойти разрушение, и оценить степень безопасности конструкции.

Дефекты типа трещин являются концентраторами напряжений, которые тем больше, чем острее трещина и больше ее длина. Номи-

Рис. 2.36. Распределение напряжений у вершины эллиптической трещины

нальные напряжения в вершине эллиптической трещины (рис. 2.36) определяют по формуле

$$
\sigma_{\mathrm{H}}=\sigma_{\mathrm{cp}}(1+2 \sqrt{c / \rho}) \approx 2 \sigma_{\mathrm{cp}} \sqrt{c / \rho}
$$

где $\sigma_{\text {ср }}$ - среднее приложенное напряжение; c - длина большой полуоси эллипса (трещины); ρ радиус в вершине эллипса (трещины).

Отсюда коэффициент концентрации напряжений $k=2 \sqrt{c / \rho}$.

В случае достаточно острой и длинной трещины напряжения вблизи ее вершины могут достигать значений, превышающих разрушающее напряжение материала даже при сравнительно малом приложенном напряжении. Для инициирования разрушения совсем не нужно, чтобы средние напряжения по сечению детали достигали значений прочности. Достаточно создать их только в вершине дефекта, чтобы трещина начала распространяться.

При отсутствии пластической деформации произведение $\sigma \sqrt{c}$ должно быть постоянной величиной для данного материала. Постоянство этого произведения испытанием на разрыв внутренним гидравлическим давлением стеклянных трубок с нанесением алмазом царапин разной длины проверил Алан А. Гриффит. Во всех случаях произведение $\sigma \sqrt{c}$ оставалось постоянным, что подтвердило справедливость выводов А. А. Гриффита. В механику квазихрупкого разрушения новый параметр - коэффициент интенсивности напряжений $К$ ввел Джордж Р.Ирвин. Достоинство использования этого параметра заключается в возможности его экспериментального определения и подстановки в расчеты на прочность. Стало возможным прогнозировать поведение несплошного материала в конструкциях на основе предварительных инженерных расчетов.

Физический смысл параметра K сложен для восприятия, особенно из-за его непривычной размерности: напряжение, умноженное на корень квадратный из длины. Важно понять, что K - это коэффициент, характеризующий интенсивность поля напряжений перед трещиной. Коэффициент интенсивности напряжений $К$ можно сравнить с напряженностью магнитного или электрического поля:

$$
K=\sigma \sqrt{\pi c}
$$

где σ - среднее приложенное напряжение; c - полудлина трешины.

Рис. 2.37. Виды разрушения:
$a-$ сдвитом; σ - частичным сдвитом; $\boldsymbol{\varepsilon}$ - от нормальных напряжений
Отсюда K имеет единицу измерения МПа• м ${ }^{1 / 2}$.
Неустойчивость трещины проявляется при достижении коэффициентом K величины критического коэффициента интенсивности напряжений K_{c}, обычно называемого вязкостью разруиения. Критерий $K_{\text {с }}$ является важнейшей характеристикой материала в механике разрушения и связывает величину напряжений в момент разрушения и критический размер трещины.

Для образцов разной толщины возможны различные виды разрушения (рис. 2.37): сдвигом, частичным сдвигом, от нормальных напряжений. Вязкость разрушения определяется относительным развитием нормального и наклонного (скосом) участков разрушения. У достаточно толстых образцов с высокоразвитой поверхностью нормального разрушения вязкость разрушения приближается к предельному значению $K_{\text {Ic }}$ - вязкости разрушения в условиях плоской деформации. Начиная с этой толшины образца коэффициент $K_{\text {lс }}$ практически не изменяется и является константой материала (рис. 2.38). Таким образом, $K_{\text {Iс }}$ - это критический коэффициент интенсивности напряжений при плоской деформации, когда разрушение происходит путем либо смешанного (прямого и косого), либо только прямого излома. Коэффициент $K_{\text {lc }}$ может называться также коэффициентом интенсивности напряжений, вязкостью разрушения, трещиностойкостью.

Коэффициент $K_{\text {с }}$ не является константой материала, т.е. зависит от размеров образца. Критический коэффициент интенсивности напряжений при плоской деформации K_{Ic} не зависит от геометрии образца и является константой материала. Коэффициент K_{lc} предельная характеристика, определяемая при наиболее жестких условиях испытаний, к которой стремится K_{c} по мере увеличения толщины образца.

Учитывая, что $K_{\text {Ic }}$ является крайней страховочной характеристикой, могут быть случаи, когда ее использование недостаточно оправданно, например когда материалу не приходится работать при той толщине, при которой производилось определение K_{Ic}. Разрушение тонколистовых конструкций происходит в условиях плосконапряженного состояния. Использование K_{Ic} в качестве браковоч-

Рис. 2.38. Зависимость вязкости разрушения $K_{\text {с }}$ от толщины образца d

ной характеристики может привести к забраковыванию потенциально годных материалов, способных удовлетворительно работать при небольших толщинах.

Знание характеристик вязкости разрушения позволяет определять максимально допустимые напряжения в конструкции при наличии трещин определенной длины. Приложенные напряжения должны быть ниже разрушающего напряжения, найденного с помощью K_{lc}. Одновременно может решаться и другая задача, связанная с определением критического размера дефекта при данном приложенном напряжении и сопоставлением его с максимальным размером исходных дефектов в металле.

Материалы с хорошими характеристиками механических свойств могут оказаться непригодными из-за низкого сопротивления развитию трещины. Если при дефектоскопии металла выявится, что длина трещин меныше критического значения, то для оценки надежности конструкции необходимо установить, могут ли условия ее эксплуатации вызвать развитие трещин. Распространение трещин при длине, менышей критической, возможно при действии таких факторов, как циклические нагрузки, коррозия, водородное охрупчивание и др.

Испытания на вязкость разрушения (ГОСТ 25.506-85). Статические, динамические и циклические испытания сопротивления развитию трещины или вязкости разрушения сводятся к следующей общей процедуре. В образцах определенной формы и размера наводят искусственную трещину. Затем производят нагружение образца с одновременной записью нагрузқи и смещения берегов трещины.

Различают следуюшие основные виды образцов для определения вязкости разрушения при статическом нагружении (рис. 2.39):

I - цилиндрический образец с кольцевым надрезом и трещиной для испытаний на осевое растяжение и изгиб;

II - плоский образец с центральной сквозной трещиной или симметричными краевыми трещинами для испытаний на осевое растяжение;

Рис. 2.39. Виды образцов (I-VI) для определения вязкости разрушения при статическом нагружении

III - плоский образец с боковым односторонним надрезом и трещиной для испытаний на растяжение;

IV - плоский образец с боковым надрезом и трещиной для испытаний на сосредоточенный изгиб;

V - плоский образец с односторонней боковой усталостной трещиной для испытаний на внецентренное растяжение;

VI - дисковый образец с односторонним надрезом и трещиной для испытаний на внецентренное растяжение.

Форму и размеры образцов для определения характеристик вязкости разрушения выбирают с учетом целей испытания, назначения, размеров и форм сечения заготовок, прочности и пластичности материала, температурных условий его эксплуатации.

Различают силовые, деформационные, энергетические критерии разрушения. К силовым критериям относят критические значения коэффициентов интенсивности напряжений $K_{c}, K_{\mathrm{Ic}} ;$ к деформационным - критическое раскрытие трещин δ_{c} и коэффициент интенсивности деформации $K_{c e}$; к энергетическим удельную энергию продвижения трещины на единицу поверхности раскрытия $G_{\mathrm{c}}, G_{\mathrm{Ic}}$. В качестве основных рекомендуются критерии K_{c} и K_{lc}. При определении K_{c} или δ_{c} целесообразно использовать образцы с толщиной, равной толщине элемента конструкции. Корректность определения K_{lc} зависит от размеров образцов.

Усталостная трещина создается от исходного надреза за счет приложения к образцу циклической нагрузки. Во время опыта производится автоматическая запись данных о нагрузке на образец и росте трещины. При этом особенно важно правильное определение нагрузки на образец в момент скачка трешины. Регистрация данных о росте трещины производится с помощью измерителя деформации с тензодатчиками. Измеритель деформации устанавливают в образце или с помощью специально прикрепляемых к образцу упоров.

После того как образец с трещиной подготовлен, его устанавливают в испытательной машине и производят его непрерывное нагружение с одновременной записью диаграммы нагрузка - смещение берегов надреза. Образцы должны иметь толщину, обеспечиваюшую разрушение в условиях плоской деформации. Для разрушившихся образцов характерно отсутствие деформации по толщине, в изломе отсутствуют «губы среза» или утяжки кромок.

Основным недостатком испытаний на вязкость разрушения в условиях плоской деформации является необходимость использования чрезмерно больших образцов при исследовании металлов низкой и средней прочности. Например, образцы из стали 20 с $\sigma_{0,2}=$ $=280$ МПа должны иметь толшину более $250 \mathrm{mм}$. Нанесение на боковые поверхности образцов дополнительных острых надрезов позволяет более чем в 2 раза уменьшить размеры образцов и полу-

чить при этом достоверные значения $K_{\text {Ic }}$ для сталей низкой прочности. Такая методика определения $K_{\text {Ic }}$ по данным измерения податливости компактного образца с пазами обладает высокой точностью. Условия плоской деформации у вершины трещины могут также достигаться за счет охрупчивания боковых поверхностных слоев материала образца.

Известно, что склонность к хрупкому разрушению определяется действием ряда внешних и внутренних факторов. Эти же факторы оказывают влияние и на вязкость разрушения.

Вязкость разрушения тесно связана с показателями прочности материалов σ_{τ} и $\sigma_{\text {в }}$. Увеличение прочности сопровождается снижением пластичности и вязкости разрушения. Это объясняется тем, что у высокопрочных материалов мала энергия, поглощаемая при разрушении, уровень которой определяется величиной пластической деформации у вершины трещины. Для высокопрочных материалов эффект увеличения прочности существенно перекрывается снижением пластичности, в результате чего вязкость разрушения уменьшается.

Материалы средней и низкой прочности при комнатной температуре обычно имеют более высокие значения $K_{\text {Ic }}$, чем высокопрочные. С понижением температуры ситуация меняется, особенно для сплавов, имеющих ОЦК и ГПУ кристаллические решетки. С понижением температуры прочность растет, и при определенных условиях поведение материала средней и низкой прочности становится таким же, как и поведение высокопрочного материала при комнатной температуре.

Характер температурной зависимости $\sigma_{0,2}$ и K_{lc} для одной из низколегированных марок стали приведен на рис. 2.40. Сталь имеет высокие значения K_{lc} при комнатной температуре, но с понижением температуры значение $K_{\text {Ic }}$

Рис. 2.40. Температурная зависимость предела текучести $\sigma_{0,2}$ и вязкости разрушения K_{Ic} деформированной высоколегированной конструкционной стали резко падает. Вязкое разрушение по сдвиговому механизму переходит к низкоэнергетическому. С понижением температуры растет стесненность пластической деформации. Коэффициент $K_{\text {с }}$ переходит в $K_{\text {Ic }}$ при меньших толщинах материала. Поэтому при низких температурах испытания вязкости разрушения можно проводить на образцах меньших размеров.

Размер зерна поликристаллических материалов является одним из основных параметров микроструктуры. Уменышение

размеров зерен позволяет одновременно увеличить прочность и вязкость металлов. Поэтому при измельчении зерна возрастает комплексный показатель свойств, каковым является вязкость разрушения. Использование таких технологических приемов, как контроль процесса выпавки и особенно раскисления стали, понижение температуры конца прокатки, термоциклическая и термомеханическая обработка, способствующих измельчению зерна, позволяет одновременно повысить вязкость разрушения.

Влияние легирующих элементов на вязкость разрушения прежде всего обусловлено их воздействием на величину зерна. Элементы, способствующие измельчению зерна, повышают вязкость разрушения, а элементы, упрочняюшие твердые растворы, наоборот понижают вязкость разрушения. Эффективное измельчение зерна достигается введением нитридо- и карбидообразующих элементов: ванадия, ниобия, титана. Использование алюминия для раскисления способствует получению в спокойных сталях более мелкого зерна, чем в кипящих и полуспокойных

Знание параметров вязкости разрушения позволяет обеспечить надежность конструкции. Это особенно важно в тех случаях, когда применяют новые высокопрочные материалы в проектах, не имеющих аналогов в прошлом, а безопасность изделий должна быть бесспорно обеспечена. Поэтому один из авторов линейной механики разрушения Дж. Р. Ирвин указывает на необходимость срочного обучения специалистов этой дисциплине, ибо «создание новых конструкций редко ждет, пока конструкторы устранят все пробелы в своем образовании».

Особенности испытаний механицеских свойств при низких темnepamypax. Температурно-силовые условия проведения механических испытаний должны быть максимально приближены к условиям работы материалов в реальных машинах и конструкциях.

Испытания при низких температурах более сложны, чем такие же испытания при комнатной температуре. При их проведении необходимо захолаживание образцов с помощью холодильньх камер и криостатов, использование специальных средств измерения температуры и деформации образцов. Захолаживание осуществляется специальными хладагентами, значения температуры кипения которых следующие, K (${ }^{\circ} \mathrm{C}$):

3)	A
Углекислый газ 195 (-78)	Неон 27 (-246)
Метан 112 (-161)	Водород 20 (-253)
Кислород 90 (-183)	Гелий 4 (-269)

В качестве хладагентов при проведении испытаний до температуры $203 \mathrm{~K}\left(-70^{\circ} \mathrm{C}\right)$, т.е. до температуры климатического холода, применяют твердую углекислоту (сухой лед) в смеси с денатуратом или

этиловым спиртом. При испытаниях до $77 \mathrm{~K}\left(-196^{\circ} \mathrm{C}\right)$ в качестве хладагента обычно используют жидкий азот в чистом виде или его пары. Такие системы охлаждения сравнительно дешевы и удобны.

В качестве хладагентов при температуре ниже 77 K обычно используют жидкий водород и жидкий гелий. Применение жидкого водорода, имеюшего температуру кипения $20 \mathrm{~K}\left(-252^{\circ} \mathrm{C}\right)$, сопряжено с большими трудностями. Взрыво- и пожароопасная концентрация водорода в воздухе колеблется в широких пределах - от 4,6 до 76%. Взрыв воздушно-водородной смеси в открытом пространстве наиболее вероятен при содержании $30 \ldots 40 \%$ водорода. В случае попадания воздуха в систему с жидким водородом происходит его конденсация с образованием твердых осадков, способствующих детонации и взрыву.

Жидкий гелий вполне безопасен для испытаний при низких температурах, но он значительно дороже водорода. Это обусловливает необходимость сложной организации сбора, очистки и вторичного использования испаряющегося газообразного гелия. Из-за сложности теплозащиты при работе с жилким гелием для испытаний обычно применяют небольшие образцы и малогабаритные криостаты. Учитывая, что применение тензометров, передающих деформацию образца, осложняет теплоизоляцию криостата, запись деформации обычно ведут не с рабочей части образца, а со штанг, находяшихся вне криостата.

Для измерения температуры до $153 \mathrm{~K}\left(-120^{\circ} \mathrm{C}\right)$ применяют жид-костно-стеклянные термометры. В качестве термометрических жидкостей используют ртуть, спирт, пентан. При температуре ниже 153 K для измерений применяют термометры сопротивления и термопары.

Статические испытания на растяжение. Необходимые температурные условия в образце при испытаниях создают с помощью криостатов. По конструктивному признаку криостаты для испытаний на растяжение могут быть разделены на две группы (рис. 2.41). К первой группе относятся криостаты с двусторонним вводом силовых элементов, ко второй - криостаты реверсивного типа, т.е. с реверсивным вводом тят.

Криостаты с двусторонним вводом тяг (рис. 2.41, a) имеют более простое устройство и представляют собой двухстенные ванны из латуни или аустенитной стали с войлочной или пенопластовой изоляцией. Их недостаток состоит в том, что выходящие из криостата две силовые тяги являются источником повышенных теплопритоков, приводящих к увеличенному расходу охлаждающей жидкости. Криостаты этого типа обычно применяют при испытаниях до 77 K.

Криостат реверсивного типа (рис. 2.41, б) позволяет уменьшить теплопритоки. Нагрузка на образец создается с помощью опорной трубы, к которой крепится нижний захват образца, и располо-

Рис. 2.41. Схемы криостатов для испытаний на растяжение:
$a-$ с двусторонним вводом тяг; 6 - реверсивного типа; I - нагружающие тяги; 2 - двухстенный корпус камеры с теплоизоляцией; 3-ввод жидкого хладагента; 4 - испытуемый образец; 5 - тефлоновое уплотнение; 6 - опорная труба; 7 - жидкий водород или гелий; 8 - экран с жидким азотом; 9 - внешний корпус камеры

женного внутри трубы подвижного штока, связанного с верхним захватом образца. Испытания в среде жидкого гелия требуют принятия дополнительных мер по теплоизоляции рабочей камеры и ее тщательной герметизации. Для усиления теплоизоляции применяют вакуумные рубашки и экраны, охлаждаемые жидким азотом. Хромированные поверхности экранов, обращенные к рабочей камере криостатов, отполированы до зеркального блеска. Применяют криостаты с перезарядными устройствами, позволяющие при одной заливке хладагента испытывать несколько образцов.

Специальные методы испытаний. Испытание падающим грузом. В практике многих стран широкое применение получили испытания падающим грузом. Испытания проводят на специальньх образцах DWTT двух типов. Первый тип образца (проба Баттеля) изготавливается по натурной толщине изделия и имеет острый надрез, иногда прессованный. Серию образцов испьгтывают при разных температурах. Оценку ведут по критической температуре получения заданной доли вязкой составляющей в изломе.

Второй тип образцов (рис. 2.42) предложен Уильямом С. Пеллини и Петером П. Пьюзаком. Образцы имеют толщину $12,7 \ldots 25,4$ мм, длину примерно 360 мм, ширину 89 мм. В центре образца делают хрупкую наплавку, по которой затем наносят надрез, чтобы обес-

Рис. 2.42. Схема испьттания падающим грузом
1- падаюший груз; 2- образец; 3опорная (ограничивающая) плита; 4- участок сварного шва на нижней стороне образца; 5 - надрез

печить инициирование хрупкой трещины в начальный момент нагружения. Испытание проводят путем ударного нагружения падающим грузом серии образцов данного материала при разных температурах. Энергия падающего груза составляет $320 . . .1740$ Дж в зависимости от предела текучести материала и размера образца. Под образцом устанавливают специальную опорную плиту, ограничивающую его прогиб. После нагружения серии образцов определяют максимальную температуру, при которой трещина проходит через все сечение образца, температуру нулевой пластичности (NDT - nilductility transitation). В ряде стран эта температура принята в качестве эталонной.

Для оценки хрупкой прочности при больших скоростях деформации используют пластины размером 356×356 мм натурной толщины, имеющие наплавленный с одной стороны хрупкий валик с надрезом. Пластину устанавливают на круглую матрицу и на небольшом расстоянии над пластиной осуществляют взрыв. Под действием давления расширяющегося газа пластина деформируется. При вязком поведении материала происходит характерное выпучивание. При температуре нулевой пластичности и ниже пластина разрушается без выпучивания. Температурные критерии, определенные по испытаниям падающим грузом и взрывом, находят широкое применение при построении полуэмпирических диаграмм разрушения Пеллини - Пьюзака, которые показывают зависимость приложенньх разрушающих напряжений от температуры для конкретных деталей (сосуды, трубопроводы и т.д.) с различными размерами дефектов.

Испытания на остановку трещины. Такие испытания проводят на широких сварных плитах, широких пластинах с боковыми надрезами и др. Испытания проводят в условиях растягивающих напряжений с локальным или равномерным градиентом температур. Могут проводиться и изотермические испытания. Различные методы (Робертсона, ESSO, на двойное растяжение) отличаются друг от друга видом образцов и концентратором напряжений, а также оценочными критериями: температурой остановки трещины; температурой, при которой трещина не проходит целиком сквозь сечение при напряжении $120 \mathrm{MПа}$ и т.д.

На рис. 2.43 показан образец для испытаний по Робертсону. Образец имеет в рабочей части выступ, в котором просверлено отверстие и сделан небольшой открытый надрез. Сторона образца с вы-

ступом, по которому осуществляется удар, обычно охлаждается жидким азотом, а противоположная сторона подогревается газовой горелкой. Это создает градиент температуры по ширине образца. Образец нагружают растягивающей нагрузкой, проводят удар и отмечают границу остановившейся трешины и соответствующую температуру. В случае изотермического испытания оценка представляется в виде «трещина идет - трещина не идет» для разных температур и уровней напряжений.

Испытание на остановку хрупкой трещины является одним из наиболее жестких истьтаний. Для одного и того же материала тем-

Рис. 2.43. Схема испытания на остановку трещины по Робертсону: 1 - нагружающие штифты; 2 - тонкий надрез; 3 - место нанесения удара; 4- точка остановки трещины; 5 вваренная секция; 6 - основная пластина пература остановки трещины, как правило, оказывается выше температуры нулевой пластичности. Испытание по Робертсону дает более резкий вязко-хрупкий переход, чем испытание падающим грузом. При проведении испытаний на остановку трещины обязательным условием является равенство толщины образца с трещиной толщине листа исходного материала.

Специальные методы испытаний представляют значительный интерес, но для их проведения нужно иметь мощные испытательные установки. Поэтому наиболее интересные испытания плит натурной толщины очень дороги. Попытки нахождения корреляции результатов этих испытаний и стандартных испытаний на ударную вязкость не привели к достаточно стабильным результатам.

Наиболее показательными являются натурные испытания изделий в реальных условиях эксплуатации. Однако проведение натурных испытаний, особенно при низких температурах, связано со значительными техническими трудностями. О работоспособности техники, эксплуатируемой при низких температурах, обычно приходится судить по статистическим данным, накопленным в результате наблюдений за работоспособностью изделий.

Неразрупаюшие методы контроля. Контроль качества заготовок и готовых изделий является неотъемлемой частью металлургического и машиностроительного производства.

В настоящее время в производстве широко применяют неразрушаюшие методы контроля, позволяющие проверить качество машиностроительной продукции без нарушения ее основньх потре-

бительских свойств и при сохранении ее пригодности к использованию по назначению.

Существующие средства неразрушающего контроля подразделяют по назначению на следующие группы:

- выявляющие дефекты в виде нарушения сплошности материала изделия;
- оценивающие структуру материала изделий;
- контролирующие геометрические параметры изделий;
- оценивающие физико-механические свойства материала изделий.

По принципу работы контрольных средств различают оптические, магнитные, акустические, радиационные, радиоволновые методы неразрушающего контроля, капиллярную дефектоскопию, метод вихревых токов, контроль течеисканием. В дефектоскопии для контроля металлов и изделий наиболее широко применяют визуально-оптические, капилярные, магнитные, токовихревые, ультразвуковые и радиационные методы, позволяющие осуществлять сплошной контроль.

В машиностроительном производстве применяют следующие виды контроля: операционный, спиошной, выборочный, входной и приемочный. Операционный контроль - контроль полуфабрикатов и изделий в процессе выполнения или после завершения определенной технологической операции, например термической обработки, сварки, механической обработки и т.п. Сплоиной контроль - контроль каждой единицы продукции, осуществляемый в одинаковом объеме и с использованием единых методов. Выборочный контроль - контроль выборок или отдельных проб из партии или потока изделий. Входной контроль - контроль материалов, комплектующих изделий и готовой продукции, поступаюющих на пред-приятие-потребитель от изготовителей (других предприятий, собственных цехов и участков). Приемочный контроль - контроль готовой продукции, на основе которого принимается заключение о ее пригодности к использованию или поставке.

Капилиярная дефектоскопия включает в себя методы неразрушающего контроля, основанные на использовании капиллярных свойств жидкости и предназначенные для обнаружения поверхностных дефектов в виде несплошности материала, невидимьх невооруженным глазом.

Поверхностные дефекты выявляются путем образования индикаторных рисунков с высоким оптическим (цветовым и яркостным) контрастом и с шириной линии, превышающей ширину раскрытия дефектов.

В процессе контроля на изделие наносят проникаюшую жидкость, которая под действием капиллярных сил проникает в полости поверхностных дефектов. Излиннюю жидкость удаляют с поверхности изделия. Сами дефекты обнаруживают либо путем выяв-

ления жидкости, проникшей в полости дефектов, либо с помощью скоплений частиц порошка, взвешенного в жидкости и отфильтровавшегося на поверхности изделия в местах залегания дефектов. В первом случае проникшую в полости дефектов жидкость обнаруживают после нанесения на поверхность изделия проявителя, который поглощает жидкость, образуя индикаторный рисунок, и создает фон, улучшающий видимость рисунка (рис. 2.44). Во втором случае скопление порошка обнаруживается без применения проявляющего порошка.

Индикаторные рисунки, обнаруживающиеся при нанесении проявителя, либо приобретают окраску, определяемую избирательным поглощением (отражением) падающих на них световых лучей, либо приобретают способность люминесцировать в ультрафиолетовых лучах, что обеспечивает получение сильного цветового контраста. В результате оказывается возможным достаточно легко и надежно обнаруживать эти рисунки, а вместе с ними и сами дефекты.

Основные методы капиллярной дефектоскопии классифицируют по характеристикам индикаторного рисунка и оптическим свойствам, определяющим его видимость (табл. 2.4).

Одной из разновидностей яркостного метода является керосиновая или керосино-маслянная проба, которая широко используется для контроля герметичности изделий, для поиска течей в емкостях и трубопроводах гидравлических и топливных систем. В качестве проникающей жидкости этой пробы применяют керосин, жидкое масло или их смесь, а в качестве проявителя - мел в виде сухого порошка, водной суспензии (с добавками поверхностноактивных веществ) или суспензии на основе органических растворителей. Проникаюшая жидкость, просачиваясь в слой мела, вы-

Рис. 2.44. Схема контроля деталей капиллярным методом с применением проявителя:
a - полость трещины заполнена проникающей жидкостью; 6 - жидкость удалена с поверхности детали; в - нанесен проявитель, трещина выявлена; 1 - деталь; 2 - полость трещины; 3 - проникающая жидкость; 4 - проявитель; 5 индикаторный рисунок трещины

Таблица 2.4. Класснфикация основных методов капиллярной дефектоскопии по характеру индикаторного рисунка

Метод капиллярной дефектоскопии	
Яркоктеристика и оптические свойства (ахроматический)	Ахроматический, черный или серый, имеет только яркостный контраст с фоном и виден при дневном свете
Цветной (хроматический)	Имеет цветовой и яркостный контраст с фоном и виден при дневном свете
Люминесцентный	Имеет цветовой и яркостный контраст в ультра- фиолетовых лучах
Люминесцентно- цветной	Имеет цветовой и яркостный контраст при днев- ном свете и в ультрафиолетовых лучах
Фильтруюшихсяя частиц	Имеет цветовой и яркостный контраст при днев- ном свете и в ультрафиолетовых лучах. В месте де- фекта накапливается отложение окрашенных или люминесцирующих частиц

зывает его потемнение, которое можно увидеть визуальным способом при дневном свете. Керосиновая проба имеет малую чувствительность и редко используется для обнаружения поверхностных дефектов. При использовании яркостного метода в качестве проникающих жидкостей применяют растворы галловой (дубильной) кислоты. Эти жидкости образуют индикаторный рисунок черного цвета, который хорошо виден на светлом фоне полированного металла.

При использовании метода цветной дефектоскопии применяют проникающие жидкости или реактивы, которые после нанесения проявителя образуют индикаторный рисунок красного цвета, хорошо различимый на белом фоне проявителя.

Метод люминесцентной дефектоскопии основан на свойстве проникающей жидкости люминесцировать под воздействием ультрафиолетовых лучей. В этом случае индикаторный рисунок изучается на темном фоне, а наилучший яркостный и цветовой контраст обеспечивается при белом (бело-желтом), красном или оранжевом цвете люминесценции. Используют также проникающие жидкости, цвет люминесценции которых соответствует дневной или сумеречной максимальной чувствительности зрения, - зеленовато-желтый или голубовато-зеленый цвет в ультрафиолетовых лучах.

Метод люминесцентно-цветной дефектоскопии основан на том, что образующиеся индикаторные рисунки не только люминесцируют в ультрафиолетовых лучах, но также имеют окраску, связанную с избирательным поглощением части световых лучей. В этом

случае индикаторные рисунки обнаруживаются и в ультрафиолетовых лучах, и при дневном свете. При использовании отечественных проникающих жидкостей индикаторные рисунки имеют оран-жево-красный цвет и в ультрафиолетовых, и в световых лучах.

Метод фильтрующих частиц основан на использовании проникающих жидкостей, содержащих окрашенные или люминесцирующие взвешенные частицы размером от нескольких микрон до сотых долей миллиметра. Этот метод применяют для обнаружения трещин и других дефектов в поверхностном слое пористых материалов. При нанесении на контролируемую поверхность проникающей жидкости она поглощается пористым материалом, причем в зоне расположения дефекта жидкость поглощается быстрее и в большем объеме. Взвешенные частицы, размер которых превышает отверстия дефекта, фильтруются и откладываются на поверхности над дефектом. Частицы легко обнаруживают при визуальном осмотре детали.

Контрольные вопросы

1. Какие вещества относят к металлам?
2. Что такое кристаллическая решетка? Какие существуют виды кристаллических решеток?
3. Какое втияние на свойства металлов и сплавов оказывают дефекты кристаллического строения?
4. Какое влияние оказывает рабочая среда на свойства материала?
5. Какие свойства относят к механическим?
6. Что такое технологичность материала?
7. Как определяют характеристики прочности материала?
8. С какой целью определяют ударную вязкость материала?
9. Что характеризует твердость материала?
10. Какой вид разрушения (хрупкое или вязкое) наиболее опасен?
11. Что называют конструктивной прочностью материала?

ГЛАВА 3
ФАЗЫ И СТРУКТУРА МЕТАЛЛИЧЕСКИХ СПЛАВОВ

3.1. Характеристика основных фаз в сплавах

Основные понятия. Чистые металлы обычно имеют низкую прочность и невысокие технологические свойства. В технике, как правило, применяются сплавы. Сплавами называют сложные вещества, полученные сплавлением нескольких элементов. Элементы или химические соединения, образующие сплав, называют компонентами. Компонентами металлических сплавов могут быть не только металлы, но и неметаллы. В зависимости от числа компонентов сплавы могут быть двойные, тройные и т. д. В зависимости от физи-ко-химического взаимодействия компонентов в сплавах образуются фазы, число и тип которых характеризуют состояние сплава. Фазой называют однородную часть сплава, характеризующуюся определенным составом, свойствами, типом кристаллической решетки и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму, размеры и характер взаимного расположения фаз в сплаве. Фазовый состав и структура, определяющие свойства сглава, зависят от состава и технологии его обработки.

В сплавах возможно образование следующих фаз: жидкие растворы; твердые чистые металлы; твердые растворы; химические соединения. В зависимости от числа фаз сплавы могут быть одно-, двух- и многофазными.

В жидком состоянии компоненты сплава обычно неограниченно растворяются друг в друге, образуя жидкие растворы. В твердом состоянии компоненты могут образовывать механические смеси, представляющие собой смесь двух или нескольких фаз; химические соединения, когда компоненты вступают в химические взаимодействия; твердые растворы, когда один компонент растворяется в другом, который называется растворителем.

Механнческие смеси. Если элементы, входящие в состав сплава, при затвердевании из жидкого состояния не растворяются друг в друге и не взаимодействуют, образуется механическая смесь. Механические смеси образуются при кристаллизации многих сплавов, например $\mathrm{Pb}-\mathrm{Sb}, \mathrm{Al}-\mathrm{Cu}$. По структуре смесь представляет собой неоднородное тело. При металлографическом анализе на шлифе видны кристаллиты компонентов, образующих механическую смесь. Химический анализ определяет также разные элементы. Рентгеноструктурный анализ определяет два типа кристаллических решеток, образующих такую смесь.

Химические соединения. Если элементы, составляющие сплав, взаимодействуют друг с другом, образуются химические соединения. По структуре химические соединения представляют собой однородные твердые тела. Свойства химических соединений отличаются от свойств образующих их элементов. Химические соединения имеют постоянную температуру плавления (диссоциации). Ренттеноструктурный анализ показывает различие кристаллических решеток химического соединения и исходных элементов. В химическом соединении сохраняется определенное соотношение атомов элементов, позволяющее выразить их состав стехиометрической пропорцией в виде простой формулы $\mathrm{A}_{n} \mathrm{~B}_{m}$, где A, B - соответствующие элементы; $n, m-$ целые числа. Составы этих соединений на диаграммах состав - свойство характеризуются особыми сингулярными точками.

Различают химические соединения двух типов: металл - неметалл и металл - металл

Твердые растворы. Фазы, в которых один из компонентов (растворитель) сохраняет свою кристаллическую решетку, а атомы других (растворяемых) компонентов располагаются в его решетке, искажая ее, называют твердыми растворами.

Химический анализ твердого раствора показывает несколько элементов, а металлографический и рентгеноструктурный - однородные зерна и один тип решетки, как у металла-растворителя.

Различают твердые растворы замещения и внедрения. Твердый раствор замещения образуется замещением части атомов растворителя в его кристаллической решетке атомами растворенного компонента (рис. 3.1, a).

Атомы растворенного элемента обычно не занимают особых мест в кристаллической решетке, а только замешают в некоторых узлах атомы растворителя. Такое размещение атомов называют неупорядоченным (рис. 3.2, a). Неупорядоченное размещение образуется в тех случаях, когда взаимодействие разнородных элементов твердого раствора недостаточно выражено. Если же атомы разных эле-

Рис. 3.1. Кристаллическая гранецентрированная кубическая решетка твердого раствора замешения (а) и твердого раствора внедрения (б)

Рис. 3.2. Размещение атомов в кристаллической решетке твердых растворов:
а - неупорядоченное (сплав $\mathrm{Cu}-\mathrm{Au}$); б - упорядоченное (сплав $\mathrm{Cu}-\mathrm{Au}$); в решетка твердого раствора вычитания; о - атом меди; - атом золота

ментов твердого раствора взаимодействуют между собой несколько сильнее, чем однородные атомы, они стремятся расположиться в определенном порядке. Атомы растворителя и растворенного элемента располагаются на разных кристаллографических плоскостях. Например, в системе Au - Cu после медленного охлаждения расплава одни кристаллографические плоскости состоят щеликом из атомов меди, а другие - из атомов золота (рис. 3.2, б). Такие твердые растворы называют упорядоченными.

Полностью улорядоченные растворы образуются, когда отношение компонентов в сплаве составляют целые числа: $1: 1 ; 1: 2 ; 1: 3$ и т.д. Такой сплав с упорядоченной структурой можно характеризовать формулой химического соединения, например $\mathrm{CuAu}, \mathrm{Cu}_{3} \mathrm{Au}$.

Упорядоченные твердые растворы характеризуются более высокой твердостью и хрупкостью и могут рассматриваться как промежуточные фазы между неупорядоченными твердыми растворами и химическими соединениями.

В связи с различием в размерах атомов при замещении атомов одного компонента атомами другого компонента происходит искажение кристаллической решетки. Это искажение тем больше, чем больше разница в размерах атомов и строении их кристаллических решеток. При чрезмерном искажении решетки дальнейшая растворимость становится невозможной. Наступает предельная растворимость, при которой дополнительно вводимые атомы не могут войти в решетку и образуют самостоятельную фазу. Если же оба компонента имеют однотипные кристаллические решетки, а атомные диаметры различаются не более чем на $8 \ldots 15 \%$, возможна неограниченная растворимость.

Неограниченно растворяются в твердом состоянии такие металлы с ГЦК решеткой, имеющие небольшую разницу в атомных размерах ΔR, как серебро и эолото ($\Delta R=0,2 \%$), никель и медь ($\Delta R=2,7 \%$) и др., а также металлы с ОЦК решеткой: молибден и вольфрам ($\Delta R=$
$=9,9 \%$), ванғадий и титан ($\Delta R=2 \%$). Металлы с большим атомным диаметром ($\mathrm{Na}, \mathrm{Ca}, \mathrm{Pb}$) в железе, меди, никеле нерастворимы.

Твердый раствор внедрения образуется путем внедрения атомов растворенного компонента в междоузлия (пусготы) кристаллической решетки (рис. 3.1, б). В ГЦК решетке такая пустота находится в центре куба и образует сферу диаметром $0,4 D$, где D - диаметр атомов растворителя. В ОЦК решетке пустота находится в центре грани и образует сферу диаметром 0,29D.

Образование твердых растворов внедрения, как правило, сопровождается увеличением параметров кристалиической решетки и ее искажением.

Твердый раствор внедрения характерен для сплавов металлов с элементами 1 -го и 2 -го периодов, имеюцими малые атомные диаметры ($\mathrm{C}, \mathrm{B}, \mathrm{N}, \mathrm{H}, \mathrm{O}$). Концентрация второго компонента в твердом растворе внедрения обычно невысока и всегда ниже, чем в твердых растворах замещения и химических соединениях этих элементов. В отличие от химических соединений твердые растворы внедрения имеют кристаллическую решетку металла-растворителя, в то время как химические соединения образуют решетку, отличающуюся от решетки металла.

3.2. Структура сплавов

Учитывая, что границы зерен или фаз существенно влияют как на структурные превращения, так и на свойства сплавов, их необходимо детально характеризовать при описании структуры. Границы раздела отличаются от примыкающих к ним микрообластей по структуре, а часто и по химическому составу.

Однофазные микрообласти могут иметь локальные изменения химического состава. Кроме того, каждая из них содержит дефекты кристаллической решетки - вакансии и дислокации. Искажения решетки оказывают существенное влияние на ход превращений и свойства сплавов и поэтому обязательно должны учитываться при характеристике их структуры.

Многофазные материалы могут быть получены в результате кристаллизации расплавов, фазовых превращений во время термической обработки, выделений избыточных фаз из первичных твердых растворов. Для упрощения анализа удобнее рассматривать двухфазные структуры, хотя в материалах могут присутствовать несколько равновесных и неравновесных фаз. Анализ структур целесообразно проводить на основе изучения геометрических параметров распределения отдельных фаз или зерен, определяя их размеры, форму и ориентацию.

В условиях равновесия относительное содержание каждой фазы, образовавшейся в результате превращения, определяется перво-

Рис. 3.3. Форма частиц второй фазы:
a - равноосная (карбиды в инструментальной стали); σ - пластинчатая (пластинчатый графит в сером чугуне); 8 - волокнистая (композит)

начальным составом сплава. Однако полностью равновесное состояние далеко не всегда достигается; кроме того, в ряде случаев оно может быть нежелательным. Фактическое число фаз зависит от режима обработки; при закалке удельные объемы фаз меняются по сравнению с равновесным состоянием.

Частицы второй фазы могут иметь различную форму: равноосную, пластинчатую или волокнистую (рис. 3.3). В первом случае размеры по трем координатным осям примерно одинаковы, во втором - один размер заметно меньше других, в третьем - размер по одной оси много больше, чем по друтим осям. Получение на практике любой выбранной формы достаточно сложно, но в ряде случаев возможен выбор двух из этих трех структур. Графит в чугуне может иметь пластинчатую или сфероидальную форму, перлит в результате термической обработки стали может быть пластинчатым или зернистым (рис. 3.4).

a

Рис. 3.4. Форма фазовых составляющих структуры стали с содержанием утлерода $0,8 \%$ (мас.) (цементит и феррит):
a - пластинчатый перлит, увеличение в 2500 раз; б - зернистый перлит, увеличение в 1000 раз

Рис. 3.5. Размер фазовых составляющих структуры (цементит и феррит в отпущенном мартенсите), увеличение в 11000 раз:
a - отпуск при температуре $600^{\circ} \mathrm{C}$ в течение 1 ч, твердость 33 HRC; 6 - отпуск при температуре $675^{\circ} \mathrm{C}$ в течение $12 ч$, твердость 20 HRC; структура с более крупными выделениями имеет меньшую твердость

Тенденция к сфероидизации частиц второй фазы обусловлена тем, что сфера имеет минимальную площадь поверхности на единицу объема, а следовательно, и наименьший уровень поверхностной энергии. Поэтому сфероидальный цементит в перлите по сравнению с пластинчатым обладаег более высокой геометрической стабильностью. Пластинки цементита образуются в результате ускоренного направленного затвердевания, а не в условиях равновесия.

Превращение перлита с пластинчатой структурой в зернистый перлит требует более длительной выдержки при температуре, близкой к эвтектоидной (рис. 3.5). В условиях полноло равновесия структура будет иметь вид единичных шаровидных выделений цементита, окруженных ферритом.

3.3. Диффузия и структура сплавов

Внутреннее строение твердого тела не является статичным, атомы не закреплены неподвижно на своих местах в кристаллической решетке, они непрерывно колеблются и перемещаются из своих положений равновесия в узлах решетки. Преимущественные одноналравленные перемещения атомов, в итоге приводящие к макроскопическому переносу вещества, называются диффузией атомов.

Любые процессы зарождения и роста фаз, рекристаллизация, коагуляция и сфероидизация, фазовые превращения в твердом растворе, распад растворов и выделение второй фазы связаны с диффузией атомов.

a

6

6

Рис. 3.6. Переход внедренного атома из его междоузлия (a) через нестабильное промежуточное положение (б) в соседнее междоузлие (в)

Диффузия в сплавах представляет собой перенос разнородньх атомов, который сопровождается изменением концентрации компонентов в отдельных зонах.

Самодиффузией называют перемещение атомов одного и того же типа в чистых металлах или основного компонента - в сплавах.

Диффузия атомов внедрения с малым атомным радиусом, например углерода в решетке железа, осуществляется межузельным путем (рис. 3.6). Этот процесс довольно легко реализуется благодаря тому, что число внедренных атомов в решетке мало́ по сравнению с числом междоузлий.

Для металлических атомов наиболее вероятен вакансионный механизм диффузии (рис. 3.7). Атом замещения легко меняет свое положение, если по соседству имеется свободная вакансия. Однако в регулярных узлах решетки число вакансий мало́ по сравнению с числом атомов, из-за чего диффузия атомов замешения затруднена. Для вакансионного механизма диффузии более благоприятная ситуация складывается в искаженных узлах решетки: на границах зерен и фаз, а также на дислокациях.

При диффузии по обоим механизмам перемещающиеся атомы, чтобы протиснуться между атомами основного металла, разрушить связи и деформировать решетку, должны преодолеть потенциальный барьер. Для этого атомы должны обладать определенным уровнем энергии активации, который зависит от сил межатомной связи и дефектов кристаллической решетки, облегчающих диффузионные процессы. В частности, необходимый уровень энергии активации по границам зерен вдвое меныше, чем в объеме зерна.

Рис. 3.7. Переход атома замещения из своего узла решетки (a) через нестабильное промежуточное положение (б) в соседний незанятый узел решетки (в)

a

6

Рис. 3.8. Схема торможения движения трещин:
$a-$ за счет ветвления и изменения направления; б - блокировкой на выделениях второй фазы

Сравнительно легкая диффузия утлерода в железе и затрудненная хрома приводит к тому, что в процесс образования карбидов хрома $\mathrm{Cr}_{23} \mathrm{C}_{6}$ на границах зерен вовлекаются только приграничные атомы хрома. Границы зерен обедняются хромом, что приводит к межкристаллитной коррозии хромоникелевых аустенитных сталей.

Стабильность структуры и свойств жаропрочных сплавов достигается путем торможения процесса диффузии. Торможение диффузии, подобное торможению дислокации, создается соответствующей неоднородностью структуры. Торможение диффузионных процессов в литой структуре инструментальных сталей создается при формировании развитого дендритного скелета с термически прочной междендритной фазой карбидов. Неоднородность структуры может быть определяющим фактором при распространении трещин. На рис. 3.8 схематично показаны структурные условия, затрудняющие развитие трещин за счет их многократного ветвления и изменения направлений благодаря блокировке на выделениях второй фазы.

3.4. Пути упрочнения сталей и сплавов

Концепция высокопрочного состояния. Прочностью называют способность материалов сопротивляться пластической деформации и разрушению под действием внешней нагрузки.

Повышение прочности сплавов позволяет не только повысить рабочий ресурс деталей и конструкций, но и уменьшить их сечение и расход металла. Однако только высокая прочность без необходимого комплекса таких механических свойств, как вязкость, пластичность и трещиностойкость, не обеспечивает надежности конструкций. В ряде случаев высокопрочное состояние металла даже может оказывать отрицательное действие.

Анализ работы конструкционных материалов показывает, что они должны наряду с высокой прочностью и пластичностью хоро-

шо сопротивляться ударным нагрузкам, обладая запасом вязкости. При знакопеременньх нагрузках конструкционные материалы должны обладать высоким сопротивлением усталости, а при трении сопротивлением изнашиванию. Во многих случаях необходимо сопротивление коррозии. Учитывая, что в деталях всегда имеются дефекты, являющиеся концентраторами напряжений, конструкционные материалы должны обладать высоким сопротивлением хрупкому разрушению и распространению трещин. Надежность материала в конструкции принято характеризовать конструкционной прочностью, под которой понимают не отдельно взятые прочностные характеристики, а комплекс механических свойств, определяюших эксплуатационные возможности изделия. В этом состоит особенность требований к конструкционным материалам.

Кроме того, помимо высокой конструкционной прочности конструкционные материалы должны иметь высокие технологические свойства: хорошие литейные свойства, обрабатываемость давлением, резанием, хорошую свариваемость. Конструкционные материалы должны быть дешевы и не дефицитны.

Из всех конструкционных материалов, применяемых в настоящее время и прогнозируемых в будущем, этим, часто противоречивым, требованиям в наибольшей степени отвечают стали. Только сталь позволяет получать сочетание высоких значений различных механических характеристик и хорошую технологичность при сравнительно невысокой стоимости. Поэтому сталь и в настоящем, и в обозримом будущем останется основным и наиболее распространенным конструкционным материалом.

Для большинства конструкционных сталей важнейшими (но не единственными) параметрами конструкционной прочности являются предел текучести σ_{τ}, порог хладноломкости или температура вязко-хрупкого перехода $t_{\text {хр }}$, уровень ударной вязкости $\mathrm{KCU}, \mathrm{KCV}$, КСТ и коэффициент интенсивности напряжений K_{Ic}.

Механнзмы упрочнения. В первой половине ХХ в. высокопрочного состояния в сталях добивались увеличением содержания углерода, мало обращая внимания на их пластичность и вязкость, характер иэлома и свариваемость.

Известно, что углерод образует с железом твердые растворы внедрения и является эффективным упрочнителем. Однако его растворимость в феррите невелика, что приводит к снижению упрочняющего эффекта. Высокая прочность мартенсита закалки сопровождается снижением пластичности и вязкости, что обусловливает необходимостъ проведения отпуска. При отпуске образуются карбиды, мартенсит обедняется углеродом и снижается действие твердорастворного механизма упрочнения.

Образующиеся довольно крупные частицы цементитного типа в ферритной матрице более тверды и хрупки, чем матрица. Поэтому при нагружении на поверхности раздела создается объемно-

напряженное состояние, которое может приводить к образованию микротрещин.

Согласно современным представлениям деформация определяется движением дислокаций. Следовательно, повышение сопротивления деформации и соответственно высокопрочное состояние могут быть достигнуты созданием цепи препятствий движению дислокаций.

К основным механизмам упрочнения сталей относятся измельчение зерна, образование твердых растворов, выделение частиц второй фазы, превращения при термической обработке и увеличение плотности дислокаций. Экспериментальные исследования показали, что для большинства сталей действует принцип линейной аддитивности отдельных механизмов упрочнения, т.е. вклады отдельных механизмов в общее упрочнение суммируются:

$$
\sigma_{\mathrm{T}}=\sigma_{0}+\Delta \sigma_{\mathrm{T} . \mathrm{p}}+\Delta \sigma_{\mu}+\Delta \sigma_{\mathrm{a} . \mathrm{y}}+\Delta \sigma_{3},
$$

где σ_{0} - сопротивление кристаллической решетки движению дислокаций (напряжение трения решетки, или напряжение Пайерлса - Набарро); $\Delta \sigma_{\text {т.p }}$ - упрочнение твердого раствора растворенными легирующими элементами, или твердорастворное упрочнение; $\Delta \sigma_{д}$ - упрочнение за счет сопротивления перемещению дислокаций, или дислокационное упрочнение; $\Delta \sigma_{\text {д. }}$ - упрочнение дисперсными частицами второй фазы, образовавшимися при распаде пересыщенного твердого раствора, или дисперсионное упрочнение; $\Delta \sigma_{3}$ - упрочнение границами зерен и субзерен, или зернограничное упрочнение.

В ферритно-перлитных сталях добавляется упрочнение за счет присутствия перлита в структуре.

Рис. 3.9. Влияние легирующих элементов на свойства медленно охлажденного (нормализованного) феррита и порог хладноломкости:
$a-$ изменение твердости; $6-$ изменение ударной вязкости; в - изменение порога хладноломкости (по А. П. Гуляеву)

Рис. 3.10. Влияние легируюших элементов на упрочнение аустенита:
1 - элементы, образуюшие твердые растворы внедрения; 2 - ферритообразующие элементы, растворяющиеся по типу замещения; 3- аустенитообразующие элементы, растворяющиеся по типу замещения

В разбавленных твердых раствоpax, к которым относится большинство сталей, может быть принята линейная зависимость упрочнения от концентрации легирующих элементов (рис. 3.9, 3.10). Твердорастворное упрочнение особенно эффективно при введении элементов внедрения. Такое действие углерода и азота объясняется асимметричным искажением кристаллической решетки и сильным взаимодействием атомов этих элементов с дислокациями, обусловленным осаждением на них растворенных атомов. При образовании твердых растворов внедрения эффект упрочнения в $10-100$ раз превышает упрочнение в твердых растворах замещения.

Основными легирующими элементами, целиком входящими в состав феррита и определяющими его твердорастворное упрочнение, являются некарбидообразующие элементы кремний, никель, медь, слабый карбидообразователь марганец, который не образует самостоятельных карбидов, а также в небольших количествах (до $0,02 \%$) углерод и азот. Такие карбидообразующие элементы, как ниобий, ванадий, титан, находятся в связанном состоянии в специальных карбидах, алюминий полностью связан либо в нитридах, либо в неметаллических включениях, хром и молибден распределены между карбидами и ферритом, но их влияние на упрочнение феррита невелико вследствие их малой концентрации.

Твердые растворы могут оказывать влияние на действие других механизмов упрочнения. В результате термической обработки они могут способствовать дисперсионному твердению с выделением частиц второй фазы. Растворенные легирующие элементы могут снижать температуру превращений стали, что, в свою очередь, меняет структуру, размер зерен и плотность дислокаций. Связь твердорастворного упрочнения с другими механизмами затрудняет точное количественное определение его вклада в прочность металла.

Твердорастворное упрочнение оказывает отрицательное влияние на пластичность и вязкость стали. При этом растворы внедрения обладают худшими пластическими свойствами, чем растворы замещения. Все легирующие элементы повышают твердость феррита. При этом хром и особенно никель почти не уменьшают вяз-

кость стали. Никель наиболее сильно снижает порог хладноломкости. Кроме того, никель, хром, марганец и некоторые другие элементы, хорошо растворимые в аустените, повышают его устойчивость при охлаждении, тем самым увеличивая прокаливаемость стали. Наиболее эффективно увеличивают прокаливаемость никель и хром при одновременном введении в сталь, т.е. при комплексном легировании. Возможность достижения высокой прочности, пластичности, вязкости и прокаливаемости делает никель и хром важнейшими легирующими элементами в высоко- и среднелегированных сталях.

Влияние легирующих элементов на свойства аустенитных кор-розионно-стойких сталей отличается от их влияния на свойства сталей на ферритной основе (см. рис. 3.10).

Упрочнение металлов при пластической деформации, или дислокационное упрочнение, $\Delta \sigma_{\text {д }}$ обусловлено образованием новых дислокаций и увеличением их плотности. Это приводит к тому, что перемещению дислокаций начинают препятствовать сами же дислокации. По словам Алана X. Коттрелла, такой эффект легко понять, если представить себе крупный железнодорожный узел, пропускная способность которого в определенном направлении уменьшается при интенсификации движения по всем остальным направлениям.

Аустенитные стали в результате пластической деформации при одинаковой плотности дислокаций получают значительно большее упрочнение по сравнению с ферритными сталями.

Упрочнение дисперсными выделениями. Принято считать, что упрочнение дисперсными частицами, или дисперсионное упрочнение, $\Delta \sigma_{\text {ду }}$ имеет наибольшее значение для цветных металлов, в частности для дуралюминов, сплавов на основе кобальта, никеля, меди. Однако в последние годы разработаны новые сплавы на основе железа, прочность которых в значительной мере определяется дисперсионным твердением. Широкое применение нашли микролегированные конструкционные стали и мартенситно-стареющие стали. Микролегированные конструкционные стали содержат небольшие количества титана, ванадия, циркония и ниобия, которые образуют с углеродом и азотом твердые дисперсные частицы карбонитридов. Растворенный в железе алюминий образует с азотом твердые частицы AIN.

Состав мартенситно-стареющих сталей подобран таким образом, что при старении в безуглеродистой мартенситной матрице образуются твердые интерметаллидные соединения типа $\mathrm{Ni}_{3} \mathrm{Ti}$, FeAl и др., способствуюшие упрочнению.

Частицы второй фазы действуют как препятствия движению дислокаций в кристаллической решетке.

Уменьшение размеров зерен способствует росту предела текучести. Движущиеся дислокации не могут пройти через границы

зерен, и передача деформации происходит методом эстафеты путем возбуждения дислокационных источников, расположенных по другую сторону границ.

Влияние величины зерна на предел текучести может быть описано уравнением Холла - Петча:

$$
\sigma_{\mathrm{T}}=\sigma_{0}+k d^{-1 / 2},
$$

где σ_{0} - напряжение трения решетки, МПа; k - коэффициент, величина которого численно определяет сопротивление границ зерен данного металла движению дислокаций; d - средний размер зерен, мм.

Кроме того, необходимо учитывать, что зерно - это не монолитный кристалл, построенный из строго параллельньх атомных слоев. Зерно состоит из отдельньх блоков, кристаллографические плоскости в которых повернуты одна относительно другой на небольшой угол (порядка нескольких угловых минут). Такое строение зерна называют мозаичной структурой, а составляющие ее блоки - блоками мозаики. Блоки могут быть объединены в более крупные соединения - фрагменты, которые разориентированы один относительно другого на угол в несколько градусов. Образование малоугловых субграниц внутри зерна может приводить к дополнительному упрочнению.

Коэффициент k для аустенитных сталей имеет примерно вдвое меньшую величину, чем для ферритно-перлитных сталей. Кроме того, благодаря фазовой перекристаллизации стали с ферритной основой имеют значительно меньший размер зерен. Диаметр зерна сталей на основе феррита после фазовой перекристаллизации составляет $10 \ldots 30$ мкм, а в аустенитных сталях $70 \ldots 100$ мкм. Вследствие этих факторов в аустенитных сталях эффект зернограничного упрочнения значительно ниже, чем в сталях на основе α железа.

Размеры ферритных зерен зависят от размеров исходных аустенитных зерен и присутствия карбонитридных фаз. При охлаждении и превращении $\gamma \rightarrow \alpha$ они служат центрами образования новьх зерен феррита. Таким образом, присутствие дисперсных частиц способствует измельчению ферритных зерен и вносит дополнительный вклад в зернограничное упрочнение.

Поэтому образование карбонитридных дисперсных фаз при микролегировании ванадия, ниобия, циркония и титана одновременно способствует как дисперсионному, так и зернограничному упрочнению.

Уникальной особенностью зернограничного упрочнения является то, что при реализации этого механизма одновременно с увеличением прочности происходит увеличение вязкости и пластичности стали. С измельчением зерна снижается температура вязко-хрупкого перехода и повышается сопротивление хрупкому разрушению.

Таким образом, основными факторами упрочнения сталей с ферритно-перлитной структурой являются зернограничное (вклад $30 \ldots 40 \%$), твердорастворное ($25 \ldots 40 \%$) и дисперсионное ($25 \ldots 30 \%$) упрочнение.

3.5. Диаграммы состояния (фазового равновесия) сплавов

Условия и методика построения днаграмм состояния. При изменении концентрации компонентов в сплавах, а также в процессе их охлаждения или нагрева (при условии постоянного внешнего давления) в сплавах происходят существенные фазовые и структурные изменения, которые можно наглядно проследить с помощью диаграмм состояния, представляющих собой графическое изображение состояния сплавов. Так как диаграммы строятся для равновесного состояния сплавов (стабильное состояние, характеризующееся минимумом свободной энергии системы), они также называются диаграммами фазового равновесия и отражают те равновесные фазы, которые существуют при данных условиях (концентрация, температура и давление).

Равновесное состояние может быть достигнуто только при очень малых скоростях охлаждения (при отсутствии переохлаждения) или при длительном нагреве, которые в действительности очень трудно реализовать. Поэтому, хотя фактически диаграммы состояния представляют собой теоретический вариант, на практике они используются для получения представлений о превращениях в сплавах при мальх скоростях охлаждения или нагрева.

Диаграммы состояния обычно строят экспериментально. Для их построения используют термический метод, с помощью которого получают кривые затвердевания и охлаждения сплавов. По остановкам и перегибам на этих кривых, обусловленных тепловыми эффектами преврашений, определяют температуры самих превращений. Точки перегиба или остановки на кривых охлаждения называются критическими точками и соответствуют температурам, при которых в сплавах начинают протекать или заканчиваются ка-кие-либо превращения.

С помощью диаграмм состояния определяют температуру плавления и полиморфных превращений в сплавах, сколько фаз и какие фазы имеются в сплаве данного состава при данной температуре, а также количественное соотношение этих фаз в сплаве и их состав (содержание компонентов).

Дополнительно к термическому методу для изучения превращений в твердом состоянии применяют исследование микроструктуры с использованием оптического и электронного микроскопов, рентгеноструктурный анализ, изучение физических свойств

сплавов и т.д. Данные, полученные различными методами, используют для построения диаграмм состояния.

Поскольку в зависимости от числа компонентов сплавы могут бытъ двойными (двухкомпонентными), тройными (трехкомпонентными) и т.д., соответственно диаграммы состояния строят в системе двух координат - температура и концентрация (диаграммы состояния двойных сплавов), трех координат - температура и две оси концентрации (диаграммы состояния тройных сплавов). Для более сложных систем обычно строят пространственные диаграммы с некоторым упрощением либо сечения этих диаграмм по температурной или концентрационной оси.

В двойных сплавах по вертикали диаграммы состояния откладывают температуру, а по горизонтали - концентрацию компонентов. Каждая точка на оси абсцисс соответствует определенному содержанию одного и другого компонента с учетом того, что общее содержание компонентов в каждой точке этой оси соответствует 100%. Поэтому по мере увеличения количества одного компонента сплава должно снижаться содержание в сплаве другого компонента.

Вид диаграммы состояния определяется характером взаимодействий, которые имеют место между компонентами сплавов в жидком и твердом состоянии. Во всех рассматриваемых далее случаях предполагается, что между компонентами сплава в жидком состоянии существует неограниченная растворимость, т.е. они образуют однородный жидкий раствор, обозначаемый буквой Ж. В твердом состоянии компоненты могут образовывать механические смеси из чистых компонентов, неограниченные твердые растворы, ограниченные твердые растворы, устойчивые химические соединения, неустойчивые химические соединения, а также испытывать полиморфные превращения.

Основные типы диаграмм состояния. Диаграмма состолния сплавов, образуюцих механииеские смеси из иистых компонентов (I рода). Исходные данные: оба компонента неограниченно растворимы в жидком состоянии, а в твердом состоянии нерастворимы и не образуют химических соединений. Компоненты: химические элементы А, В (число компонентов $\mathrm{K}=2$). Фазы: жидкость Ж, кристаллы А, В (число фаз $\Phi=3$).

Примером диаграмм этого типа является диаграмма состояния сплавов системы $\mathrm{Pb}-\mathrm{Sb}$. Диаграмма $\mathrm{Pb}-\mathrm{Sb}$ строится на основе использования кривых охлаждения, полученных методом термического анализа (рис. 3.11). Система сплавов $\mathrm{Pb}-\mathrm{Sb}$ включает в себя составы со $100 \% \mathrm{~Pb}$ и $0 \% \mathrm{Sb}$, т.е. чистый свинец, и со 100% Sb и $0 \% \mathrm{~Pb}$, т.е. чистую сурьму. Кривые охлаждения для этих чистых металлов имеют по одному горизонтальному участку, характеризующему температуру кристаллизации: соответственно для свинца $327^{\circ} \mathrm{C}$, для сурьмы $631^{\circ} \mathrm{C}$. На диаграмме состояния эти значения

Рис. 3.11. Диаграмма состояния, кривые охлаждения и схемы структур сплавов системы Pb - Sb при полном охлаждении до комнатной температуры:
Ж - жидкий раствор; Э - эвтектика

температуры находятся на осях ординат, где содержатся соответственно чистый свинец и чистая сурьма. Структура чистых металлов представляет собой однородные зерна.

Сплав, содержащий $13 \% \mathrm{Sb}$ и $87 \% \mathrm{~Pb}$, также имеет один горизонтальный участок, т.е. одну критическую точку ($246^{\circ} \mathrm{C}$) - температуру затвердевания этого сплава. Этот сплав характеризуется тем, что в нем происходит одновременная кристаллизация из жидкой фазы кристаллов Pb и Sb (в общем случае компонентов А и B) с образованием механической смеси. Такая механическая смесь двух (или более) видов кристаллов, одновременно кристаллизующихся из жидкости, называется эвтектикой и обозначается буквой Э. Сам сплав является эвтектическим, а его микроструктура представляет собой попеременно чередующиеся выделения сурьмы в свинцовой основе. Принято эвтектическую реакцию записывать так: $\mathbb{K} \rightarrow \mathrm{Pb}+\mathrm{Sb}$, или в общем виде $\boldsymbol{X} \rightarrow \mathrm{A}+\mathrm{B}$.

Кристаллизация любого сплава, содержащего $0<\mathrm{Sb}<13 \%$, начинается с выделения кристаллов Pb . Такие сплавы затвердевают в интервале температур, и на кривых охлаждения имеются две критические точки, соответствующие началу и концу затвердевания (например, сплав с $5 \% \mathrm{Sb}$). Такие сплавы называются доэвтектическими сплавами, они претерпевают эвтектическое превращение при охлаждении ниже температуры $246^{\circ} \mathrm{C}$ и имеют после окончательного охлаждения структуру $\mathrm{Pb}+Э(\mathrm{~Pb}+\mathrm{Sb})$. В этой структуре имеется две структурные составляюшие: кристаллы Pb и эвтектика ($\mathrm{Pb}+\mathbf{S b}$), которые получаются на базе двух фаз - кристаллов Pb и кристаллов Sb .

Кристаллизация любого сплава с концентрацией $13<\mathrm{Sb}<100 \%$ начинается с выделения кристаллов Sb . Такие сплавы также затвердевают в интервале температур - начала и конца затвердевания (например, сплав с $40 \% \mathrm{Sb}$). При охлаждении ниже температуры $246^{\circ} \mathrm{C}$ в них протекает эвтектическое превращение. Такие сплавы называются заэвтектическими и имеют после охлаждения окончательную структуру $\mathrm{Sb}+Э(\mathrm{~Pb}+\mathrm{Sb})$. Структура заэвтектических сплавов также является двухфазной (кристаллы Sb и Pb) и состоит из двух структурных составляющих: кристаллов Sb и эвтектики ($\mathrm{Pb}+\mathrm{Sb}$).

На диаграмме можно выделить три характерные зоны: область, где существует только жидкая фаза, - выше системы линий, ограниченной точками: температура $327^{\circ} \mathrm{C}$ - эвтектическая точка $246^{\circ} \mathrm{C}$ - температура $631^{\circ} \mathrm{C}$; область, где существует только твердая фаза (кристаллы Pb и Sb), - ниже эвтектической линии (вся горизонтальная линия на уровне температуры $246^{\circ} \mathrm{C}$ с концами в месте ее пересечений с ординатами со $100 \% \mathrm{~Pb}$ и $100 \% \mathrm{Sb}$); область, где одновременно сосуществует жидкая и твердая фаза (область с жидко-твердой фазой) - между линиями, ограничивающими соответственно жидкое и твердое состояние сплавов.

Линия, ограничивающая на диаграмме область жидкой фазы сплавов, называется линией ликвидус. Линия, ограничивающая область полностью затвердевшего сплава от остальной области на диаграмме состояний, называется линией солидус.

Диаграмма состояния спиавов с неограниченной растворимостью компонентов в твердом состоянии (ІІ рода). Исходные данные: оба компонента неограниченно растворимы в твердом и жидком состоянии и не образуют химических соединений. Компоненты: химические элементы $\mathrm{A}, \mathrm{B}(\mathrm{K}=2)$. Фазы: жидкость $Ж$, кристаллы твердого раствора $\alpha(\Phi=2)$.

Примером сплавов с такими диаграммами состояния являются сплавы системы $\mathrm{Cu}-\mathrm{Ni}$. Если два компонента (А и В) неограниченно растворяются в жидком и твердом состоянии, они не могут при затвердевании образовывать собственных кристаллов во всех сплавах на основе этих компонентов. Соответственно при кристаллизации в этих сплавах будут выделяться кристаллы твердого раствора α (α-твердого раствора), а следовательно, максимальное число фаз в этих сплавах равняется двум (жидкость и твердый раствор α). В этом случае в соответствии с правилом фаз кристаллизация всех сплавов будет протекать только в интервале температур (кристаллизация при постоянной температуре у сплавов возможна только при наличии трех фаз) и, соответственно, на диаграмме состояния отсутствует горизонтальная линия, а присутствуют только наклонные кривые (рис. 3.12).

На диаграмме присутствуют три области: область выше линии $A a^{\prime} B$ - жидкость; область между линиями $A a^{\prime} B$ и $A b^{\prime} B$ - жидкость и

Рис. 3.12. Диаграмма состояния, кривые охлаждения и схемы типовых структур сплавов с неограниченной растворимостью в твердом состоянии

твердый раствор; ниже линии $A b^{\prime} B$ - область твердого раствора. Линия $A a^{\prime} B$ является линией ликвидус, а линия $A b^{\prime} B$ - линией солидус.

Кристаллизация любого сплава начинается выпадением из жидкого расплава отдельньх кристаллов твердого раствора α (например, в точке a^{\prime}) и заканчивается полным затвердеванием твердого раствора (например, в точке b^{\prime}). Но так как в интервале кристаллизации (например, между точками a^{\prime} и b^{\prime}) сплавы находятся в двухфазном состоянии ($Ж+\alpha$), при понижении температуры должно изменяться соотношение количества жидкой и твердой фазы в двухфазной области - количество жидкости уменьшается, а количество твердого раствора α растет. Кроме того, при понижении температуры будут меняться также составы жидкой и твердой фаз. Для определения относительного количества каждой фазы и состава фаз на диаграммах состояния любого типа пользуются правилом отрезков (правилом рычага), основные положения которого формулируются следующим образом. Чтобы определить концентрации компонентов в двухфазной области, через интересуюшую нас точку, характеризующую состояние сплава (состав сплава и его температуру), проводят горизонтальную линию до пересечения с линиями, ограничивающими цвухфазную область. Проекции точек пересечения на ось концентраций покажут состав жидкой и твердой фаз.

Чтобы определить количественное соотношение жидкой и твердой фаз, необходимо составить обратно пропорциональную зависимость между их количеством и отрезками горизонтальной линии, образованными между точкой, характеризующей состояние сплава, и точками, определяющими состав жидкой и твердой фаз.

Рассмотрим на примере двух типов диаграмм (рис. 3.13), как с помощью правила отрезков можно определить количество и состав фаз, например, для состояния, соответствующего точке k.

Рис. 3.13. Применение правила отрезков для сплавов, образующих механические смеси (а) и твердые растворы (б)

Дия определения соотношения фаз и их состава через точку k проводим горизонтальную линию до пересечения с линиями, ограничиваюцими двухфазную область на диаграмме (точки $/$ и s). Проекции точек пересечения на ось концентраций показывают состав жидкой фазы (точка l^{\prime} - проекиия точки l, лежащей на линни ликвидус) и твердой фазы (точка s^{\prime} - проекция точки s, соответствующей на рис. 3.13, a концентрации $100 \% \mathrm{Sb}$ и лежащей на линии солидус на рис. 3.13, б). В соответствии с правилом рычага отрезки горизонтальной линии между точкой k и точками, определяюшими составы фаз, обратно пропорциональны количествам этих фаз, т.е. можно записать

$$
Q_{s} k=Q_{l} l k ; Q_{s} / Q_{l}=l k / s k,
$$

где Q_{s}, Q_{1} - количество твердой и жидкой фазы соответственно.
Для определения отношения какой-либо фазы (твердой или жидкой) ко всему количеству сплава Q_{s+1} используют выражения

$$
Q_{s} / Q_{s+l}=l k / s l ; Q_{s}=Q_{s+l} l k / s l,
$$

где $s l$ - вся длина горизонтальной линии.
Правило отрезков можно использовать не только для изучения процесса кристаллизации сплавов, но и для рассмотрения процессов, происходящих в твердом состоянии. Это правило применимо ко всем двухфазным сплавам независимо от их агрегатного состояния.

Если вернуться к рассмотрению диаграммы состояния с неограниченной растворимостью компонентов в твердом состоянии (см. рис. 3.12), следует обратить внимание на то, что во всем интервале кристаллизации (например, от точки a^{\prime} до b^{\prime}) из жидкого сплава с концентрацией компонентов, отвечающей точке k (45% $\mathrm{Cu}+55 \% \mathrm{Ni}$) (см. рис. 3.13), происходит постоянное выделение новых кристаллов. Причем состав первых кристаллов определяется проекцией точки s, лежащей на линии солидус. Заканчивается выделение новых кристаллов сплава k в точке b^{\prime}, когда затвердевает последняя капля жидкости, имеющая состав, определяемый проекцией точки l, лежащей на линии ликвидус.

Отсюда следует, что при охлаждении сплава в интервале кристаллизации состав жидкой фазы в соответствии с правилом отрезков меняется по линии ликвидус, а твердой фазы - по линии солидус.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (III рода). Исходные данные: оба компонента неограниченно растворимы в жидком состоянии, ограниченно растворимы в твердом состоянии и не образуют химических соединений. Компоненты: химические элементы А, В ($\mathrm{K}=2$). Фазы: жидкость Ж, твердые растворы α (раствор компонента А в В) и β (раствор компонента В в А) $(\Phi=3)$.

Данный тип диаграммы состояния (диаграмма с эвтектическим превращением) очень важен в практическом отношении, так как часто представлен в составе сложньх диаграмм широко распространенных промышленных сплавов, например сплавов систем $\mathrm{Fe}-\mathrm{C}, \mathrm{Al}-\mathrm{Cu}$ и др.

В рассматриваемой системе ограниченная растворимость компонентов в твердом состоянии может не меняться с изменением температуры, а может и меняться. Оба рассматриваемьх случая представлены на рис. 3.14 (соответственно линии $E N$ и DF). В итоге имеем диаграмму состояния с двусторонней ограниченной растворимостью компонентов в твердом состоянии.

На этой диаграмме линия $G C H$ - линия ликвидус, выше которой все сплавы имеют однородный жидкий раствор; линия $G E D H$ линия солидус, ниже которой в сплавах отсутствует жидкая фаза.

В рассматриваемой системе компоненты А и В не могут при затвердевании образовывать собственных кристаллов, так как они

Сплав I

Сплав IV

Рис. 3.14. Диаграмма состояния, кривые охлаждения и схемы образования структур сплавов с ограниченной растворимостью в твердом состоянии и с эвтектическим превращением

между собой образуют твердые растворы α и β в тех областях диаграммы, которые расположены соответственно слева от вертикали $E N$ и справа от линии $D F$. В этих областях все сплавы кристаллизуются в интервале между ликвидусом и солидусом так же, как этот процесс проходит в любом сплаве на диаграммах состояния II рода. Соответственно в области, лежащей слева от линии $E N$ при кристаллизации из жидкости начинают выделяться кристаллы твердого раствора α (например, для сплава I в точке 1). В интервале кристаллизации сплавы имеют двухфазную структуру $Ж+\alpha$. После завершения кристаллизации и вплоть до окончательного охлаждения все эти сплавы имеют структуру однородного твердого раствора α. Аналогичная ситуация имеет место у всех сплавов, расположенных правее точки F, с той лишь разницей, что вместо твердого раствора α у них выделяются кристаллы твердого раствора β.

У сплавов, расположенных в интервале между точкой F и проекцией точки D, первичная кристаллизация в интервале между ликвидусом и солидусом протекает аналогично ранее описанной. При этом сплавы после завершения кристаллизашии вплоть до пересечения с линией $D F$ имеют однородную структуру твердого раствора β (например, сплав IV в интервале между точками 2 и 3). При дальнейшем же охлаждении этих сплавов (например, сплава IV ниже точки 3) вплоть до полного охлаждения в структуре этих сплавов происходят изменения, связанные с выделением из твердого раствора β второй фазы $\alpha_{\text {II }}$ (например, у сплава IV), причиной появления которой является уменьшение предела растворимости твердого раствора β при снижении температуры сплава. На это указывает наклонный характер кривой $D F$. При понижении температуры твердый раствор β становится пересыщенным компонентом А, и для приведения системы в равновесие из этого твердого раствора β выделяется избыток растворенного компонента A. Но так как в рассматриваемой системе чистые компоненты не могут существовать как самостоятельные фазы (они должны образовывать твердые растворы), на базе избыточных кристаллов компонента А сразу же образуется твердый раствор α, кристаллы которого и выделяются из твердого раствора β и располагаются в виде мелкодисперсных включений внутри зерен основной фазы. Такие избыточные кристаллы, выделяюшиеся не из жидкости, а из твердой фазы, обозначаются α_{11} (вторичные α-кристаллы), а сам процесс выделения новой фазы в твердом состоянии называется вторичной кристаллизацией.

Точки E и N характеризуют предельную растворимость компонента В в компоненте А, т.е. предельную растворимость твердого раствора α при эвтектической и комнатной температурах, а точки D и F - предельную растворимость компонента А в компоненте B, т.е. предельную растворимость твердого раствора β также при эвтектической и комнатной температурах. Как видно, предельная

растворимость твердого раствора α не изменяется с понижением температуры (линия $E N$ - вертикальная), а предельная растворимость твердого раствора β с понижением температуры уменьнается (линия $D F$ - наклонная).

Точки E и D являются границами линии $E D$, в пределах которой протекает эвтектическое превращение, а точка C - эвтектической точкой. Следовательно, во всех сплавах, расположенных в пределах границ эвтектической линии, будет проходить эвтектическое превращение, аналогичное тому, которое имеет место на диаграммах состояния I рода с той лишь разницей, что в данном случае эвтектика состоит не из механической смеси компонентов А и В, а из механической смеси их твердых растворов α и β. В данном случае эти твердые растворы как бы являются компонентами сплавов для той части диаграммы, которая ограничена длиной эвтектической линии. Соответственно, эвтектика будет иметь вид Э $(\alpha+\beta)$, а эвтектическая реакция может быть записана так: $\mathcal{X} \rightarrow \alpha_{E}+\beta_{D}$. Сплав с концентрацией компонентов А и В, соответствующей проекции точки C, т.е. сплав состава точки C, называется эвтектическим.

Все сплавы, расположенные между точками C и E, называются доэвтектическими. Их кристаллизация будет начинаться с выделения кристаллов твердого раствора α (например, сплава II в точке 1). В интервале кристаллизации (например, между точками 1 и 2) у этих сплавов будет двухфазная структура $Ж+\alpha$. На линии $E C$ (например, в точке 2) в доэвтектических сплавах будет проходить эвтектическая реакция у той части жидкости Ж, которая еще осталась в сплаве на этот момент (ее количество можно определить по правилу отрезков). Поэтому для доэвтектических сплавов правомерно будет записать эвтектическую реакцию в следуюшем виде: $Ж+\alpha \rightarrow \alpha+Э(\alpha+\beta)$. Такие сплавы после окончательного охлаждения будут иметь структуру $\alpha+Э(\alpha+\beta)$.

Все спиавы, расположенные между точками C и D, называются заэтектическими. Их кристаллизация будет начинаться с выделения кристаллов твердого раствора β (например, у сплава III в точке 1). В интервале кристаллизации (например, у сплава III между точками 1 и 2) эти сплавы имеют двухфазную структуру $Ж+\beta$. На линии $C D$ у заэвтектических сплавов будет проходить эвтектическая реакция, подобная реакция доэвтектических сплавов, т.е. $\mathcal{K}+\beta \rightarrow$ $\beta+Э(\alpha+\beta)$. Но при дальнейшем охлаждении заэвтектхческих сплавов в их структуре будут проходить последующие превращения, которых не было в доэвтектических сплавах. Причиной этих превращений является наклонный характер линии $D F$. Как уже было показано ранее, при наклонном характере кривой растворимости компонента А в компоненте В (линия $D F$) с понижением температуры предельная растворимость А в В становится меньше того количества A , которое в данный момент присутствует в сплаве. Поэтому из твердого раствора β будут выцеляться вторичные α-кристаллы $\alpha_{\text {II }}$.

Следовательно, все заэвтектические сплавы ниже температуры эвтектического превращения (например, сплав III ниже точки 2) будут иметь следующую структуру: $\beta+Э(\alpha+\beta)+\alpha_{\pi!}$. Эта структура содержит три структурных составляющих: $\beta, Э(\alpha+\beta)$ и $\alpha_{\text {II }}$, но при этом структура является двухфазной: α-фаза и β-фаза.

Диаграмма состояиия спиавов, образуюцих химические соединения (IV рода). Исходные данные: оба компонента неограниченно растворимы в жидком состоянии, нерастворимы в твердом состоя-

Рис. 3.15. Диаграмма состояния с устойчивым химическим соединением нии, но образуют химические соединения. Компоненты: химические элементы А и В $(\mathrm{K}=2)$. Фазы: жидкость Ж, кристаллы компонентов A, В или химического соединения $\mathrm{A}_{n} \mathrm{~B}_{m}(\Phi=3)$.

Химическое соединение может быть устойчивым, т.е. до расплавления сплава не разлагаться при нагреве. Соответственно неустойчивое химическое соединение при нагреве разлагается.

Рассмотрим диаграмму состояния с устойчивым химическим соединением. Такая диаграмма изображена на рис. 3.15. Примером диаграмм этопо типа является диаграмма состояния сплавов системы Mg - Са. Химическое соединение (например, $\mathrm{A}_{n} \mathbf{B}_{m}$) характеризуется определенным соотношением компонентов (например, $n \%$ компонента А и $m \%$ компонента В). На оси концентрации компонентов (ось абсцисс) химическое соединение обозначает точку, из которой выходит вертикальная линия, фактически разбивающая диаграмму на две простые диаграммы, в которьхх химическое соединение выступает уже в качестве самостоятельного компонента и, соответственно, образует эвтектики с компонентом \mathbf{A} по реакции $Ж \rightarrow \mathrm{~A}+\mathrm{A}_{n} \mathrm{~B}_{m}$ (простая диаграмма I) и с компонентом B по реакции $\mathbb{K} \rightarrow \mathrm{B}+\mathrm{A}_{n} \mathrm{~B}_{m}$ (простая диаграмма II).

Кристаллизация сплавов в пределах простых диаграмм I и II проходит аналогично кристаллизации сплавов, образующих эвтектику из чистых компонентов (диаграмма I рода). Поэтому после окончательного остывания у эвтектического сплава на простой диаграмме I структура будет состоять только из эвтектики Э ($\mathrm{A}+\mathrm{A}_{n} \mathrm{~B}_{m}$), у эвтектического сплава на простой диаграмме II - из эвтектики Э ($\mathrm{B}+\mathrm{A}_{n} \mathrm{~B}_{m}$); у доэвтектических сплавов соответственно на простой диаграмме I и на простой диаграмме II структура будет иметь вид: $\mathrm{A}+Э\left(\mathrm{~A}+\mathrm{A}_{n} \mathrm{~B}_{m}\right)$ и $\mathrm{A}_{n} \mathrm{~B}_{m}+Э\left(\mathrm{~B}+\mathrm{A}_{n} \mathrm{~B}_{m}\right) ;$ у заэвтектических сплавов на простой диаграмме $\mathrm{I}-\mathrm{A}_{n} \mathrm{~B}_{m}+Э\left(\mathrm{~A}+\mathrm{A}_{n} \mathrm{~B}_{m}\right)$ и у заэвтектических сплавов на простой диаграмме II - B $+Э\left(\mathbf{B}+\mathbf{A}_{n} \mathbf{B}_{m}\right)$.

Диаграмма состояния сплавов, ислытьвваюцих полиморфные преөращения. Исходные данные: оба компонента неограниченно растворимы в жидком состоянии, в твердом состоянии могут образовывать механические смеси, в результате эвтектического или перитектического превращения, а также могут образовывать непрерывные твердые растворы и, кроме всего перечисленного, хотя бы один из компонентов обладает полиморфизмом. Компоненты: химические элементы: А, В (К $=2$). Фазы: жидкость Ж, твердые растворы $\alpha, \beta(\Phi=3)$.

При полиморфных превращениях в сплавах происходит перекристаллизация существующих твердых фаз, подчиняюшаяся тем же закономерностям, которые определяют процесс кристаллизации из жидкого состояния.

Если в сплавах один или оба компонента обладают полиморфизмом, то и сами сплавы из этих компонентов претерпевают полиморфные превращения в твердом состоянии. В этом случае диаграммы состояния становятся многоярусными, причем верхний ярус диаграммы характеризует первичную кристаллизацию из жидкого состояния, а нижняя часть диаграммы - вторичную (перекристаллизацию), т.е. выделение кристаллов новой твердой фазы из твердой первичной фазы, например кристаллов твердого раствора α из первичного твердого раствора β с другой кристаллической решеткой.

В общем случае вид диаграммы рассматриваемого случая зависит от того, какие фазы образуются в сплавах в процессе полиморфных превращений. Возможных вариантов может быть много. Рассмотрим два наиболее характерных случая (рис. 3.16).

В первом случае (рис. 3.16, a) компонент А имеет аллотропические модификации A_{α} и A_{β}, которые образуют с компонентом В два твердых раствора α и β.

Рис. 3.16. Диаграммы состояний с полиморфными превращениями:
a - при полиморфном превращении компонента A; $б$ - при полиморфном превращении обоих компонентов А и В

Кристаллизация сплавов в интервале кристаллизации с учетом перитектического превращения уже была ранее описана. В результате сплавы до температуры, соответствующей точке C (температуры полиморфного превращения), имеют либо однофазную структуру твердого раствора β, либо двухфазную структуру твердого раствора $\alpha+\beta$. В этих сплавах при охлаждении ниже температуры полиморфного превращения проходит полиморфное превращение $\beta \rightarrow \alpha$ с изменением кристаллической решетки.

Во втором случае (рис. 3.16 , б) оба компонента испытывают полиморфные преврашения, при этом низкотемпературные модификации их ограниченно растворимы друг в друге, а высокотемпературные модификации - неограниченно.

Не останавливаясь на деталях процесса кристаллизации сплавов из жидкого состояния, отметим, что в нижнем ярусе диаграммы фактически представлена диаграмма III рода, т.е. диаграмма с образованием ограниченных твердых растворов и протеканием эвтектического превращения. Однако отличительная черта данного эвтектического превращения состоит в том, что исходной фазой распада является не жидкость $Ж$, а твердый раствор γ, который при переходе через линию $K C N$ распадается на два новых раствора α и β по реакции $\gamma \rightarrow \alpha+\beta$.

Такое превращение, по сути аналогичное эвтектическому, но происходящее в твердом состоянии, называется эвтектоидным, а полученная механическая смесь - эвтектоидом. Сплав состава, соответствующего точке C, называется эвтектоидным. Сплавы, расположенные слева от точки C (сплав эвтектоидного состава), называют доэвтектоидными, а справа от нее - заэвтектоидными.

Обобщенные сведения по двойным диаграммам состояния. При изучении сложных двойных диаграмм состояния сплавов на основе реальных компонентов (металлов и неметаллов) оказывается не так просто увидеть и выделить в них те типовые варианты диаграмм, которые были рассмотрены ранее. Это определяется тем, что такие сложные диаграммы, как правило, являются многоярусными и в них имеется несколько эвтектических и эвтектоидных превращений, а ограниченные твердые растворы практически всегда изменяют свою растворимость с понижением температуры, причем это имеет место на нескольких ярусах диаграммы.

Для того чтобы несколько облегчить процесс рассмотрения реальньх сложных диаграмм состояния, приведем сведения, позволяющие упростить этот процесс.

1. Присутствие на диаграмме состояния горизонтального изотермического отрезка (или нескольких горизонтальных линий на разных ярусах) свидетельствует о существовании эвтектического (эвтектоидного) или перитектического превращения. При этом, если на диаграмме в пределах границ горизонтального отрезка можно выделить восходящие вверх и под углом друг к другу линии, ниже

Рис. 3.17. Примеры типовых эвтектических (эвтектоидных) превращений

горизонтальной линии в структуре сплава обязательно присутствует эвтектика (если над горизонтальной линией была жидкая фаза) или эвтектоид (если над горизонтањной линией была твердая фаза). Примеры таких преврашений представлены на рис. 3.17.
2. Доэвтектические (доэвтектоидные) и заэвтектические (заэвтектоидные) сплавы после полного охлаждения имеют структуру, состоящую из эвтектики (эвтектоида) и одной или двух избыточных фаз. Одна избыточная фаза присутствует в том случае, когда компоненты сплава либо не образуют никаких твердых растворов, либо образуют ограниченные твердые растворы и их предельная растворимость не уменьшается с понижением температуры (линия предельной растворимости расположена параллельно оси ординат). Причем, если присутствует одна избыточная фаза, ее легко определить. В доэвтектических (доэвтектоидных) сплавах это будет фаза, граничащая с левым концом эвтектической (эвтектоидной) линии, в заэвтектических (заэвтектоидных) сплавах - фаза, соответственно граничащая с правым концом эвтектической (эвтектоидной) линии.

При наличии на диаграмме состояния эвтектического и нескольких эвтектоидных превращений, расположенных соответственно на разных ярусах, изложенные выше положения работают в пределах своего яруса, согласно описанным ранее принципам.

Если на диаграмме состояния присутствуют ограниченные твердые растворы и имеется хотя бы одна наклонная линия (или несколько наклонных линий), исходящая из точки предельной растворимости компонента в твердом растворе, расположенной на границе (границах) горизонтальной линии эвтектического (эвтектоидного) превращения (превращений), то в структуре охлажденных до комнатной температуры доэвтектических (доэвтектоидных) или заэвтектических (заэвтектоидных) сплавов будет присутствовать еще одна избыточная фаза (еще несколько избыточных фаз), появление которой (которых) связано с пересыщением твердого раствора (твердых растворов) при понижении температуры сплавов и неизбежным выделением из этого раствора (из этих растворов) избыточного количества растворенного компонента.

В общем случае состав этой избыточной фазы можно легко определить, если иметь в виду, что это всегда будет фаза, расположенная с противоположного конца линии эвтектического (эвтектоидного) превращения. Эта избыточная фаза обычно обозначается соответствующим индексом ($\alpha_{\text {II }}, \beta_{\text {III }}$ и т.п.), что свидетельствует о ее выделении не при первичной кристаллизации, а при перекристаллизации, т.е. выделении кристаллов новой фазы в твердом состоянии.

При наличии на диаграмме одновременно эвтектического и хотя бы одного эвтектоидного преврашения, а также признаков изменения растворимости соответствующих ограниченных твердых растворов в пределах зоны прохождения каждого из этих превращений будет выделяться вторая избыточная фаза, которая нумеруется своим индексом ($\alpha_{\text {II }}, \beta_{\text {III }}$ и т.п.). При этом принципы определения состава каждой из избыточных фаз в пределах соответствуюшего яруса остаются такими же, какие были изложены для одноярусной системы.
3. Для определения на диаграммах состояния количества фаз и структурных составляющих, присутствующих в структуре сплава при конкретной температуре, нужно исходить из следующих положений.

Твердыми фазами являются сами компоненты и химические соединения на их основе в том случае, если не образуются твердые растворы на базе этих компонентов и их химических соединений. При образовании твердых растворов на основе компонентов и их химических соединений фазами являются эти твердые растворы. Механические смеси из компонентов сплава, их химических соединений или их твердых растворов, образующиеся в результате протекания эвтектической (эвтектоидной) или перитектической реакции, фазами не являются, а представляют собой структурные составляющие. Кроме того, к числу структурных составляющих относятся все фазы (вторичные, третичные и т.д.), появляющиеся в сплавах в процессе их перекристаллизации в твердом состоянии (например, $\alpha_{\text {II }}, \beta_{\text {III }}$).

Связь между свойствами сплавов и типом диаграмм состояния. Между типом диаграмм состояния и свойствами сплавов существует определенная взаимосвязь, которую впервые установил Н. С. Курнаков. Схематично эта взаимосвязь представлена на рис. 3.18.

У сплавов, кристаллизующихся с образованием эвтектики во всем диапазоне концентраций (диаграммы I рода), свойства изменяются по линейному закону в интервале между свойствами чистых компонентов (рис. 3.18, a).

У сплавов, кристаллизующихся с образованием непрерывных твердых растворов (диаграммы II рода), свойства изменяются по кривой с максимумом, значительно отличающимся от свойств компонентов (рис. $3.18, \sigma$).

Рис. 3.18. Связь между диаграммами состояния I, II, III, IV рода (соответственно a, σ, в, г) и свойствами сплавов (по Н.С. Курнакову)

При образовании ограниченных твердых растворов (диаграммы III рода) свойства сплавов в области однофазных твердых растворов изменяются по криволинейному закону, а в двухфазной области - по прямолинейному закону, причем крайними точками на прямой являются свойства чистых фаз (рис. 3.18, в).

Если при кристаллизации сплавов образуется химическое соединение (диаграммы IV рода), свойства сплава при концентрации компонентов, соответствующей образованию этого химического соединения, достигают максимума (или минимума) на кривой изменения свойств с соответствующим переломом самой кривой. Точка перелома кривой, соответствующая составу химического соединения, называется сингулярной точкой (рис. 3.18, г).

Понятие о диаграммах состояния тройных сплавов. Диаграммы состояния тройных сплавов представляют собой пространственные фигуры, в основании которых располагается равносторонний треутольник (рис. 3.19). Этот треугольник называется концентрационным. В вершинах концентрационного треугольника расположены компоненты тройных систем - компоненты А, В, С. На сторонах треутольника откладывают концентрации этих компонентов. Стороны треугольника $A B, B C, C A$ представляют собой концентрационные оси двойных систем А-B, В - С и С-А. Причем $A B=B C=C A=100 \%$.

Внутри треугольника каждая точка соответствует строго определенному составу тройных сплавов. В каждом тройном сплаве сумма

концентраций трех компонентов является постоянной величиной и равняется 100% (\% $\mathrm{A}+\% \mathrm{~B}+\% \mathrm{C}=100 \%$).

Схема определения концентрации тройного сплава по правилу трех отрезков (рис. 3.20) предложена Ю.А. Геллером. Для этого через точку O проводят линии (например, Op и Or), параллельные двум сторонам треугольника (например, $A C$ и $B C$) с выходом этих линий на третью сторону. Соответственно эта третья сторона (например, $A B$) разделится этими линиями на три части (например, на $A p, p r$ и $r B$). При этом длина среднего отрезка (например, pr) покажет содержание компонента, расположенного на противоположной к отрезку вершине (например, компонента С); длина нижнего отрезка (например, $A p$) покажет содержание компонента, расположенного на противоположном конце стороны $A B$ (например, компонента B); а длина верхнего отрезка (например, $r B$) пока-

Рис. 3.20. Схема определения концентрации сплава в равностороннем концентрационном треугольнике

жет содержание компонента также на противоположном конце $A B$ (например, компонента A).

Контрольные вопросы

1. Что такое сплав?
2. Дайте определение понятию «фаза».
3. В чем разница между фазой и структурной составляющей?
4. Каковы способы упрочнения металлов и сплавов?
5. Как компоненты могут взаимодействовать в сплаве?
6. Перечислите основные типы диаграмм состояния сплавов.
7. Как связаны между собой механическое свойства и тип диаграммы состояния сплава?
8. Как взаимодействуют между собой компоненты, образующие механическую смесь?
9. Сколько фаз существует в диаграмме состояния компонентов, образующих неограниченные твердые растворы?

ГЛАВА 4

ЖЕЛЕЗО И ЕГО СПЛАВЫ

4.1. Диаграмма состояния системы
 железо-углерод

Общие сведения. В 1868 г. Д.К. Чернов в работе «Критический обзор статей гr. Лаврова и Калакуцкого о стали и стальных орудиях и собственные исследования Д. К. Чернова по этому же предмету» указал на существование в стали критических точек, тем самым положив начало изучению диаграммы состояния железо - углерод.

Железо с углеродом образует ряд химических соединений: $\mathrm{Fe}_{3} \mathrm{C}$ $\mathrm{Fe}_{2} \mathrm{C}$ и др. Диаграмму состояния железо - углерод обычно изображают для соединения цементита $\mathrm{Fe}_{3} \mathrm{C}$, содержащего $6,67 \%$ углерода. Сплавы с более высоким содержанием утлерода очень хрупки и практического применения не имеют. Помимо цементита в системе железо - уллерод происходит образование графита.

Железо-цементит - метастабильная система. Цементит - термодинамически менее устойчивая фаза по сравнению с графитом, но кинетически образование цементита более вероятно. Поэтому диаграмму состояния железо - цементит называют метастабильной диаграммой, а диаграмму железо-графит - стабильной.

Компоненты и фазы в сплавах железа с утлеродом. Железо -серебристо-серый металл, принадлежащий к VIII группе Периодической системы, имеет атомную массу 55,85 , плотность $7,86 г / \mathrm{cm}^{3}$, температуру плавления $1536^{\circ} \mathrm{C}$. Чистое лабораторное железо содержит не более $0,0001 \%\left(10^{-4} \%\right)$ примесей, технически чистое - примерно $0,1 \ldots 0,15 \%$ примесей. Прочность технического железа невелика: $\sigma_{в}=250$ МПа при довольно высокой пластичности $\delta=50 \%, \psi=80 \%$.

Железо в твердом состоянии может находиться в двух полиморфных модификациях: ОЦК и ГЦК. Из схемы изменения свободной энергии (рис. 4.1) следует, что в интервале температур $911 \ldots 1392^{\circ} \mathrm{C}$ меньшую свободную энергию и бо́льшую стабильность имеет γ-железо с кристаллической ГЦК решеткой.

Ниже температуры $911^{\circ} \mathrm{C}$ и выше $1392^{\circ} \mathrm{C}$ устойчиво α-железо с ОЦК решеткой. Высокотемпературную модифи-

Рис. 4.1. Изменение свободной энергии F полиморфных модификаций железа с ОЦК и ГЦК структурами в зависимости от температуры t

Рис. 4.2. Кривая нагрева и охлаждения железа

кацию α-железа иногда называют δ-железом, хотя оно не представляет собой новой кристаллической фазы.

Кривая охлаждения железа фиксирует два полиморфных и одно магнитное превращение (рис. 4.2). При магнитном превращении температурная остановка при $768^{\circ} \mathrm{C}$ связана не с перестройхой кристаллической решетки и перекристаллизацией, а с внутриатомными изменениями внешних и внутренних электронных оболочек, которые и приводят к изменениям магнитных свойств.

Углерод принадлежит к IV группе Периодической системы. Углерод встречается в природе в виде двух основных модификаций: алмаза и графита. Атомная масса углерода 12, плотность графита 2,25 г/см ${ }^{3}$, температура плавления $3500^{\circ} \mathrm{C}$. Графит имеет гексагональную слоистую кристаллическую решетку. Графит мягкий материал и обладает низкой прочностью. Прочность графита с увеличением температуры аномально растет: при температуре $20^{\circ} \mathrm{C} \sigma_{\mathrm{B}}=20 \mathrm{M}$ а, при температуре $2500^{\circ} \mathrm{C}$ графит прочнее всех тугоплавких металлов.

Углерод образует с железом твердые растворы внедрения. Растворимость углерода в железе зависит от его кристаллической формы. Диаметр поры кристаллической ОЦК решетки значительно меньше, чем диаметр поры ГЦК решетки. Поэтому α-железо способно растворять углерод в очень малом количестве, а растворимость углерода в γ-железо существенно больше. Влияние малого размера октаэдрической поры в ОЦК решетке на низкую растворимость углерода усугубляется еще тем, что сама октаэдрическая пора несимметрична - она вытянута по одной оси вследствие воздействия на нее близлежащих атомов, в том числе в центре куба.

В системе железо - углерод возможно присутствие следующих фаз: жидкой фазы, твердых растворов на основе α-железа (феррита) и на основе γ-железа (аустенита), химического соединения $\mathrm{Fe}_{3} \mathrm{C}$ (цементита) и графита.

Феррит (Ф), являющийся твердым раствором внедрения утлерода в α-железе, обозначается Fe_{α}. При температуре $727^{\circ} \mathrm{C}$ наблюдается максимальная растворимость углерода в феррите, составляющая $0,02 \%$; при температуре $20^{\circ} \mathrm{C}$ в феррите растворяется примерно $0,006 \%$ углерода. Свойства феррита близки к свойствам чистого железа.

Аустенит (А) - твердый раствор внедрения углерода в γ-железе, обозначается Fe_{r}. При температуре $1147^{\circ} \mathrm{C}$ аустенит может содержать до $2,14 \%$ углерода, при $727^{\circ} \mathrm{C}-0,8 \%$ углерода.

В феррите и аустените могут растворяться многие легирующие элементы, образуя твердые растворы замещения и резко изменяя их свойства. Кроме того, легирование может значительно менять температуру границ существования этих фаз.

Цементит (L) - карбид железа $\mathrm{Fe}_{3} \mathrm{C}$, в котором содержится $6,67 \%$ уллерода. Температура плавления цементита $1252^{\circ} \mathrm{C}$. Цементит обладает высокой твердостью (примерно 800 HB), легко царапает стекло, очень хрупок, имеет почти нулевую пластичность, сложную ромбическую решетку с плотной упаковкой атомов. При нагреве цементит распадается.

Диаграмма состояния системы железо - цементит (метастабильное состояние). Диаграмма состояния железо - цементит ($\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$) приведена на рис. 4.3. Линия $A B C D$ - линия ликвидус, линия AHJECF - солидус. Точка A соответствует температуре плавления железа ($1536^{\circ} \mathrm{C}$), точка D - температуре плавления цементита $\left(1252^{\circ} \mathrm{C}\right.$). Точки N и G соответствуют температурам полиморфного превращения железа.

В системе $\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$ на разных ярусах происходят эвтектическое и эвтектоидное превращения. По линии $E C F$ при температуре $1147^{\circ} \mathrm{C}$ происходит эвтектическое превращение: $\mathbb{K}_{C} \rightleftarrows \mathrm{~A}_{E}+$ Ц $_{F}$ Образующаяся звтектика называется ледебуритом.

Ледебурит (Л) - механическая смесь аустенита и цементита, содержащая $4,3 \%$ углерода.

По линии PSK при температуре $727^{\circ} \mathrm{C}$ происходит эвтектоидное превращение: $\mathrm{A}_{S} \rightleftarrows \Phi_{P}+\mathrm{H}_{K}$, в результате которого из аустенита, содержащего $0,8 \%$ углерода, образуется механическая смесь феррита и цементита. Эвтектоидное превращение происходит аналогично кристаллизации звтектики, но не из жидкого, а из твердого раствора. Образующийся эвтектоид называется перлитом.

Перлит (П) - механическая смесь феррита и цементита, содержащая $0,8 \%$ углерода. Перлит состоит из пластинок цементита в ферритной основе, на травленом шлифе имеет блеск перламутра, отсюда и название - перлит. Зерно перлита состоит из парал-

Рис. 4.3. Диаграмма состояния системы железо-цементит:
А - аустенит; Ж - жидкий раствор; Л - ледебурит; П - перлит; Ф - феррит; Ц - цементит; $Ц_{\mathrm{F}}$, Ц $_{\mathrm{II}}$, ЦII - соответственно первичный, вторичный и третичный цементит

лельных пластинок цементита и феррита. Чем грубее и крупнее выделения цементита, тем хуже механические свойства перлита.

Аустенит, входящий в состав ледебурита, при температуре $727^{\circ} \mathrm{C}$ также испытывает эвтектоидное превращение. Поэтому ниже температуры $727^{\circ} \mathrm{C}$ ледебурит состоит из механической смеси перлита и цементита.

Часто пользуются более упрощенной диаграммой (без перитектики), так как все сплавы, содержащие до $2,14 \%$ углерода, после завершения кристаллизации имеют аустенитную структуру.

На рис. 4.4 приведены кривые охлаждения сплавов, содержащих менее 0,$02 ; 0,5 ; 0,8 ; 1,7 ; 3,5 ; 4,3 ; 5,5 \%$ углерода.

Сплав I, содержащий менее $0,02 \%$ углерода, фактически представляет собой технически чистое железо. Точка 1 (рис. 4.4, a) соответствует началу кристаллизации аустенита, точка 2 - окончанию кристаллизации. При охлаждении от точки 2 до точки 3 никаких превращений в образовавшемся аустените не происхо-

Рис. 4.4. Кривые охлаждения железоуглеродистых сплавов (I-VII) с разным содержанием углерода:
a-до $2,14 \% ; 6$ - свыше $2,14 \%$

дит. В точке 3 начинается, а в точке 4 заканчивается перестройка кристаллической решетки аустенита (ГЦК) в кристаллическую решетку феррита (ОЦК). При охлаждении в интервале температур 3-4 состав аустенита меняется по линии GS, а состав феррита - по линии $G P$. От точки 4 до точки 5 превращений не происходит, образовавшийся феррит просто охлаждается. Линия $P Q$ соответствует линии переменной растворимости. Ниже этой линии сплав пересыщен углеродом, происходит выделение избыточного углерода, образующего химическое соединение с железом, т.е. цементит. При охлаждении цементит выделяется непрерывно, и концентрация углерода в феррите уменьшается по линии $P Q$, составляя при комнатной температуре менее $0,006 \%$. Цементит, выделяющийся из феррита, называют третичным цементитом и обозначают ДII .

Сплав II содержит $0,5 \%$ углерода. Образование кристаллов аустенита происходит в интервале температур $1-2$. Состав аустенита изменяется по линии солидус $A E$, состав жидкой фазы по линии ликвидус $A C$ (см. рис. 4.3) В точке 2 (см. рис. 4.4, a) кристаллизация аустенита заканчивается, и от точки 2 до точки 3 структурных изменений в нем не происходит, аустенит просто охлаждается. В точке 3 начинается вьделение феррита из аустенита. Концентрация углерода в феррите изменяется по линии GP, а концентрация углерода в аустените - по линии GS. При охлаждении сплава до точки 4 состав аустенита будет соответствовать точке S, т.е. эвтектоидному составу

При температуре $727^{\circ} \mathrm{C}$ произойдет эвтектоидное превращение с образованием перлита $\mathrm{A}_{S} \rightarrow \Phi_{P}+$ Ц $_{K}$. При комнатной температуре структура сплава состоит из феррита и перлита.

Количество перлита в структуре увеличивается по мере роста содержания углерода в сплаве вплоть до концентрации $0,8 \%$.

Сплав III, содержащий $0,8 \%$ уплерода, по составу соответствует точке S. Аустенит сплава, образовавшийся между точками 1 и 2 , с такой концентрацией углерода не испытывает превращений при охлаждении до $727^{\circ} \mathrm{C}$, а при этой температуре весь аустенит превращается в перлит. При комнатной температуре структура сплава состоит из одного перлита.

Концентрация углерода в сплаве IV составляет более $0,8 \%$, но менее $2,14 \%$. До точки 3 превращения в этом сплаве такие же, как в сплавах II и III. При охлаждении в диапазоне температур между точками 3-4 из кристаллической решетки аустенита выделяется избыточный углерод с образованием вторичного цементита Ц ${ }_{\mathrm{II}}$. При этом содержание углерода в аустените изменяется по линии $E S$. На линии PSK (см. рис. 4.3) при температуре $727^{\circ} \mathrm{C}$ происходит эвтектоидное превращение, при котором аустенит преврашается в перлит. Поэтому при комнатной температуре структура сплава состоит из перлита и вторичного цементита.

Сплавы V, VI, VII (рис. 4.4, б) содержат более $2,14 \%$ углерода. Первичная кристаллизация таких сплавов завершается эвтектическим преврашением, в процессе которого из жидкого раствора, содержащего $4,3 \%$ углерода, образуется ледебурит - механическая смесь двух твердых фаз: аустенита и цементита.

В сплаве V кристаллизация начинается в точке 1 выделением аустенита из жидкого раствора и заканчивается в точке 2. При охлаждении в интервале температур между точками 1 и 2 состав аустенита изменяется по линии солидус, а концентрация углерода в жидкой фазе - по линии ликвидус. В точке 2 при температуре $1147^{\circ} \mathrm{C}$ состав жидкой фазы соответствует точке C, т.е. жидкая фаза имеет концентрацию углерода, равную $4,3 \%$. Количественное соотношение жидкой и твердой фаз в точке 2 определяется отношением отрезков $E 2$ и $2 C$. Длину отрезков можно измерять в миллиметрах или определять по

разности концентраций. Если соотношения отрезков умножить на 100, получим количество составляющих в процентах. При температуре $1147^{\circ} \mathrm{C}$ происходит звтектическое превращение $\boldsymbol{X}_{C} \rightarrow \mathrm{~A}_{S}+$ Ц $_{F}$ При дальнейшем охлаждении в интервале $2-3$ из аустенита, как структурно свободного, так и входящего в эвтектику (ледебурит), выделяется вторичный цементит. Состав аустенита изменяется по линии $E S$, т.е. от 2,14 до $0,8 \%$ углерода (см. рис. 4.4, a). В точке 3 происходит перлитное превращение аустенита, содержащего $0,8 \%$ углерода. Структура сплава V (см. рис. $4.4, б$) при комнатной температуре состоит из перлита и ледебурита. Вторичный цементит и цементит ледебурита сливаются и практически неразличимы.

В сплаве VI, содержащем $4,3 \%$ углерода, при эвтектической температуре вся жидкость превращается в ледебурит. При понижении температуры содержание углерода в аустените, входящем в ледебурит, понижается по линии $E S$ (см. рис. 4.4, a). При температуре $727^{\circ} \mathrm{C}$ происходит перлитное превращение аустенита.

В сплаве VII (см. рис. 4.4, б) кристаллизация начинается с образования кристаллов цементита. Такой цементит называют первичным. Первичный цементит выделяется из жидкости при охлаждении в интервале температур $1-2$. Состав жидкости при этом меняется по линии ликвидус и в точке 2 жидкость содержит $4,3 \%$ углерода. Количественное соотношение жидкой и твердой фаз в точке 2 определяется соотношением отрезков $F 2$ и $C 2$. При температуре $1147^{\circ} \mathrm{C}$ происходит эвтектическое превращение. Аустенит образовавшегося ледебурита при охлаждении испытывает превращения, рассмотренные ранее. При комнатной температуре структура сплава VII состоит из ледебурита и первичного цементита

На свойства сплавов большое влияние оказывает различие в размерах и расположении выделений цементита.

Первичный цементит Ц выделяется при высоких температурах непосредственно из жидкой фазы. Его кристаллы - крупные, т.е первичный цементит дает наиболее грубые выделения. Вторичный цементит Ц ІІ выделяется из аустенита при достаточно высоких температурах и высокой скорости диффузии. Поэтому вторичный цементит образуется в виде сетки по границам зерен. Третичный цементит ЦІІІ выделяется из феррита при сравнительно низких температурах, обычно внутри зерен в виде дисперсных включений. Эти включения увеличивают прочность феррита.

Сплавы системы $\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$ по структурному признаку подразделяют на две группы: углеродистые стали и белые чугуны.

Углеродистые стали содержат до $2,14 \%$ углерода и заканчивают кристаллизацию образованием аустенита. Белые чугуны содержат более $2,14 \%$ углерода и заканчивают кристаллизацию образованием эвтектики - ледебурита.

Структуры сталей и чуғунов с разным содержанием углерода приведены на рис. 4.5 и 4.6.

Рис. 4.5. Микроструктура сталей с разным содержанием углерода, увеличение в 200 раз: а $-0,1 \% ; 6-0,4 \% ; \varepsilon-0,8 \% ;$ г $-1,2 \%$

Отсутствие в структуре сталей хрупкой эвтектики (ледебурита) повышает их пластичность, что позволяет подвергать стали обработке давлением. Вместе с тем наличие в структуре чугунов легкоплавкого ледебурита повышает их литейные свойства.

По структуре углеродистые стали бывают доэвтектоидные ($\Phi+$ П), эвтектоидные (П) и заэвтектоидные ($П+$ Ц). Белые чугуны также делятся на доэвтектические (А + Л), эвтектические (Л) и заэвтектические ($\mathrm{I}+\mathrm{L}$).

Рис. 4.6. Микроструктура белых чугунов, увеличение в 200 раз:
a - доэвтектического, содержание углерода 3%; б - эвтектического, содержание углерода $4,3 \%$; в - заэвтектического, содержание утлерода 5%

Диаграмма состояния системы железо - графит (стабильное состояние). Диаграмма состояния системы железо - графит характеризует стабильное равновесие. Образование графита происходит в чугунах, содержащих значительное количество кремния. Углерод в виде графита выделяется непосредственно из жидкого расплава или аустенита либо за счет распада предварительно образовавшегося цементита.

Диаграмма состояния железо - графит ($\mathrm{Fe}-\mathrm{C}$) показана штриховыми линиями, нанесенными на диаграмму состояния железо - цементит, что позволяет сравнить обе диаграммы (рис. 4.7).

Кроме общих линий $A C, A E$ и $G S$, остальные линии обеих диаграмм не совпадают. Эвтектическая и эвтектоидная температуры диаграммы стабильного равновесия $\mathrm{Fe}-\mathrm{C}$ выше, чем соответствующие температуры метастабильной диаграммы $\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$. В системе $\mathrm{Fe}-\mathrm{C}$ графитная эвтектика (аустенит + графит), содержащая $4,26 \%$ углерода, образуется при температуре $1153^{\circ} \mathrm{C}$. По линии $E^{\prime} S^{\prime}$ в интервале температур 1153 ... $738^{\circ} \mathrm{C}$ выделяется вторичный графит.

Эвтектоидное превращение в системе Fe - C протекает при температуре $738^{\circ} \mathrm{C}$. Эвтектоид, состоящий из феррита и графита, содержит $0,7 \%$ углерода.

Пользование диаграммой состояния железо - графит принципиально не отличается от пользования диаграммой состояния железо - цементит. Вероятность образования метастабильного цементита из жидкой фазы или аустенита значительно выше, чем графита.

Рис. 4.7. Диаграмма состояния системы железо - графит:

[^0]

Рис. 4.8. Изменение свободной энергии F при графитизации чугуна:
$A+\Gamma \mathrm{p}, \mathbf{A}+\amalg, \boldsymbol{X}-$ соответственно аустенит + графит, аустенит + шементит, жидкий раствор

Любой процесс определяется термодинамическими и кинетическими условиями. Движущей силой процесса графитизации является стремление системы уменышить запас свободной энергии. Схема изменения свободной энергии жидкой фазы, смесей аустенита с цементитом и графитом при повышении температуры приведена на рис. 4.8. Из схемы видно, что цементит - термодинамически менее устойчивая фаза, чем графит. Однако разница между температурами T_{1} и T_{2} невелика, и при сравнительно небольшом переохлаждении будет происходить кристаллизация шементита, а не графита.

Кристаллические структуры аустенита и цементита меньше различаются, чем кристаллические структуры аустенита и графита. Учитывая, что графит полностью состоит из углерода, а цементит содержит его только $6,67 \%$, состав жидкой фазы и аустенита ближе к цементиту, чем к графиту. Поэтому образование цементита из жидкости или аустенита происходит кинетически значительно легче, чем графита.

Графит образуется только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. При ускоренном охлаждении и при переохлаждении жидкого чугуна ниже $1147^{\circ} \mathrm{C}$ происходит образование цементита.

4.2. Углеродистые стали

Общая характеристика. Сплавы железа с углеродом, содержащие до $2,14 \%$ углерода (точка E, см. рис. 4.3) при малом содержании других элементов, называют углеродистьми сталями. Углеродистые стали завершают кристаллизацию образованием аустенита. В их структуре нет эвтектики (ледебурита), благодаря чему они обладают высокой пластичностью, особенно при нагреве, и хорошо деформируются.

Углеродистые стали выплавляют в электропечах, мартеновских печах и кислородных конвертерах. Наилучшими свойствами обладает электросталь, более чистая по содержанию вредных примесей - серы и фосфора, а также газов и неметаллических включений. Электросталь используют для изготовления наиболее ответственных деталей.

По способу раскисления различают кипящие, полуспокойные и спокойные стали. При одинаковом содержании углерода кипящие,

полуспокойные и спокойные стали имеют близкие величины прочностных свойств и различаются значениями характеристик пластичности. Содержание кремния в спокойной стали составляет $0,15 \ldots 0,35 \%$, в полуспокойной $-0,05 \ldots 0,15$, в кипящей - до $0,05 \%$.

Для раскисления кипящей стали кремний и алюминий не применяют, ее раскисляют марганцем. Кипящая сталь имеет резко выраженную химическую неоднородность в слитке. Ее основным достоинством является высокий (более 95%) выход годного металла. Благодаря низкому содержанию кремния и углерода кипящие стали хорошо штампуются в холодном состоянии. Из-за повышенной концентрации кислорода кипящие стали имеют сравнительно высокий порог хладноломкости, их не рекомендуют применять для изделий северного исполнения. У полуспокойной стали, раскисляемой марганцем и в ковше алюминием, выход годного металла составляет $90 \ldots 95 \%$.

Спокойная сталь раскисляется кремнием, марганцем и алюминием. Выход годного металла слитков спокойной стали примерно 85%, но металл значительно более плотен и имеет более однородный химический состав.

Свойства углеродистых сталей зависят от содержания основного элемента - углерода, а также от содержания постоянных и скрытых примесей.

Влияние утлерода на свойства стали. Углерод является важнейшим элементом, определяюшим структуру и свойства утлеродистой стали. Даже малое изменение содержания углерода оказывает заметное влияние на свойства стали. С увеличением утлерода в структуре стали растет содержание цементита. При содержании до $0,8 \%$ углерода сталь состоит из феррита и перлита, при содержании более $0,8 \%$ углерода в структуре стали кроме перлита появляется структурно-свободный вторичный цементит.

Феррит имеет низкую прочность, но сравнительно пластичен. Цементит характеризуется высокой твердостью, но хрупок. Поэтому с ростом содержания углерода увеличиваются твердость и прочность и уменьшаются вязкость и пластичность стали (рис. 4.9).

Рост прочности происходит при содержании в стали до $0,8 . .1 \%$ углерода. При увеличении содержания углерода более 1% уменьшается не только пластичность, но и прочность стали. Это связано с образованием сетки хрупкого цементита вокруг перлитных зерен, легко разрушающейся при нагружении. По этой причине заэвтектоидные стали подвергают специальному отжигу, в результате которого получают структуру зернистого перлита.

Углерод оказывает существенное влияние на технологические свойства стали: свариваемость, обрабатываемость давлением и резанием. С увеличением содержания утлерода ухудшается свариваемость, способность деформироваться в горячем и особенно в холодном состоянии.

Рис. 4.9. Зависимость механических свойств стали от содержания углерода

Лучше всего обрабатываются резанием среднеуглеродистые стали, содержащие $0,3 \ldots 0,4 \%$ углерода. Низкоуглеродистые стали при механической обработке дают плохую поверхность и трудноудаляемую стружку. Высокоуглеродистые стали имеют повышенную твердость, что снижает стойкость инструмента.

Влиянне примесей на свойства стали. Постоянными примесями в углеродистых сталях являются марганец, кремний, сера, фосфор, а скрытыми - газы: кислород, азот, водород. Полезными примесями являются марганец и кремний. Их вводят в сталь в процессе выплавки для раскисления:

$$
\mathrm{FeO}+\mathrm{Mn} \rightarrow \mathrm{MnO}+\mathrm{Fe} ; 2 \mathrm{FeO}+\mathrm{Si} \rightarrow \mathrm{SiO}_{2}+2 \mathrm{Fe}
$$

В углеродистой стали содержится до $0,8 \%$ марганца. Марганец помимо раскисления в таком количестве полностью растворяется в феррите и упрочняет его, увеличивает прокаливаемость стали, а также уменьшает вредное влияние серы, связывая ее:

$$
\mathrm{FeS}+\mathrm{Mn} \rightarrow \mathrm{MnS}+\mathrm{Fe}
$$

В полностью раскисленной углеродистой стали содержится до $0,4 \%$ кремния. Кремний является полезной примесью, так как эффективно раскисляет сталь и, полностью растворяясь в феррите, способствует его упрочнению.

Вредными примесями в стали являются сера и фосфор. Основной источник серы в стали - исходное сырье (чугун). Сера снижает пластичность и вязкость стали, а также сообщает стали красноломкость при прокатке и ковке. Сера нерастворима в стали. С железом сера образует сульфид железа FeS , хорошо растворимый в металле. При малом содержании марганца благодаря высокой ликвации серы в стали может образовываться легкоплавкая эвтектика $\mathrm{Fe}-\mathrm{FeS}\left(t_{\mathrm{II}}=988^{\circ} \mathrm{C}\right)$. Эвтектика располагается по границам зерен.

При нагреве стальных заготовок до температуры горячей деформации включения эвтектики сообщают стали хрупкость, а при некоторых условиях могут даже плавиться и при деформировании образовывать надрывы и трещины. Марганец устраняет красноломкость, так как сульфиды марганца не образуют сетки по границам зерен и имеют температуру плавления примерно $1620^{\circ} \mathrm{C}$, что выше температуры горячей деформации. Вместе с тем сульфиды марганца, как и другие неметаллические включения, также снижают вязкость и пластичность, уменьшают усталостную прочность стали. Поэтому содержание серы в стали должно быть как можно меньше.

Повышенное (до $0,2 \%$) содержание серы допускается лишь в автоматньх сталях для изготовления крепежных деталей неответственного назначения. Сера улучшает обрабатываемость стали.

Основной источник фосфора - руды, из которых выплавляют исходный чугун. Фосфор является вредной примесью, способной в количестве до $1,2 \%$ растворяться в феррите. Фосфор, растворяясь в феррите, уменьшает его пластичность. Фосфор резко отличается от железа по типу кристаллической решетки, диаметру атомов и их строению. Поэтому фосфор располагается вблизи границ зерен и способствует их охрупчиванию, повышая температурный порог хладноломкости.

Скрытые примеси - кислород, азот, водород - присутствуют в стали либо в виде твердого раствора в феррите, либо в составе химических соединений (нитриды, оксиды), либо в свободном состоянии в порах металла. Кислород и азот малорастворимы в феррите, загрязняют сталь хрупкими неметаллическими включениями, что снижает вязкость и пластичность стали. Водород находится в твердом растворе и особенно сильно охрупчивает сталь. Повышенное содержание водорода, особенно в хромистых и хромоникелевых сталях, приводит к образованию внутренних трещин - флокенов.

Даже небольшие концентрации газов оказывают резко отрицательное влияние на свойства, ухудшая пластические и вязкие характеристики стали. Поэтому вакуумирование является важной операцией для улучшения свойств стали.

Кроме того, в углеродистых сталях присутствуют такие случайные примеси, как хром, никель, медь, наличие которых обусловлено загрязненностью шихты.

Классификация углеродистых сталей. Углеродистые стали классифицируют по структуре, способу производства и раскисления, по качеству.

По структуре различают доэвтектоидную сталь, содержащую до $0,8 \%$ углерода, структура которой состоит из феррита и перлита; эвтектоидную, содержащую примерно $0,8 \%$ углерода, структура которой состоит только из перлита; заэвтектоидную, содержа-

щую $0,8 \ldots 2,14 \%$ утлерода; ее структура состоит из зерен перлита, окаймленных сеткой цементита.

По способу производства различают стали, выплавляемые в электропечах, мартеновских печах и кислородно-конвертерным способом.

По способу раскисления различают кипящие, полуспокойные и спокойные стали

По качеству различают стали обыкновенного качества и качественные стали. Стали обыкновенного качества содержат не более $0,05 \%$ серы и не более $0,04 \%$ фосфора. Качественные стали содержат не более $0,04 \%$ серы (в случае инструментальных сталей до $0,03 \%$) и не более $0,035 \%$ фосфора, они менее загрязнены неметаллическими включениями и газами.

В особо ответственных случаях применяют стали, содержащие менее $0,02 \%$ серы и $0,03 \%$ фосфора. Поэтому при одинаковом содержании углерода качественные стали имеют более высокие пластичность и вязкость, особенно при низких температурах. Качественные стали предпочтительнее для изготовления изделий, эксплуатируемых при низких температурах, в частности в условиях Севера и Сибири.

Стали обыкновенного качества изготавливают по ГОСТ 380-94. Выплавка их обычно производится в крупных мартеновских печах и кислородных конвертерах. Обозначают их буквами Ст и цифрами от 0 до 6 , например: Ст0, Ст1, ..., Ст6. Буквы Ст означают «сталь», цифры - условный номер марки стали в зависимости от ее химического состава. В конце обозначения марки ставят буквы кп, пс, сп, которые указывают на способ раскисления: кп - кипящая, пс - полуспокойная, сп - спокойная.

Химический состав стали должен соответствовать нормам, указанным в табл. 4.1. Чем больше цифра условного номера стали, тем выше в ней содержание углерода. Содержание серы в стали всех марок, кроме Ст 0 , должно быть не более $0,05 \%$, фосфора - не более $0,04 \%$; в стали марки Ст 0 серы - не более $0,06 \%$, фосфора - не более $0,07 \%$.

Качественные углеродистые стали выплавляют в электропечах, кислородных конвертерах и мартеновских печах по ГОСТ 1050-88. Качественные стали поставляют по химическому составу и механическим свойствам (табл. 4.2).

К качественным сталям предъявляют более жесткие требования по содержанию вредных примесей (серы не более $0,04 \%$, фосфора не более $0,035 \%$). Для сталей марок 11 кп и 18 kn , применяемых для плакировки, содержание серы должно быть не более $0,035 \%$, фосфора не более $0,030 \%$.

Качественные углеродистые стали маркируют двузначными цифрами $05,10,15, \ldots, 60$, указывающими среднее содержание углерода в сотых долях процента.

Т а блица 4.1. Состав углеродистых сталей обыкновенного качества

Марка стали	Содержание, $\%$		
	С	Мn	Si
Ст0	Не более 0,23	-	-
Ст1кп	$0,06 \ldots 0,12$	$0,25 \ldots 0,5$	Не более 0,05
Ст1сп	$0,06 \ldots 0,12$	$0,25 \ldots 0,5$	$0,12 \ldots 0,3$
Ст2кп	$0,09 \ldots 0,15$	$0,25 \ldots 0,5$	0,07
Ст2сп	$0,09 \ldots 0,15$	$0,25 \ldots 0,5$	$0,12 \ldots 0,3$
Ст3кп	$0,14 \ldots 0,22$	$0,3 \ldots 0,6$	Не более 0,07
Ст3пс	$0,14 \ldots 0,22$	$0,4 \ldots 0,65$	$0,05 \ldots 0,17$
Ст3сп	$0,14 \ldots 0,22$	$0,4 \ldots 0,65$	$0,12 \ldots 0,3$
Ст4кп	$0,18 \ldots 0,27$	$0,4 \ldots 0,7$	Не более 0,07
Ст4сп	$0,18 \ldots 0,27$	$0,4 \ldots 0,7$	$0,12 \ldots 0,3$
Ст5пс	$0,28 \ldots 0,37$	$0,5 \ldots 0,8$	$0,05 \ldots 0,17$
Ст5сп	$0,28 \ldots 0,37$	$0,5 \ldots 0,8$	$0,15 \ldots 0,35$
Ст6пс	$0,38 \ldots 0,49$	$0,5 \ldots 0,8$	$0,05 \ldots 0,17$
Ст6сп	$0,38 \ldots 0,49$	$0,5 \ldots 0,8$	$0,15 \ldots 0,35$

При обозначении кипящей или полуспокойной стали в конце марки указывают степень раскисленности: кп, пс. Для спокойной стали степень раскисленности не указывают.

По содержанию углерода качественные углеродистые стали подразделяют на низкоуглеродистые (до $0,25 \%$ углерода), среднеуглеродистые ($0,3 \ldots 0,5 \%$ уллерода) и высокоуглеродистые конструкционные (до $0,65 \%$ углерода).

Для изделий ответственного назначения применяют высококачественные стали с еще более низким содержанием серы и фосфора. Необходимость обеспечения низкого содержания вредных примесей в высококачественных сталях дополнительно повышает стоимость и усложняет их производство. Поэтому обычно высококачественными сталями бывают не углеродистые, а легированные стали.

При обозначении высококачественных сталей в конце марки добавляется буква А, например сталь У10А.

Углеродистые стали, содержащие $0,7 \ldots 1,3 \%$ углерода, используют для изготовления ударного и режущего инструмента. Их маркируют У7, У13, где буква У означает углеродистую сталь, а цифра - содержание углерода в десятых долях процента.

Марка стали	Содержание, \%			Механические свойства, не менее				
	C	Mn	Cr , не более	$\sigma_{0,2}, \mathrm{M}$ Па	σ_{d}, МПа	8, \%	$\psi, \%$	KCU, Дж/ cm^{2}
08	0,05 ...0,12	0,35 ...0,65	0,1	196	320	33	60	-
10	0,07...0,14	0,35 ...0,65	0,15	205	330	31	55	-
15	0,12 ..0,19	0,35 ...0,65	0,25	225	370	27	55	-
20	0,17...0,24	0,35 ...0,65	0,25	245	410	25	55	-
25	0,22 $\ldots 0,3$	0,5 ...0,8	0,25	275	450	23	50	88
30	0,27...0,35	0,5 ...0,8	0,5	295	490	21	50	78
35	0,32 $\ldots 0,4$	0,5 ...0,8	0,25	315	530	20	45	69
40	0,37...0,45	0,5 ...0,8	0,25	335	570	19	45	59
45	0,42 ...0,5	0,5 ..0,8	0,25	355	600	16	40	49
50	0,47...0,55	0,5 ... 0,8	0,25	375	630	14	40	38
55	0,52...0,6	0,5 ...0,8	0,25	380	650	13	35	-
60	0,57...0,65	0,5 ...0,8	0,25	400	680	12.	35	-

2. Нормы ударной вязкости устанавливаются потребителем на термически обработанньх (закалка + отпуск) образцах.

4.3. Чугуны

Разновидности чугунов. Спилавы железа с углеродом, содержащие более $2,14 \%$ углерода, называются чугунами. В отличие от стали чугуны имеют более высокое содержание углерода, заканчивают кристаллизацию образованием эвтектики, обладают низкой способностью к пластической деформации и высокими литейными свойствами. Их технологические свойства обусловлены наличием эвтектики в структуре. Стоимость чугунов ниже стоимости стали.

Чугуны выплавляют в доменных печах, вагранках и электропечах.
Выплавляемые в доменных печах чугуны бывают передельными, специальными (ферросплавы) и литейными. Передельные и специальные чугуны используют для последующей выплавки стали и чугуна. В вагранках и электропечах переплавляют литейные чутуны. Около 20% всего выплавляемого чутуна используют для изготовления литья. В литейном чугуне обычно содержится не более 4% углерода. Кроме углерода обязательно присутствуют примеси серы, фосфора, марганца и кремния, причем в значительно болышем количестве, чем в углеродистой стали.

В зависимости от формы выделения углерода различают следующие виды чугунов.

1. Белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита $\mathrm{Fe}_{3} \mathrm{C}$. Чугун в изломе имеет белый цвет и характерный блеск.
2. Половинчатый чугун, в котором основное количество углерода (более $0,8 \%$) находится в виде цементита. Чугун имеет структуру перлита, ледебурита и пластинчатого графита.
3. Серый чугун, в котором весь углерод или его бо́льшая часть находится в свободном состоянии в виде пластинчатого графита, а содержание углерода в связанном состоянии в виде цементита составляет не более $0,8 \%$.
4. Чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой белого чугуна. Отбеленный слой получают в толстостенньх массивньх деталях при литье их в металлические формы. По мере удаления от поверхности вследствие уменьшения скорости охлаждения структура белого чугуна постепенно переходит в структуру серого. Чугун поверхностного слоя в микроструктуре содержит много твердого и хрупкого цементита, который хорошо сопротивляется изнашиванию. Поэтому чугуны с отбеленной поверхностью используют для деталей с высокой износостойкостью, для валков прокатных станов, мукомольных валов, вагонных колес с отбеленным ободом, лемехов плугов с отбеленным носком и лезвием. Отбел может достигаться путем местного увеличения скорости охлаждения за счет установки в литейную форму холодильников в виде металлических вставок.
5. Высокопрочные чугуны, в которых графит имеет шаровидную форму.
6. Ковкие чутуны, в которьх утлерод находится в виде хлопьевидного графита. Ковкие чугуны получают из белых чугунов путем отжига.

Процесс графитизации чугунов. Графитизацией называется процесс выделения графита при кристаллизации или охлаждении сплавов железа с углеродом. Графит может образовываться как из жидкой фазы при затвердевании чугуна, так и из твердой фазы.

Образование графита иллюстрирует диаграмма состояния системы железо- графит (см. рис. 4.7). Ниже линии $C^{\prime} D^{\prime}$ образуется первичный графит, по линии $E^{\prime} C^{\prime} F^{\prime}$ - эвтектический графит и по линии $P^{\prime} S^{\prime} K^{\prime}$ - эвтектоидный графит.

Графитизация чугуна зависит от ряда факторов. К ним относятся присутствие в чугуне центров графитизации, скорость охлаждения и химический состав чугуна.

Образование графита в затвердевшем чугуне знергетически маловероятно, так как рост свободной энергии при образовании новой межфазной поверхности больше, чем ее уменьшение при кристаллизации. Работа образования зародышей графита облегчается при наличии центров графитизации - различных мельчайших включений и примесей, взвешенных в жидкой фазе и аустените. Такие мельчайшие частицы могут состоять из оксидов $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, нитридов типа AIN или представлять собой нерастворившиеся частицы графита. Параметры кристаллической решетки центров графитизации должны быть близки к параметрам кристаллической решетки графита.

Влияние скорости охлаждения обусловлено тем, что графитизация чугуна является диффузионным процессом и протекает медленно. Значительная длительность процесса графитизации обусловлена необходимостью реализации нескольких стадий: образования центров графитизации в жидкой фазе или аустените, диффузии атомов углерода к центрам графитизации и роста выделений графита. При графитизации цементита добавляется необходимость предварительного распада $\mathrm{Fe}_{3} \mathrm{C}$ и растворения углерода в аустените. Чем медленнее охлаждение чугуна, тем большее развитие получает процесс графитизации.

В одной и той же отливке чугун может иметь различную структуру. В тонких частях отливки, где скорость кристаллизации и охлаждения выше, чугун имеет меньшую степень графитизации, чем в массивных. Быстрое охлаждение способствует получению белого чугуна, медленное - серого чугуна.

В некоторых случаях для достижении высокой твердости и сопротивления изнашиванию специально получают отбеленную зону в чугунной отливке. Для этого в литейную форму вставляют металлические холодильники, обеспечивающие высокую скорость за-

твердевания и охлаждения с образованием цементита. Так поступают при отливке чугунных лемехов, устанавливая холодильники в тех местах, где расположены лезвие и носок.

Из примесей, входящих в состав чугуна, наиболее сильное положительное влияние на графитизацию оказывает кремний. Содержание кремния в чугуне может составлять $0,5 \ldots .5 \%$. Меняя содержание кремния, можно получать чугуны, совершенно различные по структуре и свойствам. По приведенной на рис. 4.10 диаграмме можно прогнозировать структуру чугуна в зависимости от содержания углерода и кремния, а также толщины отливки.

Из других элементов, входящих в состав чугуна, наиболее важную роль играют марганец, сера и фосфор.

Марганец препятствует графитизации, увеличивая склонность чугуна к отбеливанию. Содержание марганца в чутуне обычно не превышает $0,5 \ldots 1 \%$.

Сера - вредная примесь в чугуне. Ее отбеливающее влияние в $5-6$ раз выше, чем марганца. Кроме того, сера снижает жидкотекучесть, способствует образованию газовых пузырей, увеличивает усадку и склонность к образованию трещин.

Роль примеси фосфора в чугуне существенно отличается от действия, которое он оказывает в стали. Хотя фосфор почти не влияет на графитизацию, он является полезной примесью, увеличивая жидкотекучесть серого чугуна за счет образования легкоплавкой $\left(950 \ldots 980^{\circ} \mathrm{C}\right)$ фосфидной эвтектики.

Обычно используют чугуны следующего химического состава, $\%: 3 \ldots 3,7 \mathrm{C} ; 1 \ldots 3 \mathrm{Si} ; 0,5 \ldots 1 \mathrm{Mn} ;$ менее 0,3 Р и $0,15 \mathrm{~S}$.

Рис. 4.10. Структурные диаграммы для чугунов:
a - влияние содержания углерода и кремния на структуру чугуна при толщине стенки отливки 50 мм; 6 - влияние скорости охлаждения (толщины стенки отливки) и суммарной концентрации углерода и кремния на структуру чугуна; I - белые чугуны; II - серые перлитные чугуны; III - серые ферритные чугуны

Иногда в чугун вводят легирующие элементы (Ni, Cr и др.), улучшая его свойства. В России имеются Орско-Халиловское и Елизаветинское рудные месторождения, дающие природнолегированные чугуны, содержащие, \%: до $3 \mathrm{Cr} ; 1 \mathrm{Ni} ; 0,2 \mathrm{Ti}$ или 0,2 V.

Таким образом, основными факторами, определяющими степень графитизации чугуна, являются содержание углерода, кремния и скорость охлаждения. Регулируя химический состав и скорость охлаждения в соответствии с диаграммой рис. 4.10 , 6 , можно получить в отливке нужную структуру чугуна.

Микроструктура п свойства чугуна. Микроструктура чугуна состоит из металлической основы и графитных включений. Свойства чугуна зависят от свойств металлической основы и характера включений графита.

Металлическая основа может быть перлитной, когда $0,8 \%$ углерода находится в виде цементита, а остальной углерод - в виде графита; ферритно-перлитной, когда количество углерода в виде цементита менее $0,8 \%$, и ферритной. Структура металлической основы определяет твердость чугуна.

В табл. 4.3 обобщена классификация чугунов по строению металлической основы и форме феррита.

Табли ца 4.3. Классификация чугунов по строению металлической основы и форме феррита

Рис. 4.11. Различные формы графита в чугуне:
a - пластинчатый (серый чугун); б - хлольевидный (ковкий чугун); ε - шаровидный (высокопрочный чугун)

Графит чугуна бывает пластинчатым (серый чугун), хлопьевидным (ковкий чугун) и шаровидным (высокопрочный чутун).

Микроструктура чугунов показана на рис. 4.11-4.14. По сравнению с металлической основой графит имеет низкую прочность, поэтому места его залегания можно считать нарушениями сплошности. Таким образом, чугун можно рассматривать как сталь, пронизанную включениями графита, ослабляющими его металлическую основу.

Серый чугун имеет низкие характеристики механических свойств ($\sigma_{\mathrm{B}}, \delta, \psi$) при испытаниях на растяжение. Включения графита играют роль концентраторов напряжений, поэтому работа удара близка к нулю. Вместе с тем твердость и прочность при испытаниях на сжатие, зависящие от свойств металиической основы, у чутуна достаточно высоки.

Однако серый чугун с пластинчатой формой графита имеет и достоинства. Серый чугун позволяет получать дешевое литье, так как при низкой стоимости обладает хорошей жидкотекучестью и

Рис. 4.12. Микроструктура серых чугунов на ферритной (a), ферритноперлитной (б) и перлитной (в) основах, увеличение в 200 раз

Рис. 4.13. Микроструктура ковких чутунов на ферритной (a), ферритноперлитной (б) и перлитной (в) основах, увеличение в 200 раз

малой усадкой. Включения графита делают стружку ломкой, поэтому чугун легко обрабатывается резанием. Благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами. Чугун имеет высокие демпфирующие свойства, хорошо гасит вибрации и резонансные колебания.

Серый чугун маркируется буквами СЧ и цифрами, характеризующими величину временного сопротивления при испытаниях на растяжение. Марки и механические свойства серых чугунов (ГОСТ 1412-85), их химический состав приведены в табл. 4.4.

По мере округления графитньх включений их отрицательная роль как надрезов металлической основы снижается, и механические свойства чугуна растут. Округленная форма графита достигается модифицированием. Модификаторами чугуна являются SiCa , $\mathrm{FeSi}, \mathrm{Al}, \mathrm{Mg}$.

При использовании в качестве модификатора магния, вводимого перед разливкой в количестве до $0,5 \%$, получают высокопрочный чугун с шаровидной формой включений графита. Магний обычно вводят в автоклавах. Действие магния объясняют увеличе-

Рис. 4.14. Микроструктура высокопрочных чутунов на ферритной (a) и ферритно-перлитной (6) основах, увеличение в 200 раз

Табли ца 4.4. Механические свойства и химический состав серьх чугунов

Марка чугуна	σ_{s},МПа, не менее	Твердость НВ, не более	Содержание, \%				
			C	Si	Mn	P	S
						не более	
C410	100	190	3,5...3,7	2,2 ...2,6	0,5 .. 0,8	0,3	0,15
C415	150	210	3,5 .. 3,7	2...2,4	0,5 ... 0,8	0,2	0,15
CY20	200	230	3,3...3,5	1,4...2,4	0,7...1	0,2	0,15
C425	250	245	3,2...3,4	1,4...2,4	0,7...1	0,2	0,15
Cप30	300	260	3...3,2	1,3...1,9	0,7... 1	0,2	0,12
Сप35	350	275	2,9 .. 3	1,2 ...1,5	0,7...1,1	0,2	0,12

нием поверхностного натяжения графита и образованием микропузырьков пара, в которые диффундирует углерод.

Маркируется высокопрочный чугун буквами ВЧ и цифрами, характеризующими величину временного сопротивления, например ВЧ 35.

Механические свойства некоторых высокопрочных чугунов (ГОСТ 7293-85) приведены в табл. 4.5. Из высокопрочных чугунов изготавливают ответственные детали: зубчатые колеса, коленчатые валы.

Название ковкие чугуны условно, изделия из них получают литьем, и пластической деформации они не подвергаются. Ковкий чугун получают из белого путем графитизирующего отжига (рис. 4.15). Графит в ковком чугуне имеет форму хлопьев. Состав ковкого чугуна довольно стабилен, \%: $2,2 \ldots 3 \mathrm{C} ; 0,7 \ldots 1,5 \mathrm{Si} ; 0,2 \ldots 0,6 \mathrm{Mn} ; 0,2 \mathrm{P}$;

Таблица 4.5. Механические свойства высокопрочньх чугунов

Марка чугуна	σ_{a}, МПа	$\sigma_{0,2}$, МПа	$\delta, \%$	Твердость НВ
	не менее			
ВЧ 35	350	220	22	$140 \ldots 170$
ВЧ 40	500	250	15	$140 \ldots 202$
ВЧ 45	450	310	10	$140 \ldots 225$
ВЧ 50	500	320	7	$153 \ldots 345$
ВЧ 60	600	370	3	$192 \ldots 277$
ВЧ 70	700	420	2	$228 \ldots 302$
ВЧ 80	800	480	2	$248 \ldots 351$
ВЧ 100	1000	700	2	$270 \ldots 360$

Рис. 4.15. Схема отжига белого чугуна на ковкий чугун
$0,1 \mathrm{~S}$. Из-за низкого содержания углерода ковкий чутун обычно вышлавляют не в вагранке, а в электропечи. После заполнения форм отливки быстро охлаждают и получают структуру белого чугуна.

Затем отливки подвергают длительному отжигу (до 2 сут) - томлению, предохраняя их от окисления печными газами засыпкой песком и др. В результате отжига структура состоит из зерен феррита или перлита и хлопьев графита. Излом чугуна, структура которого состоит из феррита и графита, темный. Такой ковкий чугун называют черносердечным, так как он содержит сравнительно много графита.

Если в области эвтектоидного превращения проводить более быстрое охлаждение, в структуре чугуна сохранится перлит. Такой чугун называют перлитным ковким чугуном или светлосердечным. В его структуре содержится меньше графита, чем в ферритном ковком чутуне.

Ковкий чугун маркируют буквами КЧ и цифрами временного сопротивления и относительного удлинения, например КЧ 35-10.

В табл. 4.6 приведены марки, механические свойства и химический состав некоторых ковких чугунов (ГОСТ 1215-79).

Отливки из ковких чугунов применяют для деталей, работающих при ударных и вибрационных нагрузках (картеры, редукторы, фланцы, муфты).

Наряду с шаровидным графитом высокопрочные чугуны могут содержать графит вермикулярной формы (от лат. vermi-culus - червячок). Такой графит имеет форму изогнутых лепестков, размеры которых меньше по сравнению с частицами пластинчатого графи-

Т абл и ц а 4.6. Механические свойства и химический состав ковких чутунов

Марка чугуна	$\begin{array}{\|c\|c} \hline \begin{array}{c} \sigma_{0} \\ \text { MПа } \end{array} & \begin{array}{l} \delta, \\ \% \end{array} \\ \hline \text { не менее } \end{array}$		$\begin{gathered} \text { Твердость } \\ \text { НB } \end{gathered}$	Содержание, \%					
			C	Si	Mn	P	S		
			не более						
Ферритные чугуны									
KY 33-8	323	8		100... 163	2,6... 2,9	$1 . . .1,6$	0,4 ...0,6	0,18	0,2
КЧ 37-12	362	12	110... 163	2,4... 2,7	1,2...1,4	0,2...0,4	0,12	0,06	
Перлитные чугуны									
KY 55-4	539	4	192... 241	2,5 ...2,8	1,1... 1,3	0,3... 1	1,1	0,2	
KY 65-3	637	3	212... 269	2,4 ...2,7	1,2... 1,4	0,3... 1	0,1	0,06	

та серого чугуна. Получение вермикулярной формы графита, как и в случае чугуна с шаровидным графитом, осуществляется путем обработки исходного жидкого расплава с помощью специальных комплексных лигатур, содержащих примерно 5% магния и малые добавки церия и титана.

В соответствии с ГОСТ $28394-89$ выпускают четыре марки чугунов с вермикулярным графитом: ЧВГ $30 ; 35 ; 40 ; 45$. Марка чугуна определяется временным сопротивлением разрыву при растяжении $\sigma_{\text {в }}$ и условным пределом текучести $\sigma_{0,2}$. Обозначение марки включает в себя буквы Ч - чутун, ВГ - форма графита (вермикулярный графит); цифры $30 ; 35 ; 40 ; 45$ - уменьшенное в 10 раз минимальное значение временного сопротивления в МПа.

Чугун ЧВГ 30 имеет ферритную металлическую основу, ЧВГ 35 и ЧВГ 40 - ферритно-перлитную, а ЧВГ 45 - преимущественно перлитную. По физико-механическим свойствам и износостойкости чугун с вермикулярным графитом является переходной формой

Т аб лица 4.7. Марки н свойства легированных чугунов

Марка чугуна	Свойства
पХ1, ЧХ2, पХ3	Обладают повышенной коррозионной стойкостью в газовой, воздушной и щелочной среде в условиях трения и износа, жаростойкие в воздушной среде, выдерживают температуру $500 \ldots 700^{\circ} \mathrm{C}$; предназначены для изготовления деталей металтургического производства, кокилей стеклоформ, деталей химического оборудования и др.
$\begin{aligned} & \text { ЧХ } 3 \mathrm{~T}, ~ Ч Х 9 \mathrm{H} 5, \\ & \text { ЧХ22, ЧХ16M2, } \\ & \text { ЧХ28Д2 } \end{aligned}$	Обладают повышенной стойкостью против абразивного изнашивания и истирания
4X22C	Характеризуется повышенной коррозионной стойкостью при температуре $1000^{\circ} \mathrm{C}$
ЧС13, ЧС15, ЧС17, ЧС15МА, ЧС17М3	Устойчивы к воздействию концентрированных и разбавленных кислот, растворов щелочей, солей
ЧГ6СЗШ, ЧГ7X4	Обладают высокой стойкостью в абразивной среде
ЧГ8Д3	Немагнитный, износостойкий
ЧНХТ, ЧНХМД, ЧН2X, ЧНМШ	Обладают высокими механическими свойствами, хорошо сопротивляются изнашиванию и коррозии
ЧН15Д3Ш, ЧН15Д7, ЧН19Х3Ш, ЧН11Г7Ш, ЧН20Д2Ш	Обладают высокими механическими свойствами, высокой коррозионной и эрозионной стойкостью в щелочах, слабых растворах кислот, в морской воде. Чугун ЧН20Д2Ш может быть пластически деформирован в холодном состоянии

от чугунов с пластинчатым к высокопрочным чугунам с шаровидным графитом.

Легированнье чутуны. Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-2008. Марки легированных чугунов и их свойства приведены в табл. 4.7. Обозначения легирующих элементов и их концентрации соответствуют маркировке легированных сталей. Для обеспечения необходимых свойств и структуры легированные чугуны подвергают термической обработке.

Важным свойством легированных чугунов является сопротивление изнашиванию.

Контрольные вопросы

1. Какие сплавы называют сталями?
2. Что такое примеси в сплаве? Какие вредные примеси входят в состав сталей?
3. Как принято классифицировать стали по назначению?
4. Какое влияние оказывает содержание углерода на механические свойства стали: прочность, пшастичность, твердость?
5. Почему в структуре заэвтектоидных сталей нежелательно наличие цементитной сетки?
6. Какие сплавы называют чутунами?
7. Как различаются между собой серый, ковкий и высокопрочный чугуны?
8. Как влияет форма графита на твердость чугунов?

ГЛАВА 5
ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ

5.1. Основы теории термической обработки

Общие сведения. Термической обработкой называется технологический процесс, состоящий из совокупности операций нагрева, выдержки и охлаждения изделий из металлов и сплавов, целью которого является изменение их структуры и свойств в заданном направлении.

Термическая обработка является одним из наиболее распространенных в современной технике способов получения заданных свойств металлов и сплавов. Термическая обработка применяется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием и др., либо как окончательная операция для придания металлу или сплаву такого комплекса механических, физических и химических свойств, который смог бы обеспечить заданные эксплуатационные характеристики изделия. Чем ответственнее изделие (конструкция), тем, как правило, в ней больше термически обработанных деталей.

Поскольку основными факторами любого вида термической обработки являются температура и время, любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени (рис. 5.1). Постоянная скорость нагрева или охлаждения изображается на графике прямой линией с определенным углом наклона, при этом угол наклона характериэует скорость нагрева или охлаждения (соответственно α, β). Обцая длительность термической обработки металла складывается из времени τ_{1} собственно нагрева до заданной температуры t_{2}, времени выдержки при этой температуре $\tau_{1}-\tau_{2}$ и времени охлаждения до комнатной температуры $t_{0} \tau_{2}-\tau_{3}, \tau_{3}-\tau_{4}, \tau_{4}-\tau_{5}$.

В результате термической обработки в сплавах происходят структурные изменения. После термической обработки металлы и сплавы могут находиться в равновесном (стабильном) и неравновесном (метастабильном) состоянии. При охлаждении деталей (изделий) вместе с печью в них практически полностью проходят процессы вторичной кристаллизации и связанные с ними диффузионные пре-

Рис. 5.1. График термической обработки сплавов

врашения в металле или сплаве. В результате металл оказывается в состоянии, близком к равновесному (стабильному). При охлаждении на воздухе в металле происходят превращения, близкие к равновесным. При быстром охлаждении (например, в масле, воде) в металле не успевают проходить диффузионные процессы и связанные с ними превращения, поэтому он оказывается в неравновесном (частично неравновесном) состоянии.

Классификация видов термической обработкн стали. Современная классификация видов термической обработки, определяемая типом фазовых и структурньх изменений в металле, разработана А. А. Бочваром и охватывает все многочисленные разновидности термической обработки черных и цветных металлов и сплавов (рис. 5.2).

Виды термической обработки подразделяются на три группы: собственно термическую, термомеханическую и химико-термическую. Собственно термическая обработка (ТО) предусматривает только термическое воздействие на металл или сплав; термомеханическая (ТМО) - сочетание термического воздействия и пластической деформации; химико-термическая (ХТО) - сочетание термического и химического воздействия

Собственно термическая обработка включает в себя отжиг I рода, отжиг II рода, закалку без полиморфного превращения, закалку с полиморфным превращением, отпуск и старение. Эти виды термической обработки применяются и к сталям, и к цветным металлам, и к сплавам.

Термомеханическая обработка подразделяется на ТМО стареющих сплавов и ТМО сталей, закаливаемых на мартенсит. Термомеханическая обработка стареющих сплавов включает в себя следующие разновидности: низкотемпературную термомеханическую обработку (НТМО); высокотемпературную термомеханическую обработку (ВТМО); предварительную термомеханическую обработку (ПТМО) и комбинацию ВТМО и НТМО - высоконизкотемпературную термомеханическую обработку (BHTMO)

Термомеханическая обработка сталей, закаливаемых на мартенсит, включает в себя следующие разновидности: низкотемпературную термомеханическую обработку (HTMO); высокотемпературную термомеханическую обработку (BTMO); высокотемпературную термомеханическую изотермическую обработку (ВТМИзО); термомеханическую обработку с деформацией во время перлитного превращения (ТМИзО) и предварительную термомеханическую обработку (ПТМО).

Виды ХТО подразделяются на три следующие подгруппы: диффузионное насыщение неметаллами; диффузионное насыщение металлами; диффузионное удаление элементов.

Диффузионное насыщение неметаллами включает в себя следующие основные разновидности: цементация, азотирование, цианирование (нитроцементация), борирование и оксидирование.

Рис. 5.2. Классификация основных видов термической обработки сталей и сплавов

Диффузионное насыщение металлами включает в себя алитирование, хромирование, силицирование, насьщцение другими металлами. Диффузионное удаление элементов - это обезводороживание и обезуглероживание.

Термическая обработка, заключающаяся в нагреве металла, находящегося в результате каких-либо предшествующих воздействий

в неравновесном состоянии, и приводящая его в более близкое к равновесному состояние, называется отжигом. Охлаждение после отжига производится вместе с печью.

Нагрев при отжиге может производиться ниже и выше температур фазовых превращений в зависимости от целей отжига.

Термическая обработка, заключающаяся в нагреве металла выше температур фазовых превращений с последующим быстрым охлаждением для получения структурно неравновесного состояния, называется закалкой с полиморфным преврацением.

Этот вид закалки характерен для сплавов железа с углеродом (стали). После закалки в стали образуется структура пересыщенного твердого раствора углерода в α-железе, которая называется мартенситом.

Состояние закаленного сплава характеризуется особой неустойчивостью. Процессы, приближающие сплав к равновесному состоянию, могут протекать даже при комнатной температуре и резко ускоряются при нагреве.

Термическая обработка, представляюшая собой нагрев закаленного сплава ниже температур фазовых превращений (ниже точки $A_{c 1}$) для приближения его структуры к более устойчивому состоянию, называется отпуском. Отпуск является операцией, проводимой после закалки стали (закалки с полиморфным превращением).

Между отпуском и отжигом I рода много общего. Разница в том, что отпуск - всегда вторичная операция после закалхи.

Самопроизвольный отпуск, происходящий после закалки без полиморфного превращения в результате длительной выдержки при комнатной температуре, или отпуск при сравнительно небольшом подогреве называется старением.

При рассмотрении разных видов термической обработки железоуглеродистых сплавов (стали, чугуны) используют следующие условные обозначения критических точек этих сплавов (рис. 5.3).

Рис. 5.3. Обозначение критических точек стали:
А - аустенит; II - перлит; Φ - феррит; Ц コ - вторичный цементит

Критические точки A_{1} расположены на линии $\operatorname{PSK}\left(727^{\circ} \mathrm{C}\right)$, критические точки A_{2} - на линии $M O\left(768^{\circ} \mathrm{C}\right)$, критические точки A_{3} - на линии $G S$, критические точки $A_{c m}$ - на линии $S E$.

Вследствие теплового гистерезиса превращения при нагреве и охлаждении проходят при разных температурах. Поэтому для обозначения критических точек при нагреве и охлаждении используются дополнительные индексы: букву $с$ в случае нагрева и r в случае охлаждения, напоример $A_{c 1}, A_{c 3}, A_{r 1}, A_{r 3}$.

Превращения в стали нри нагреве. Образованпе аустеннта. При нагреве стали выше критических точек с образованием аустенита исходной структурой чаще всего является смесь феррита и цементита - перлит. Превращение перлита в аустенит в точном соответствии с диаграммой железо - углерод происходит лишь при очень медленном нагреве. В реальных условиях нагрева при термической обработке превращение перлита в аустенит запаздывает и имеет место перегрев. Скорость превращения зависит от степени перегрева. Чем выше температура, тем больше степень перегрева и тем быстрее идет превращение. Кинетику превращения можно проследить на диаграмме изотермического превращения перлита в аустенит эвтектоидной стали (рис. 5.4).

При достаточно высокой температуре из-за большой подвижности атомов превращение протекает практически мгновенно, поэтому кривые начала и конща превращения сливаются и попадают на ось ординат. При очень малом перегреве над линией A_{1} превращение протекает очень медленно (практически бесконечно). В этом случае кривые начала и конца превращения также сливаются и асимптотически приближаются к линии A_{1}. Совпадение кривых начала и конца превращения в одной точке соответствует равновесному превращению по диаграмме железо - углерод.

Зародыши новой фазы - аустенита - образуются на межфазных поверхностях раздела феррита и цементита. Переход перлита в аустенит состоит из двух элементарных процессов: полиморфного

Рис. 5.4. Диаграмма изотермического превращения перлита в аустенит эвтектоидной стали:
$a^{\prime}, a^{\prime \prime}$ - точки начала превращения со скоростями $\nu_{1}, v_{2} ; b^{\prime}, b^{\prime \prime}$ - точки конца преврашения со скоростями $v_{1}, v_{2}\left(v_{1} \gg v_{2}\right)$

превращения $\mathrm{Fe}_{\alpha} \rightarrow \mathrm{Fe}_{\gamma}$ и растворения в γ-железе углерода цементита. Растворение цементита запаздывает по сравнению с полиморфным превращением. Поэтому после превращения феррита в аустенит необходимо дополнительное время для устранения неоднородности аустенита - период гомогенизации аустенита.

Скорость образования аустенита зависит от разности свободных энергий аустенита и перлита и скорости диффузии атомов углерода, необходимых для образования гомогенного аустенита.

В доэвтектоидных и заэвтектоидных сталях образование аустенита при нагреве протекает по другой схеме.

В доэвтектоидных сталях выше линии A_{1} структура состоит из аустенита и феррита, а в заэвтектоидных - из аустенита и цементита. По мере нагрева до температуры точки $A_{c 3}\left(A_{c m}\right)$ происходит постепенное растворение свободного феррита или цементита в аустените. Однофазную структуру аустенита доэвтектоидные и заэвтектоидные стали приобретают только после нагрева выше температуры точки $A_{c 3}\left(A_{c m}\right)$.

Размер аустенитного зерна - важнейшая структурная характеристика нагретой стали. От размера зерна аустенита зависит поведение стали в различных процессах ТМО и механические свойства изделия. Особенно чувствительна к размеру аустенитного зерна ударная вязкость, которая заметно падает с укрупнением зерна.

На сильно развитой ферритно-цементитной поверхности раздела стали при нагреве выше температуры точки $A_{c 1}\left(A_{c 3}, A_{c m}\right)$ образуется большое число центров превращения - зародышей аустенита, и к концу превращения аустенитные зерна получаются мелкими. Такие зерна называются начальными зернами. При дальнейшем нагреве эти зерна аустенита растут, причем разные стали характеризуются различной склонностью к росту зерна. По склонности к росту зерна аустенита при нагреве различают наследственно мелкозернистые и наследственно крупнозернистые стали. В наследственно крупнозернистых сталях размер зерен быстро увеличивается даже при небольшом перегреве выше температуры точки $A_{c 1}\left(A_{c 3}, A_{c m}\right.$), а в наследственно мелкозернистых сталях даже при значительном перегреве сохраняется относительно мелкое зерно (рис. 5.5).

С одной стороны, склонность к росту зерна стали зависит от содержания в ней легирующих элементов - почти все легирующие элементы (за исключением марганца) тормозят рост аустенитного зерна. Наиболее сильно тормозят рост аустенитного зерна ванадий, титан, алюминий и цирконий. Хорошо тормозят рост зерна аустенита вольфрам, молибден и хром, слабо действуют никель и кремний. Основной причиной такого действия легирующих элементов считается образование трудно растворимых в аустените карбидов и оксидов, которые являются барьерами для растущего зерна.

Рис. 5.5. Схема изменения размера зерна в зависимости от температуры нагрева стали

С другой стороны, склонность к росту зерна стали сильно зависит от ее металлургического качества, технологии производства и режима раскисления, так как они определяют наличие в стали разного количества мельчайших примесей карбидов, оксидов, сульфидов и нитридов, также затрудняющих рост зерна.

Для определения склонности стали к росту зерна используется стандартная методика, которая заключается в следующем. Доэвтектоидную сталь цементуют при температуре $930^{\circ} \mathrm{C}$ в течение 8 ч с последующим медленным охлаждением. Размер зерна определяется по карбидной сетке, окаймляющей границы аустенитных зерен. Заэвтектоидную сталь нагревают до температуры $930^{\circ} \mathrm{C}$ и после выдержки в течение 3 ч медленно охлаждают. Размер зерна определяется по сетке вторичных карбидов, выделяющихся по границам аустенитных кристаллов. Другой метод состоит в окислительном нагреве шлифа в течение 3 ч при температуре $930^{\circ} \mathrm{C}$. Границы зерен аустенита выявляются сеткой оксидов.

От склонности к росту зерна зависит технологический процесс горячей деформации и термической обработки. Наследственно мелкозернистые стали имеют больший интервал закалочных температур; их прокатка и ковка могут начинаться при более высоких температурах.

При нагреве стали до достаточно высокой температуры - на $100 \ldots 150^{\circ} \mathrm{C}$ выше температуры точки $A_{c 1}\left(A_{c 3}, A_{c m}\right)$ - наследственно мелкозернистая сталь может иметь даже более крупное зерно аустенита, чем наследственно крупнозернистая сталь имеет при нагреве до температуры $930^{\circ} \mathrm{C}$. Поэтому введено понятие размер действительного зерна - величина зерна при комнатной темпера-

туре, полученная в результате той или иной термической обработки. Размер действительного зерна обычно тем больше, чем больше размер исходного зерна аустенита.

Нагрев стали до температур значительно выше температуры точки $A_{c 3}$ приводит к перегреву металла, вследствие чего образуется крупное действительное зерно. Перегрев может быть исправлен повторным нагревом до более низкой температуры. Если нагрев проводится при температуре выше температуры перегрева и металл длительное время находится при этой температуре в окислительной атмосфере печи, может возникнуть неисправимый дефект - пережог стали. Пережог сопровождается окислением и частичным оплавлением границ зерен и характеризуется камневидным изломом.

Величина действительного зерна стали оказывает наибольшее влияние на ударную вязкость, особенно при низких температурах.

Величину зерна определяют по ГОСТ 5639-82 сравнением микроструктуры стали при увеличении в 100 раз с эталонными шкалами (см. рис. 2.11).

Размер зерна оценивают баллами. Балл зерна прямо пропорционален числу зерен, помещающихся на 1 мм 2 шлифа, и обратно пропорционален среднему диаметру зерна. Условно принято считать, что стали с размером зерна от 1 до 5 баллов относятся к крупнозернистым сталям, а с более высоким баллом зерна (от 6 до 10) - к мелкозернистым.

Диффузнонные превращения аустенита при охлаждении стали. Диаграмма изотермического преөрацения аустенита. Основное превращение, протекающее во время охлаждения при отжиге эвтектоидной стали, - это распад аустенита при температуре ниже точки $A_{1}\left(727^{\circ} \mathrm{C}\right)$ на смесь феррита с цементитом. При скорости охлаждения стали, обеспечивающей полное протекание диффузионных процессов и соответственно близкое к равновесному состояние стали, в структуре последней согласно диаграмме железо углерод образуется перлит.

В соответствии с общими закономерностями фазовых превращений в твердом состоянии процесс диффузионного превращения аустенита в перлит определяется разностью свободных энергий аустенита и продуктов его распада $\Phi+Ц_{\mathrm{II}}$, а кинетика превращения - числом центров образования перлита и интенсивностью роста этих центров.

Кинетика эвтектоидного превращения аустенита в перлит изображается С-образными кривыми на диаграмме изотермического превращения аустенита, которые строят следующим образом. Нагретые до температуры на $30 \ldots 50^{\circ} \mathrm{C}$ выше температуры точки $\boldsymbol{A}_{c 1}$ образцы, имеющие структуру однородного аустенита, переносят в термостаты с заданной температурой. Учитывая, что аустенит парамагнитен, а механическая смесь феррита и цементита обладает

ферромагнитными свойствами, наблюдения за изменениями магнитных характеристик образцов позволяют оценить кинетику превращений аустенита в перлит при различных температурах.

На рис. 5.6 приведены кинетические кривые изотермического распада аустенита, полученные для различных значений температуры: $t_{1}>t_{2}>t_{3}>t_{4}>t_{5}>t_{6}$. Характер кривых показывает, что сначала процесс распада идет медленно, затем скорость его растет и при образовании 50% продуктов превращения достигает максимума, а по мере снижения количества оставшегося аустенита процесс постепенно затухает. Точки $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ соответствуют началу, точки $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$ - концу превращений (рис. $5.6, a$).

Преобразуя координаты, по полученным опытным кинетическим кривым строят диаграммы изотермического превращения аустенита. Для этого на горизонтальные пунктирные линии температур изотермических выдержек $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}$ наносят точки начала (a) и конца (b) превращений. Тогда кривая $a_{1}-a_{6}$ есть линия начала, а $b_{1}-b_{6}$ - линия конца превращений (рис. 5.6, б).

На рис. 5.7 приведена диаграмма изотермического превращения аустенита для эвтектоидной стали ($0,8 \%$ углерода). Горизонтальные линии M_{H} и M_{k} показывают температуры начала и конца бездиффузионного мартенситного превращения.

Диаграмма изотермического превращения представляет собой результат обобщения многочисленных данных исследований превращений аустенита при постоянных температурах. Диаграммы изотермического превращения называют за сходство кривых с буквой С также С-диаграммами, а в англоязычных странах - TTT-диаграммами (temperature - time - transformation (температура время - превращение)).

Рис. 5.6. Кинетические кривые превращения аустенита в перлит (a) и построенная по ним диаграмма изотермического превращения аустенита (б):

[^1]

Рис. 5.7. Диаграмма изотермического превращения аустенита эвтектоидной стали:
Б - бейнит; М - мартенсит; С - сорбит; Т - троостит; $v_{1}-v_{3}$ - скорости превращения; I-VI - характерные области

На диаграмме можно выделить следующие области: I - область устойчивого аустенита (для стали, содержащей $0,8 \%$ уллерода, вьше температуры точки $A_{c l}$) ; II - область переохлажденного аустенита; III - область начавшегося, но еще не закончившегося превращения $\mathrm{A} \rightarrow$ П; IV - область закончившегося превращения; $\mathrm{V}-$ область начавшегося, но еще не закончившегося мартенситного превращения (между $M_{\mathrm{H}}-M_{\mathrm{k}}$); VI - мартенситная область (ниже M_{k})

Область, расположенная слева от кривой начала распада аустенита (область переохлажденного аустенита), определяет продолжительность инкубационного периода, характеризующую устойчивость переохлажденного аустенита. С увеличением переохлаждения его устойчивость быстро уменьшается, достигая минимума (для эвтектоидной стали примерно $550^{\circ} \mathrm{C}$), и далее вновь возрастает.

В зависимости от степени переохлаждения аустенита различают три температурные области превращения: перлитную (переохлаждение до температуры $500^{\circ} \mathrm{C}$), мартенситную (переохлаждение ниже M_{H} - для эвтектоидной стали ниже температуры $240^{\circ} \mathrm{C}$) и промежуточного (бейнитного) превращения (переохлаждение для эвтектоидной стали в интервале температур от 500 до $240^{\circ} \mathrm{C}$).

Рассмотрим структуры, образующиеся при диффузионном превращении аустенита.

При температуре $650 \ldots 700^{\circ} \mathrm{C}$ образуется собственно перлит. При перлитном превращении ведущей фазой является цементит. В результате образования пластинок цементита соседние участки аустенита обедняются углеродом, что в свою очередь приводит к образованию пластинок феррита.

При увеличении переохлаждения увеличивается количество зародышей новой фазы. Естественно, что с ростом числа чередующихся пластин феррита и цементита уменьшаются их размеры и

Рис. 5.8. Схемы ферритно-цементитных структур:

$$
a-\text { перлит; } \sigma \text { - сорбит; } \varepsilon \text { - троостит }
$$

расстояния между ними (рис. 5.8). Другими словами, с понижением температуры растет дисперсность продуктов превращения аустенита. Под степенью дисперсности понимают расстояние между соседними пластинками феррита и цементита. При температуре $600 \ldots 650^{\circ} \mathrm{C}$ образуется сорбит, а при $550 \ldots 600^{\circ} \mathrm{C}$ - троостит.

Перлит, сорбит, троостит являются структурами одной природы - механической смесью феррита и цементита и отличаются друг от друта лишь степенью дисперсности. С увеличением степени дисперсности пластин цементита растет твердость и прочность стали. Наибольшую пластичность имеют стали с сорбитной структурой. Троостит, образующийся при более низкой температуре превращения, характеризуется меньшей пластичностью (меньшими значениями δ и ψ). Перлит, сорбит и троостит называют перлитными структурами.

Перлитные структуры в зависимости от формы цементита могут бытъ пластинчатыми или зернистыми. Пластинчатые структуры образуются при превращении однородного (гомогенного) аустенита, а зернистые - неоднородного аустенита. В первом случае нагрев доэвтектоидных сталей должен производиться выше температуры точки A_{c}, а заэвтектоидных - выше температуры точки $A_{c m}$. Соответственно для получения зернистых структур нагрев должен производиться ниже температуры точки $A_{c 3}\left(A_{c m}\right)$.

Таким образом, дисперсность перлитных структур определяется степенью переохлаждения, а форма цементита - гомогенностью исходного аустенита.

Так как в доэвтектоидных и заэвтектоидных сталях в отличие от эвтектоидных в интервале температур $A_{1}-A_{3}$ сначала выделяются избыточные фазы - феррит (в доэвтектоидных сталях) или избыточный цементит (в заэвтектоидных сталях), на диаграмме изотермического распада аустенита для этих сталей характерно появление дополнительной кривой, характеризующей начало выделения соответствующих избыточных фаз (рис. 5.9).

Рис. 5.9. Диаграммы изотермического превращения переохлажденного аустенита:
a - доэвтектоидная сталь; б - эвтектоидная сталь; $\boldsymbol{\varepsilon}$ - заэвтектоидная сталь
Мартенсимное превращение аустенита. При больших степенях переохлаждения возрастает термодинамическая неустойчивость аустенита, а скорость диффузии углерода резко падает. При переохлаждении аустенита в эвтектоидной стали до температуры $240{ }^{\circ} \mathrm{C}$ подвижность атомов углерода близка к нулю и происходит бездиффузионное преврацение аустенита. При этом меняется лишь тип решетки $\gamma \rightarrow \alpha$, а весь углерод, ранее растворенный в решетке аустенита, остается в решетке феррита, несмотря на то, что равновесная концентрация углерода в феррите при комнатной температуре не превышает $0,006 \%$. В результате об-

Рис. 5.10. Тетрагональная кристаллическая ячейка мартенсита с параметрами a, c :

- атомы железа; - атом углерода разуется пересыщенный твердый раствор внедрения углерода в α-железе, который называется мартенситом. Из-за пересыщенности углеродом решетка мартенсита сильно искажена и вместо кубической приобретает тетрагональную форму, при которой отношение параметров решетки существенно отличается от единицы, т.е. $c / a \neq 1$ (рис. 5.10). Чем больше углерода, тем выше степень тетрагональности мартенсита.

Мартенсит имеет высокую твердость (до 64 HRC) и хрупкость. Высокая твердость мартенсита обусловлена искажениями кристаллической решетки и, соответственно, большими внутренними напряжениями, определяемыми растворенным углеродом, а также возникновением фазового наклепа за счет увеличения

объема при превращении аустенита в мартенсит. В результате этого плотность дислокаций в мартенсите достигает уровня холоднодеформируемой стали и равняется $10^{10} \ldots 10^{12} \mathrm{~cm}^{-2}$.

Скорость образования кристаллов мартенсита очень велика и достигает $1000 \mathrm{~m} / \mathrm{c}$. Пластины мартенсита растут до границы аустенитного зерна либо до имеющегося в стали дефекта. Последующие пластины мартенсита, расположенные под углом к первым $\left(60 ; 120^{\circ}\right)$, ограничены размерами первичных пластин мартенсита и границами аустенитных зерен.

Высокая скорость образования кристаллов мартенсита при низкой температуре протекания преврашения объясняется тем, что имеет место непосредственный переход от кристаллической решетки аустенита к решетке мартенсита (когерентные границы).

При практически мгновенном переходе $\gamma \rightarrow \alpha$ атомы смещаются упорядоченно, строго ориентированно на расстояния, меньшие межатомных. При этом сохраняется общая сопрягающаяся плоскость решеток γ - и α-железа - так называемая когерентная связь. Когерентное превращение обусловливает перемещение атомов только на близкие расстояния при переходе атомов из одной решетки в другую. Поэтому кристаллическая решетка новой фазы мартенсита закономерно ориентирована относительно исходной фазы - аустенита. Из-за когерентного сопряжения решеток и различия удельньх объемов фаз (аустенита и мартенсита) мартенситное преврашение приводит к возникновению больших внутренних напряжений.

Мартенситное превращение протекает в интервале температур начала и конца мартенситного превращения M_{H} и M_{K}. Для эвтектоидной стали оно начинается при температуре $240^{\circ} \mathrm{C}$ и заканчивается при температуре $-50^{\circ} \mathrm{C}$. Однако при этой температуре в стали сохраняется еще некоторое количество непревращенного, так называемого остаточного, аустенита. Охлаждение ниже температуры M_{k} не приводит к его окончательному распаду. Положение точек M_{H} и M_{K} не зависит от скорости охлаждения, но зависит от содержания углерода в стали (рис. 5.11). Все легируюшие элементы, растворенные в аустените, за исключением кобальта и алюминия понижают значения температур M_{H} и M_{k}.

Мартенситное преврашение очень чувствительно к напряжению, а деформация аустенита может вызвать превращения даже при температурах выше M_{H} (образуется мартенсит деформации).

Рис. 5.11. Влияние содержания углерода в стали на температуру начала M_{H} и конца M_{k} мартенситного превращения

Кристаллы в зависимости от состава сплава, а следовательно, в зависимости от температуры своего образования, могут иметь различную морфологию и субструктуру. Различают два вида мартенсита: пластинчатый (игольчатый) и пакетный (реечный) (рис. 5.12).

Пластинчатый мартенсит (рис. 5.12, а) образуется в высокоуглеродистых сталях, имеющих низкие значения температур M_{n} и M_{x}. Сами кристаллы мартенсита в этом случае представляют собой широкие пластины, которые в плоскости шлифа имеют вид игл.

Пакетный (реечный) мартенсит (рис. 5.12, б) характерен для низко- и среднеуглеродистых, а также конструкционных легированных сталей. В этом случае кристаллы мартенсита имеют форму тонких реек, вытянутых в одном направлении и объединенных в пакеты. Тонкая структура пакетного (реечного) мартенсита представляет собой запутанные дислокации высокой плотности (примерно $10^{10} \ldots 10^{12} \mathrm{~cm}^{-2}$). В легированных сталях внутри мартенситных пакетов между кристаллами мартенсита, как правило, присутствуют прослойки остаточного аустенита.

Размеры кристаллов любой морфологии мартенсита определяются величиной исходного зерна аустенита. Они тем крупнее, чем больше зерно аустенита. Первая пластина мартенсита имеет протяженноств, соответствующую поперечному размеру зерна аустенита. Кристаллы, образующиеся при более низких температурах, имеют уже меньшую протяженность (см. рис. 5.12, a).

Если эвтектоидную сталь охладить только до комнатной температуры, в структуре кроме мартенсита будет присутствовать некоторое количество остаточного аустенита. Наличие остаточного аустенита нежелательно, так как это приводит к неоднородности свойств по сечению и изменению размеров деталей. Последнее обстоятельство объясняется тем, что мартенсит имеет наибольший удельный объем по сравнению с другими структурами, а аустенит - наименьший. Поэтому при переходе от аустенитной структуры к мартенситной объем и размеры деталей увеличиваются. К особенностям мартенситного превращения относится то, что оно происходит только при непрерывном охлаждении. Задержка охлаждения при температуре выше температуры конца мартенситного превращения приводит к стабилизации аустенита. Аустенит становится более устойчивым. При последующем охлаждении его превра-

Рис. 5.12. Схема образования пластинчатого (игольчатого) (a) и пакетного (реечного) (б) мартенсита:
A, $\mathrm{A}_{\text {ост, }}$, - соответственно аустенит, остаточный аустенит и мартенсит

щение затруднено и протекает с меньшей интенсивностью и полнотой. Эффект стабилизации аустенита зависит от температуры остановки при охлаждении.

Таким образом, особенностями мартенситного превращения являются его бездиффузионный характер, ориентированность кристаллов и образование при непрерывном охлаждении в интервале температур $M_{\mathrm{H}}-\boldsymbol{M}_{\text {к }}$.

Характерной чертой мартенсита является его высокая твердость и прочность, значения которых возрастают с увеличением содержания утлерода в мартенсите. Временное сопротивление низкоуглеродистого мартенсита $(0,25 \%$ углерода) составляет 1000 МПа, а мартенсит с содержанием $0,6 \ldots 0,7 \%$ углерода имеет временное сопротивление $2600 \ldots 2700$ МПа. Однако с повышением содержания углерода в мартенсите возрастает и его склонность к хрупкому разрушению. Мартенсит, содержащий более $0,35 \ldots 0,4 \%$ углерода, имеет низкое сопротивление зарождению и распространению трещины, а также низкие значения вязкости разрушения K_{Ic}.

Увеличение удельного объема при образовании мартенсита является одной из основных причин возникновения при закалке больших внутренних напряжений, вызывающих деформацию и коробление изделий, а также появление закалочных трещин.

Промежуточное (бейнитное) превращение аустенита. Бейнитное (промежуточное) превращение аустенита протекает в температурной области между перлитным и мартенситным превращениями. Кинетика этого превращения и получающиеся структуры имеют черты кинетики и структур, получаемых при диффузионном перлитном и бездиффузионном мартенситном превращениях: диффузионное перераспределение углерода в аустените между продуктами его распада и мартенситное бездиффузионное превращение $\gamma \rightarrow \alpha$. В результате бейнитного преврашения образуется смесь α-фазы (феррита) и карбида, которая называется бейнитом.

Кристаллы α-фазы образуются в промежуточном интервале температур путем когерентного роста упругой связи с исходной γ-фазой, т.е. точно так же, как растут кристаллы мартенсита при мартенситном превращении. Но в отличие от последнего, для которого характерно «мгновенное» образование кристаллов мартенсита, при бейнитном превращении кристаллы α-фазы растут сравнительно медленно, что связано с необходимостью диффузионного отвода атомов углерода из аустенита с целью получения γ-фазы, обедненной углеродом. Это объясняется тем, что в промежугочном интервале температур α-фаза может образовываться из γ-фазы, обедненной углеродом.

Карбид в бейните не имеет пластинчатого строения, свойственного перлиту. Карбидные частицы в бейните очень дисперсны, их можно видеть только под электронным микроскопом.

Различают верхний и нижний бейнит, образующиеся соответственно в верхней и нижней части промежуточного интервала температур (условная граница между ними $350^{\circ} \mathrm{C}$). Верхний бейнит имеет перистое строение, а нижний - игольчатое, мартенситоподобное.

Верхний бейнит от нижнеюо отличается по характеру распределения и составу карбидной фазы. Электронно-микроскопический анализ показал, что в верхнем бейните карбидные частицы расположены между пластинами феррита или по границам и внутри пластин феррита, а в нижнем бейните включения карбида находятся только внутри пластин α-фазы.

Карбидная фаза в верхнем бейните - цементит, а в нижнем бейните - ε-карбид, который заменяется цементитом с увеличением времени выдержки (как при отпуске стали).

Продукты изотермического превращения переохлажденного аустенита в промежуточном интервале температур по своему составу, структуре и свойствам близки к продуктам отпуска мартенсита закаленной стали, если температуры бейнитного превращения и отпуска одинаковы.

Бейнит прочнее перлита, при этом его прочностные свойства увеличиваются с понижением температуры изотермического превращения. Повышенная прочность бейнита определяется малыми размерами ферритных кристаллов, дисперсными выделениями карбидов, искажениями решетки α-железа в связи с ее пересышением углеродом, а также повышенной плотностью дислокаций в бейнитном феррите, закрепленных атмосферами (облаками) Коттрелла из атомов углерода. Пластичность при переходе из перлитной области в бейнитную (верхний бейнит) падает, а затем с понижением температуры вновь возрастает (нижний бейнит). Снижение пластичности в области верхнего бейнита связано с выделением сравнительно грубых карбидов преимущественно по границам ферритных кристаллов. В нижнем бейните частицы карбидов расположены внутри кристаллов α-фазы, поэтому при высокой прочности в стали с нижним бейнитом сохраняется высокая вязкость.

Изотермическое превращение аустенита в лезированных сталях. Приведенные на рис. 5.7 и 5.9 диаграммы изотермического превращения аустенита справедливы как для углеродистых, так и для легированных сталей, не содержащих карбидообразующих элементов. У сталей, легированных карбидообразующими элементами, на изотермической диаграмме существует не один, а два минимума устойчивости переохлажденного аустенита, соответственно расположенных в области перлитого и бейнитного превращений (рис. 5.13). Оба превращения разделены областью устойчивого аустенита.

На диаграммах изотермического преврашения аустенита доэвтектоидньх и заэвтектоидных сталей, так же как у утлеродистых

Рис. 5.13. Диаграммы изотермического преврашения аустенита в стали, легированной карбидообразующими элементами (цифры у кривых показывают степень превращения):
a - низкое и среднее содержание углерода; σ - высокое содержание утлерода
сталей, появляется дополнительная линия, соответствующая началу выделения избыточного легированного феррита или карбида.

В сталях, легированньгх карбидообразующими элементами, перлитное превращение сводится к полиморфному превращению $\gamma \rightarrow \alpha$ и к диффузионному перераспределению углерода и легирующих элементов. В результате получается легированный перлит (легированный феррит + легированный цементит). Особенностью бейнитного превращения в этих сталях является то, что часть переохлажденного аустенита при изотермической выдержке не распадается совсем и лишь может при дальнейшем понижении температуры частично превратиться в мартенсит. Вследствие этого при распаде аустенита в легированной стали последняя может иметь структуру, состоящую из бейнита, некоторого количества мартенсита и нераспавшегося (остаточного) аустенита.

Все легируюшие элементы (за исключением кобальта) увеличивают устойчивость переохлажденного аустенита как в области перлитного, так и в области бейнитного превращения. Это проявляется в смещении в сторону большего времени выдержки кривых начала и конца распада аустенита. Причиной повышенной устойчивости легированного аустенита в перлитной области является то, что для образования ферритно-карбидной структуры в легированной стали требуется прохождение диффузионного перераспределения не только углерода, но и легирующих элементов с образованием легированного феррита, легированного цементита и специальньх карбидов. Но диффузия легирующих элементов проходит с малой скоростью, и, кроме того, карбидообразующие легирующие элементы заметно снижают скорость диффузии углерода в стали. Одновременно легирующие элементы уменьшают и ско-

рость прохождения полиморфного превращения $\gamma \rightarrow \alpha$. При образовании бейнита в процессе распада легированного аустенита протекает только диффузия углерода без диффузионного перераспределения концентрации легирующих элементов, что определяется относительно низкой температурой промежуточного превращения, при которой диффузия легирующих элементов практически исключена. В результате распада легированного аустенита в области промежуточного превращения образуются α-феррит и карбид цементитного типа, имеющие то же содержание легирующих элементов, что и исходный аустенит.

Очень сильно повышается устойчивость переохлажденного аустенита при комплексном легировании стали и при увеличении содержания легирующих элементов в стали. Однако отдельные легирующие элементы неодинаково влияют на устойчивость аустенита соответственно в перлитной и бейнитной областях. Как правило, в легированных сталях с низким и средним содержанием углерода максимальная устойчивость переохлажденного аустенита наблюдается в перлитной области, а минимальная - в бейнитной (рис. $5.13, a$). Наоборот, в легированных сталях с высоким содержанием углерода максимальная устойчивость аустенита имеет место в бейнитной, а минимальная - в перлитной области (рис. 5.13, б).

Превращение аустенита при иепрерывном охлаждении. Влияние непрерывного охлаждения на превращение аустенита можно проследить путем наложения кривых охлаждения на диаграмму изотермического распада аустенита (рис. 5.14). Из рассмотрения этих зависимостей видно, что с повышением скорости охлаждения понижается степень переохлаждения аустенита и, соответственно, дисперснее образуется ферритно-цементитная структура. Можно считать, что при небольшой скорости охлаждения v_{1} образуется перлитная структура, при болышей скорости v_{2} - сорбитная структура и еще болышей скорости - трооститная структура. Бейнитная структура при непрерывном охлаждении углеродистой стали обычно не образуется. При очень высоких скоростях $\left(v_{4}, v_{\text {кр }}, v_{5}\right)$ часть аустенита или весь аустенит переохлаждается до точки M_{H} и превращается либо частично (при v_{4}), либо полностью в мартенсит. Минимальную скорость охлаждения, при которой основная часть

переохлажденного до M_{H} аустенита, за исключением некоторого количества остаточного аустенита, превращается в мартенсит, называют критической скоростью охлаждения (закалки) $v_{\text {кр }}$.

Критическая скорость закалки зависит от устойчивости аустенита и определяется составом стали. Чем больше становится устойчивость аустенита в результате легирования стали (чем больше сдвигаются вправо C -образные кривые), тем меньшая критическая скорость закалки требуется для получения чисто мартенситной структуры.

Углеродистые стали имеют высокую критическую скорость закалки ($200 \ldots 800^{\circ} \mathrm{C} / \mathrm{c}$). Наименьшей критической скоростью обладает эвтектоидная сталь. При введении в сталь 1% углерода, 1% хрома критическая скорость закалки уменьшается в 3 раза, а при введении $0,4 \%$ молибдена критическая скорость закалки снижается с 200 до $50^{\circ} \mathrm{C} / \mathrm{c}$. Очень сильно снижают критическую скорость закалки марганец, никель. Кобальт - единственный легирующий элемент, понижающий устойчивость аустенита и соответственно повышающий критическую скорость закалки. У многих легированных сталей критическая скорость закалки не превышает $20^{\circ} \mathrm{C} / \mathrm{c}$.

Термокинетические диаграммы превращения переохламсденного аустенита. При разработке технологии термической обработки изделий из углеродистых и легированных сталей необходимо иметь представление о температурных интервалах протекания фазовых превращений при непрерывном охлаждении и о проходящих при этом в стали структурных превращениях. Эти представления можно получить с помощью термокинетических диаграмм, представляющих собой диаграммы, построенные в координатах температура - время, на которые наносят реальные кривые охлаждения и обозначают области перлитного, бейнитого и мартенситного превращений конкретного состава стали (рис. 5.15).

Термокинетические диаграммы показывают, что при малых скоростях охлаждения в углеродистой стали возможен распад аустенита только с образованием ферритно-цементитной структуры различной степени дисперсности: перлита, сорбита, троостита. Промежуточное превращение в углеродистой стали не происходит. При высоких скоростях охлаждения (выше $v_{\text {кр }}$) аустенит претерпевает только мартенситное превращение. В легированной стали присутствует помимо перлитной также бейнитная область, причем повышение скорости охлаждения способствует образованию бейнита. Бейнитное превращение не проходит до конца, и в структуре стали после охлаждения будут присутствовать бейнит, мартенсит и остаточный аустенит. Для получения чисто мартенситной структуры охлаждение стали необходимо проводить со скоростью выше критической, при которой не происходит ни перлитного, ни бейнитного превращения.

Рис. 5.15. Термокинетические диаграммы превращения переохлажденного аустенита:
$a-$ эвтектоидная сталь; 6 - доэвтектоидная легированная сталь ($0,39 \%$ углерода, 1% хрома, $0,15 \%$ молибдена) \qquad -- диаграмма изотермического превращения переохлажценного аустенита

Превращения при отпуске закаленной стали. Сталь после закалки находится в метастабильном состоянии. Исходной структурой закаленной стали является сильно пересыщенный углеродом раствор α-железа - мартенсит и некоторое количество остаточного аустенита. Закаленная сталь обладает высокой твердостью и прочностью, но является, как правило, хрупкой.

Отпуск состоит в нагреве закаленной стали до температуры ниже температуры точки $A_{\mathrm{c} 1}$ с целью лерехода стали в более устойчивое состояние и получения при достаточно высокой прочности удовлетворительного уровня пластичности и вязкости.

Характер структурных изменений, происходящих при отпуске сталей, зависит, во-первых, от состава стали - в углеродистых и легированных сталях процессы, происходящие при отпуске, имеют некоторые различия (при общей схожести), во-вторых - om конкретной температуры и продолжсительности отпуска.

Рассмотрим процессы, происходящие при отпуске углеродистых сталей.

Pacnaд мартенсита с выделением карбидов - основной процесс при отпуске сталей. Распад мартенсита в зависимости от температуры и продолжительности отпуска проходит через стадии предвыделения, выделения промежуточных метастабильных карбидов (типа $\mathrm{Fe}_{x} \mathrm{C}$), выделения цементита и его коагуляции.

Кроме того, структурные изменения при отпуске стали дополняются распадом остаточного аустенита.

Первая стадия отпуска уплеродистой закаленной стали проходит при нагреве до температуры $200^{\circ} \mathrm{C}$ (первое превращение при отпуске). Из мартенсита выделяются мельчайшие частицы карбидной фазы (типа $\mathrm{Fe}_{2,4} \mathrm{C}-\varepsilon$-карбид). Одновременно тетрагональность решетки уменьшается. Образуется структура отпущенного мартенсита.

При нагреве до температуры $200 \ldots 300^{\circ} \mathrm{C}$ происходит распад остаточного аустенита (второе превращение при отпуске). Остаточный аустенит превращается в смесь пересыщенного твердого раствора α и еще не обособившихся частиц карбидов, т.е. образуется отпущенный мартенсит.

Когда температура отпуска достигает $300 \ldots 400^{\circ} \mathrm{C}$, углерод полностью выделяется из твердого раствора α с образованием $\mathrm{Fe}_{3} \mathrm{C}$ (третье превращение при отпуске). При нагреве до температуры $400^{\circ} \mathrm{C}$ сталь состоит из относительно мелких включений феррита и цементита, образуюших структуру троостита.

При нагреве до температуры $600^{\circ} \mathrm{C}$ происходит коагуляция карбидов и полная рекристаллизация мартенсита (ликвидация признаков реечного мартенсита). В результате сталь приобретает структуру сорбита.

Ферритно-цементитные смеси, получаемые при распаде аустенита (сорбит, троостит), отличаются от ферритно-цементитных смесей, образующихся при распаде мартенсита. В первом случае сорбит и тросстит имеют пластинчатую форму цементита, а во втором - зернистую форму. Разная форма цементита обусловливает различие в уровнях механических свойств. Зернистые структуры после отпуска стали обеспечивают у нее более высокие механические свойства, в первую очередь, характеризующиеся большей пластичностью и вязкостью при близкой твердости и прочности. Поскольку сталь после отпуска приобретает структуру сорбита и троостита, по внешним признакам схожую с такой же структурой, получаемой при распаде аустенита, но имеющей принципиальные различия внутреннего строения, принято сорбит и троостит, получаемые в процессе отпуска, называть сорбитом отпуска и трооститом отпуска.

Отпуск стали оказывает существенное влияние на ее механические и эксплуатационные свойства. При низких температурах оппуска (до $250^{\circ} \mathrm{C}$) уменьшается склонность стали к хрупкому разрушению. Пластичность и вязкость стали при низкотемпературном отпуске (до $250^{\circ} \mathrm{C}$) несколько возрастает из-за уменьшения внутренних напряжений и изменений структуры стали.

С повышением температуры отпуска до $500 \ldots 60{ }^{\circ} \mathrm{C}$ в структуре стали происходят существенные изменения, сопровождающиеся заметным снижением твердости, временного сопротивления и

предела текучести и повышением относительного удлинения, ударной вязкости и трещиностойкости $K_{\mathrm{I} c}$.

Влияние легируюших элементов на процессы, протекающие при отпуске углеродистой стали, неоднозначно. На первую стадию распада мартенсита (при нагреве до температуры $200^{\circ} \mathrm{C}$) легирующие элементы не оказывают какого-либо существенного влияния. На вторую стадию распада мартенсита (третье превращение при отпуске) многие легирующие элементы влияют очень сильно, замедляя процесс образования и рост карбидных частиц (ع-карбида и $\mathrm{Fe}_{3} \mathrm{C}$) и, соответственно, тормозя процесс распада мартенсита. В легированных сталях состояние отпущенного мартенсита, обладающего высокой твердостью, сохраняется вплоть до температуры $450 \ldots 500{ }^{\circ} \mathrm{C}$. Наиболее сильно тормозят распад мартенсита хром, вольфрам, молибден, ванадий, кобальт, кремний.

На карбидные превращения при отпуске легирующие элементы сильно влияют при температуре выше $450^{\circ} \mathrm{C}$, когда становится возможным их диффузионное перераспределение. В результате при отпуске легированной стали выше температуры $450^{\circ} \mathrm{C}$ в структуре стали появляются специальные карбиды, которые способствуют повышению ее твердости и прочности.

Большинство легирующих элементов повышает температурный интервал распада остаточного аустенита при отпуске углеродистой стали. Если у последней остаточный аустенит распадается в интервале температур $200 \ldots 300^{\circ} \mathrm{C}$, в легированной стали остаточный аустенит сохраняется при температуре $500 \ldots 60{ }^{\circ} \mathrm{C}$.

5.2. Технология термической обработки стали

Отжиг стали. Отжигом называется термическая обработка, в процессе которой производится нагрев деталей из стали до требуемой температуры с последующей выдержкой и медленным oxлаждением в печи для получения однородной, равновесной, менее твердой структуры, свободной от остаточных напряжений.

На практике используют два принципиально различных вида отжига: отжиг 1 рода и отжиг II рода.

Отжиг I рода в зависимости от исходного состояния стали и температуры нагрева может быть гомогенизационным, рекристаллизационным и для снятия внутренних напряжений (рис. 5.16)

Особенностью всех разновидностей отжига I рода является то, что все они не связаны с фазовыми превращениями в твердом состоянии стали и протекают независимо от того, идут при этом фазовые превращения или нет.

Гомогенизационный (диффузионный) отжиг применяют для устранения химической неоднородности, возникающей при кристаллизации металла. Такому отжигу подвергают слитки и отливки из

Рис. 5.16. Температура нагрева стали при отжиге I рода ($1-3$) и II рода (4-6):
1 - диффузионный отжиг; 2 - рекристаллизационный отжиг; 3 - отжиг для снятия внутренних напряжений; 4 - полный отжиг; 5 - неполный отжиг; 6 нормализация

легированной стали для устранения дендритной или внутрикристаллитной ликвации, которая повышает склонность стали при обработке давлением к трещинообразованию, анизотропии свойств и возникновению таких дефектов, как шиферность (слоистый излом) и флокены (тонкие внутренние трещины, наблюдаемые в изломе в виде белых пятен).

Нагрев при диффузионном отжиге проводят до максимально высоких температур, так как при этом наиболее интенсивно происходят диффузионные процессы, необходимые для выравнивания в отдельных объемах состава стали. Обычно для легированньдх сталей температуру гомогенизационного отжига выбирают в интервале $1050 \ldots 1250^{\circ} \mathrm{C}$. Так как диффузионные процессы наиболее интенсивно протекают в начале выдержки и их интенсивность с течением времени выдержки заметно снижается, применение длительных выдержек при гомогенизации нецелесообразно. Это обусловлено также необходимостью экономии электроэнергии и увеличения производительности печей. Обычно на практике выдержка при гомогенизационном отжиге составляет не более $15 \ldots 20$ ч. После выдержки детали охлаждают вместе с печью до $800 \ldots 820^{\circ} \mathrm{C}$, а затем проводят охлаждение на воздухе. В результате диффузионного отжига получается крупное зерно, которое устраняется при обработке давлением или последующей термической обработке.

Рекристаллизационный отжиг заключается в нагреве холоднодеформированной стали выше температуры начала рекристаллизации, выдержке при этой температуре и последующем медленном охлаждении. Рекристаллизационный отжиг применяют для устранения наклепа после холодной пластической деформации. При

Рис. 5.17. Влияние температуры на остаточные напряжения (1) и предел текучести (2)
t_{1} - температура фазового перехода

проведении такого отжига основным процессом является рекристаллизация металиа

Рекристаллизационный отжиг используют в промышленности как первоначальную операцию перед холодной обработкой давлением (для придания материалу наибольшей пластичности), как промежуточный процесс между операциями холодного деформирования (для снятия наклепа) и как окончательную термическую обработку для придания полуфабрикату или изделию требуемых свойств.

Для углеродистых сталей $(0,08 \ldots 0,2 \%$ углерода), подвергаемых прокатке, штамповке, волочению, применяют температуру отжига в интервале $680 \ldots 700^{\circ} \mathrm{C}$. Для высокоуглеродистой легированной хромистой и хромоникелевой стали применяют отжиг при температуре $680 \ldots 740^{\circ} \mathrm{C}$ в течение $0,5 \ldots 1,5$ ч.

Отжие для снятия внутренних напряжений проводят с целью уменьшения остаточных напряжений, образовавшихся в металле при ковке, литье, сварке и способных вызвать коробление и разрушение детали. Основным процессом, проходящим при отжиге для снятия внутренних напряжений, является полная или частичная релаксация остаточных напряжений. Этот процесс протекает вследствие того, что при определенной температуре отжига предел текучести стали становится ниже остаточных напряжений и происходит пластическая деформация, в результате которой остаточные напряжения уменьшаются до значений предела текучести (рис. 5.17). На практике отжиг стальньх изделий для снятия напряжений проводят в температурном интервале $160 . . .400^{\circ} \mathrm{C}$ с последующим медленным охлаждением.

Отжсиг II рода - термическая обработка, заключающаяся в нагреве стали до температуры выше температуры критической точки $A_{c 1}$ или $A_{c 3}$, выдержке и, как правило, последующем медленном охлаждении. Отжиг II рода основан на прохождении фазовых превращений в твердом состоянии (превращении $\gamma \rightarrow \alpha$) и поэтому часто называется фазовой перекристаллизацией. При фазовой перекристаллизации измельчается зерно и устраняется видманштеттова структура ${ }^{1}$, строчечность и другие неблагоприятные структуры стали.

[^2]В большинстве случаев отжиг II рода является подготовительной термической обработкой - в процессе отжига снижается твердость и прочность, что облегчает обработку резанием средне- и высокоуглеродистых сталей. Неполный отжиг инструментальных сталей предшествует окончательной термической обработке.

В некоторых случаях (например, для многих крупных неответственных отливок) отжиг II рода является окончательной термической обработкой.

Существуют следующие разновидности отжига II рода стали: полный, неполный и изотермический.

Полный отжиг применяется для доэвтектоидных сталей и заключается в нагреве стали до температуры на $30 \ldots 50^{\circ} \mathrm{C}$ выше температуры точки $A_{c 3}$, выдержке при этой температуре до полной перекристаллизации металла и медленном охлаждении (см. рис. 5.16). При таком отжиге образуется мелкое аустенитное зерно, из которого при охлаждении формируется равномерная мелкозернистая ферритно-перлитная структура. Поэтому полньй отжиг обычно применяют с целью измельчения зерна. Кроме того, полным отжигом устраняют такие дефекты структуры доэвтектоидной стали, как видманштеттов феррит и строчечность.

Скорость охлаждения при отжиге зависит от устойчивости переохлажденного аустенита, а следовательно, от состава стали. Легированные стали, обладаюшие высокой устойчивостью переохлажденного аустенита, охлаждаются при отжиге значительно медленнее (со скоростью $30 \ldots 100^{\circ} \mathrm{C} / \mathrm{ч}$), чем утлеродистые (со скоростью $100 \ldots 200^{\circ} \mathrm{C} / ч$). После распада аустенита в перлитной области дальнейшее охлаждение можно ускорить и проводить даже на воздухе. Если полный отжиг предназначен для снятия напряжений, медленное охлаждение с печью проводят до комнатной температуры.

Неполный отжиг отличается от полного тем, что сталь нагревают до более низкой температуры (выше температуры точки $A_{c 1}$, но ниже точки $A_{c 3}$. Этот вид отжига для доэвтектоидных сталей применяют ограниченно и в основном для улучшения их обрабатываемости резанием, так как в результате частичной перекристаллизации стали (избыточный феррит лишь частично превращается в аустенит) образуется мягкий перлит. Неполный смягчающий отжиг позволяет сэкономить время и снизить стоимость обработки.

Неполный отжиг широко применяют для заэвтектоидных уллеродистых и легированных сталей. При неполном отжиге проводят нагрев до температуры немного выше (на $10 \ldots 30^{\circ} \mathrm{C}$) температуры точки A_{1}, что приводит к практически полной перекристаллизации стали и получению зернистой (сфероидальной) формы перлита вместо обычной пластинчатой. Поэтому такой отжиг называется сфероидизирующим.

Для сфероидизирующего отжига характерен узкий температурный интервал отжигаемости ($750 \ldots 780^{\circ} \mathrm{C}$); у сталей, близких к эвтектоидному составу, интервал отжигаемости особенно узок ($740 \ldots 750^{\circ} \mathrm{C}$). Легированные заэвтектоидные стали для получения зернистых карбидов можно нагревать до более высоких температур и в более широком интервале ($770 \ldots 820^{\circ} \mathrm{C}$).

Конечная структура стали зависит от скорости охлаждения и температуры сфероидизирующего отжига. Чем меньше скорость охлаждения, тем до бо́льших размеров возрастают глобулы карбида при распаде аустенита. Регулируя скорость охлаждения, можно получать структуры глобулярного перлита от точечного до крупнозернистого. Более мелкозернистый перлит обладает повышенной твердостью.

Сфероидизирующему отжигу подвергают углеродистые и легированные инструментальные и шарикоподшипниковые стали.

Отжигу на зернистый перлит подвергают также тонкие листы и прутки из низко- и среднеуглеродистой стати перед холодной шттамповкой или волочением для повышения пластичности.

После отжига на зернистый перлит эвтектоидные и заэвтектоидные стали обладают наилучшей обрабатываемостью резанием.

Изотермический отжиг применяют для улучшения обрабатываемости легированных сталей. Изотермический отжиг заключается в нагреве до температуры на $30 \ldots 50^{\circ} \mathrm{C}$ выше температуры точки $A_{c 3}$ (как и при полном отжиге) и сравнительно быстром охлаждении до температуры ниже температуры точки $A_{r l}$ (обычно $660 \ldots 680^{\circ} \mathrm{C}$), изотермической выдержке при этой температуре для получения равновесной перлитной структуры и последующем охлаждении на воздухе (рис. 5.18).

Изотермический отжиг позволяет значительно сократить длительность процесса перекристаллизации, особенно для легированных сталей, которые для требуемого снижения твердости приходится охлаждать очень медленно

Рис. 5.18. Схема изотермического отжига при полном отжиге. Кроме того, при изотермическом отжиге обеспечивается получение более однородной ферритно-перлитной структуры стали.

Изотермический отжиг - более стабильный процесс; при его проведении легче поддерживать температуру на заданном уровне, чем регулировать скорость охлаждения при проведении полного отжига.

Изотермическому отжигу чаще всего подвергают поковки
(штамповки) и сортовой прокат небольших размеров из легированной цементуемой стали.

Пружинную (канатную) проволоку из стали, содержашей $0,65 \ldots 0,9 \%$ углерода, перед холодным волочением подвергают изотермической обработке, которая называется патентированием. При патентировании проволоку подвергают высокотемпературной аустенизации (нагрев до температуры на $150 \ldots 200^{\circ} \mathrm{C}$ выше температуры точки $A_{c 3}$) для получения однородного аустенита, а затем пропускают через расплавленную соль с температурой $450 \ldots 550^{\circ} \mathrm{C}$. В результате изотермического распада аустенита образуется тонкопластинчатый троостит или сорбит. Такая структура позволяет при холодной протяжке получать большие обжатия (более 75%) без обрывов. После заключительного холодного волочения получается проволока с высокой прочностью ($\sigma_{\text {в }}=2000 \ldots 2250 \mathrm{MПа}$).

Если при проведении отжига охлаждение после нагрева и выдержки проводится на воздухе, такой процесс называется нормализационным отжигом или нормализацией.

При нормализации сталь нагревают до температуры на $30 \ldots 50^{\circ} \mathrm{C}$ выше температуры линии GSE (см. рис. 5.16) и охлаждают на воздухе. Ускоренное по сравнению с обычным отжигом охлаждение обусловливает несколько большее переохлаждение аустенита (см. рис. 5.15). Поэтому при нормализации получается более тонкое строение эвтектоида (сорбит) и более мелкое эвтектоидное зерно. Кроме того, при нормализации частично подавляется выделение избыточных фаз (феррита в доэвтектоидной стали и цементита в заэвтектоидной стали) и образуется квазиэвтектоид. В результате прочность стали после нормализации становится больше прочности после отжига.

Нормализацию применяют чаце всего как промежугочную операцию для смягчения стали перед обработкой резанием и для устранения дефектов и общего улучшения структуры стали перед закалкой.

Таким образом, назначение нормализации как промежуточной операции аналогично назначению отжига. Но так как нормализация выгоднее отжига, ее всегда следует предпочесть отжигу, если оба эти вида обработки дают одинаковые результаты.

Однако нормализация как операция смягчения стали не всегда может заменить отжиг. Так как склонность аустенита к переохлаждению растет с увеличением содержания в нем углерода и легирующих элементов, разница в свойствах после отжига и после нормализации будет существенно зависеть от состава стали. Поэтому нормализацию широко применяют вместо смягчающего отжига для низкоуглеродистых сталей, в которых аустенит слабо переохлаждается, но ее нельзя применять для смягчения высокоуглеродистых сталей, которые весьма ощутимо упрочняются при охлаждении на воздухе из-за значительного переохлаждения аустенита.

В заэвтектоидных сталях нормализация позволяет устранить грубую сетку вторичного цементита за счет того, что растворившийся при нагреве выше температуры точки $A_{c m}$ цементит при последующем ускоренном охлаждении в процессе нормализации стали не успевает вновь образовать грубую сетку цементита. Это заметно улучшает свойства стали.

Нормализацию используют и как окончательную термическую обработку средне- и высокоуглеродистых доэвтектоидных сталей, если требования K свойствам этих сталей умеренные и для них не обязательна закалка с высоким отпуском.

Закалка стали. Закалка стали заключается в ее нагреве выше температур фазовых превращений, выдержке для завершения всех превращений и охлаждении с высокой скоростью с целью получения при комнатной температуре неравновесных структур, обеспечивающих более высокую прочность и твердость стали.

В зависимости от температуры нагрева различают полную и неполную закалку. При полной закалке нагрев осуществляют до температуры на $30 \ldots 50^{\circ} \mathrm{C}$ выше температуры точки $A_{c 3}$ или $A_{c m}$. После закалки получается мартенситная структура с некоторым количеством остаточного аустенита.

При неполной закалке сталь нагревают до температуры на $30 \ldots 50^{\circ} \mathrm{C}$ выше температуры точки $A_{c l}$, но ниже $A_{c 3}$ или $A_{c m}$. В этом случае в нагретом состоянии структура доэвтектоидных сталей состоит из аустенита и феррита, а заэвтектоидных - из аустенита и вторичного цементита. При быстром охлаждении аустенит превращается в мартенсит, твердость которого зависит от содержания углерода в стали (рис. 5.19).

После неполной закалки в доэвтектоидных сталях структура состоит из мартенсита и включений зерен феррита, а в заэвтектоидных - из мартенсита и округльх

Рис. 5.19. Влияние содержания углерода и температуры закалки на твердость стали:
1 - нагрев выше температуры точки $A_{c 3} ; 2$ - твердость собственно мартенсита; 3 - нагрев выше температуры точки $A_{c 1}$

включений вторичного цементита. Наличие феррита в структуре закаленной доэвтектоидной стали снижает твердость, поэтому такая закалка применяется реже. Наличие избыточного цементита в структуре закаленной заэвтектоидной стали наоборот полезно.

Заэвтектоидные стали обычно используют для изготовления инструмента. Важнейшим требованием, предъявляемым к инструментальным сталям, является твердость. Твердость заэвтектоидных сталей после полной закал-

Рис. 5.20. Микроструктура заэвтектоидной стали с содержанием углерода $1,2 \%$, увеличение в 500 раз:
a - избыточный цементит в виде сетки; σ - зернистый цементит

ки снижается за счет значительного увеличения количества остаточного аустенита в мартенситной структуре этих сталей. Остаточного аустенита тем больше, чем большее количество углерода переходит в твердый раствор при нагреве стали.

Округлые включения цементита не только не уменьшают, но даже увеличивают твердость, а следовательно, и износостойкость стали. Кроме того, поскольку нагрев ведется при температуре ниже температуры точки $A_{c m}$, уменьшается рост зерна, снижаются термические напряжения при закалке и менее интенсивно обезуглероживается поверхность металлов.

Наиболее благоприятная структура заэвтектоидных сталей достигается тогда, когда включения вторичного цементита имеют форму сфероидов - зернистую форму (рис. 5.20). Цементитная сетка по границам зерен недопустима, так как увеличивает хрупкость стали. Поэтому закалке заэвтектоидных сталей должен предшествовать отжиг - сфероидизация.

Таким образом, для доэвтектоидных сталей рационально применять полную закалку, для заэвтектоидных - неполную (рис. 5.21).

При закалке для достижения максимальной твердости стремятся получать мартенситную структуру. Минимальная скорость охлаждения, необходимая для переохлаждения аустенита до мартенситного превращения, называется критической скоростью закалки. Скорость охлаждения определяется видом охлаждающей среды. Критическая скорость закалки определяется по диаграмме изотермического распада

Рис. 5.21. Оптимальные температуры нагрева под закалку утлеродистых сталей

аустенита (см. рис. 5.15), из которой следует, что быстрое охлаждение необходимо в области наименьшей устойчивости аустенита ($500 \ldots 60^{\circ} \mathrm{C}$) с тем, чтобы предотвратить его превращение в фер-ритно-цементитную смесь.

Ниже температуры $300^{\circ} \mathrm{C}$ целесообразно медленное охлаждение. При чрезмерно высоких скоростях охлаждения в металле могут возникнуть такие внутренние напряжения, которые способны привести к короблению или растрескиванию деталей.

Внутренние напряжения при закалке образуются из-за разницы температур по сечению деталей при их охлаждении и разного по времени протекания фазовых превращений в разных участках детали. Возникновение фазовых напряжений обусловлено большим удельным объемом мартенсита по сравнению с аустенитом.

При охлаждении закаливаемой стали в жидкой среде различают три периода, характеризующиеся разной скоростью охлаждения:

- период пленочного кипения, когда теплопередаче препятствует образование паровой рубашки, из-за чего скорость охлаждения сравнительно невелика;
- период пузырчатого кипения, при котором паровая рубашка разрушается и интенсивность охлаждения резко возрастает;
- период конвективного теплообмена, когда температура детали ниже температуры кипения жидкости, а скорость охлаждения резко падает.

Применение растворов солей и щелочей уменьшает период пленочного кипения, что соответственно позволяет заметно повысить скорость охлаждения в перлитном интервале.

В 1980-е гr. в промышленности нашли применение новые закалочные среды, объединяемые в групाу полимерных закалочных сред, которые обеспечивают в перлитном интервале скорость охлаждения, близкую к скорости охлаждения в воде, а в мартенситном интервале - близкую к скорости охлаждения в масле. Применение таких сред наиболее целесообразно для закалки деталей со сложной геометрией и большой разнотолщинностью.

Значения скорости охлаждения сталей в различных средах приведены в табл. 5.1. Данные табл. 5.1 показывают, что нет идеальной закалочной среды, удовлетворяюшей условию достижения оптимальной скорости охлаждения при закалке от разных температур. Растворы солей и щелочей при образовании мартенсита могут вызвать коробление и трещины, а масло, имеющее хорошие свойства при этих температурах, менее выгодно при температуре $650 \ldots 550^{\circ} \mathrm{C}$.

Прокаливаемостью стали называется глубина проникновения закаленной зоны. Несквозная прокаливаемость обусловлена тем, что при закалке деталь охлаждается быстрее на поверхности и медленнее в сердцевине. Распределение скорости охлаждения по сечению детали показывает, что у поверхности скорость охлаждения мак-

Таблица 5.1. Скорость охлаждения сталей в различных закалочных средах, ${ }^{\circ} \mathrm{C} / \mathrm{c}$

Закалочная среда		Интервал температур, ${ }^{\circ} \mathrm{C}$	
	$650 \ldots 550$	$300 \ldots 200$	
Вода при температуре $18^{\circ} \mathrm{C}$	600	270	
Вода при температуре $50^{\circ} \mathrm{C}$	100	270	
10%-ный раствор гидроксида натрия в воде	1200	300	
10%-ный раствор хлорида натрия в воде	1100	300	
Минеральное масло	$100 \ldots 150$	$20 \ldots 50$	
Спокойный воздух	3	1	
Полимерная закалочная среда ПК-2	$300 \ldots 550$	$50 \ldots 100$	
Полимерная закалочная среда ВП-3	$300 \ldots 550$	$50 \ldots 100$	

симальна, а в центре - минимальна (рис. 5.22). Глубина проникновения закаленной зоны соответствует заштрихованному слою, т.е. проходит до точки пересечения кривых критической скорости закалки $v_{\text {кр }}$ и скорости охлаждения $v_{\text {олл }}$. Чем меньше $v_{\text {кр }}$, тем глубже прокаливаемость. Прокаливаемость, как и критическая скорость охлаждения, тесно связана со скоростью превращения аустенита и, следовательно, с положением кривых на диаграмме изотермического превращения. За глубину прокаливаемости принимается слой с полумартенситной зоной (50% мартенсита $+50 \%$ троостита).

Критический диаметр $D_{\text {кр }}$ - максимальный диаметр сечения, прокаливающегося в данном охладителе насквозь (50% мартенси-

Рис. 5.22. Влияние скорости охлаждения на прокаливаемость стали: r - радиус заготовки

Рис. 5.23. Схема испытания на прокаливаемость методом торцевой закалки

та $+50 \%$ троостита). При этом минимальная скорость охлаждения в центре детали больше критической скорости закалки.

Критический диаметр при охлаждении в воде больше, чем при охлаждении в масле. Наиболее простой метод определения критического диаметра - метод торцевой закалки (рис. 5.23). После закалки измеряют твердость на боковой поверхности по высоте образца.

Прокаливаемость является важной характеристикой стали. При сквозной прокаливаемости по сечению изделия механические свойства одинаковы, при несквозной прокаливаемости в сердцевине наблюдается снижение прочности, пластичности и вязкости металла. Чем выше категория прочности, больше сечение и ответственнее деталь, тем большее значение имеет прокаливаемость.

На прокаливаемость оказывают влияние состав стали (содержание углерода и легируюших элементов) и характер закалочной среды. Легированные стали имеют значительно более высокую прокаливаемость по сравнению с углеродистыми, что связано с увеличением при легировании стали устойчивости переохлажденного аустенита. Прокаливаемость углеродистых сталей зависит от содержания углерода: с понижением его прокаливаемость падает. Уменьшение скорости охлаждения приводит к снижению прокаливаемости. При закалке в масле сквозная прокаливаемость деталей из среднеуглеродистой стали составляет $3 . . .4$ мм, при закалке в воде $10 \ldots 15 \mathrm{mм}$. . С увеличением размеров залотовки прокаливаемость резко уменьшается. Так, в заготовке диаметром до 40 мм из стали 45 при закалке в воде мартенситная структура достигается на глубине всего лишь 4 мм.

Прокаливаемость является одним из основных критериев и при выборе марки стали рассматривается наряду с ее механическими свойствами, технологичностью и себестоимостью. В некоторых случаях необходимая прокаливаемость может быть меньше сквозной. Если детали работают на кручение и изгиб, возникающие в них напряжения уменьшаются от максимальных на поверхности до нуля в середине. Для таких деталей сквозная прокаливаемость необязательна, достаточно иметь прокаливаемость на расстоянии $0,25-0,5$ радиуса от поверхности.

Выбор способа охлаждения нагретой под закалку стальной детали зависит от ее формы, размеров и химического состава стали.

Чем сложнее форма и больше сечение детали, тем выше напряжения, возникаюшие при закалке, и больше опасность образования трешин. Чем больше содержание углерода в стали, тем бо́льшие объемные изменения протекают при превращении, тем

больше опасность деформации и образования трещин, тем тщательнее должен быть выбор способа охлаждения при закалке.

Идеальная кривая охлаждения должна характеризоваться максимальной скоростью в начале охлаждения при прохождении интервала наименьшей устойчивости аустенита и минимальной скоростью в конце охлаждения при мартенситном превращении (рис. 5.24).

Наиболее простой способ закалки это закалка в одном охладителе (кривая 1), при котором нагретая деталь погружается в охлаждающую жидкость и остается там до полного охлаждения. Недостатком этого способа является возникновение значительных внутрен-

Рис. 5.24. Режимы при разных способах закалки:
1 - закалка в одном охладителе; 2 - закалка в двух средах; 3- ступенчатая закалка; 4изотермическая закалка; 5 идеальный режим охлаждения них напряжений. Для деталей из углеродистых сталей сечением более 5 мм наиболее широко применяемой закалочной средой является вода, для деталей меньших размеров и легированных сталей масло.

Для уменьшения внутренних напряжений применяют закалку в двух средах (кривая 2), при которой деталь сначала охлаждают в воде до температуры $300 \ldots 400^{\circ} \mathrm{C}$, а затем для окончательного oxлаждения переносят в масло. Недостатком этого способа является трудность регулирования выдержки деталей в первой охлаждающей жидкости.

Точное регулирование времени выдержки детали в первой охлаждающей жидкости достигается при ступенчатой закалке (кривая 3). При этом способе деталь быстро охлаждается погружением в соляную ванну с температурой, немного превышающей (на $30 \ldots 50^{\circ} \mathrm{C}$) температуру мартенситного превращения данной стали M_{H}, выцерживается при этой температуре до достижения одинаковой температуры по всему сечению, после чего охлаждается на воздухе. Мартенситное превращение происходит при медленном охлаждении на воздухе, что резко снижает внутренние напряжения и возможность коробления. Недостатком этого способа является ограничение размера деталей. Из-за низкой скорости охлаждения в сравнительно нагретой среде при закалке крупных деталей в их центральных зонах скорость охлаждения может оказаться ниже критической. Максимальный диаметр деталей из углеродистых сталей, закаливаемьх этим способом, составляет $10 \mathrm{mм}$, легированных $-20 \ldots 30$ мм.

В отличие от ступенчатой при изотермической закалке (кривая 4) стаљ выдерживается в ваннах до окончания изотермического превращения аустенита. Температура соляной ванны обычно составляет
$250 \ldots 350^{\circ} \mathrm{C}$. В результате изотермической закалки получается структура бейнита с твердостью 45 ... 55 HRC при сохранении повышенной пластичности и вязкости. Длительность выдержки определяется с помощью диаграмм изотермического превращения аустенита.

Закалка с самоотпуском применяется в случае термической обработки инструмента типа зубил, молотков, в которых должны сочетаться высокие твердость и вязкость. В этом случае изделия выдерживают в закалочной ванне не до полного охлаждения. За счет теплоты внутренних участков происходит нагрев поверхностных слоев до нужной температуры, т.е. самоотпуск.

В структуре стали, закаленной при комнатной температуре, присутствует некоторое количество остаточного аустенита. Остаточный аустенит снижает твердость и износостойкость деталей и может приводить к изменению их размеров при эксплуатации в условиях низких температур из-за самопроизвольного образования мартенсита из аустенита. Для уменьшения остаточного аустенита в структуре применяют обработку холодом.

Обработка холодом заключается в охлаждении стали ниже $0^{\circ} \mathrm{C}$ до температуры конца мартенситного превращения M_{k} (обычно не ниже $-75^{\circ} \mathrm{C}$), получаемых в смесях сухого льда со спиртом. Обработку холодом следует проводить сразу же после закалки во избежание стабилизации аустенита.

Отпуск стали. Отпуск является заключительной операцией термической обработки, состоящей из нагрена стали до температуры ниже температуры его критической точки $A_{c 1}$ с последующим охлаждением, при котором формируется окончательная структура стали. Отпуск проводят после операции закалки. Изменения в структуре при нагреве закаленной стали изменяют ее свойства (рис. 5.25). Различают низкий, средний и высокий отпуск.

Низкий отпуск проводят при температуре $150 \ldots 20{ }^{\circ} \mathrm{C}$. Целью низкого отпуска является сниже-

Рис. 5.25. Изменение механических свойств закаленной стали, содержащей $0,4 \%$ углерода, в зависимо-

сти от температуры отпуска ние внутренних напряжений и некоторое уменьшение хрупкости мартенсита при сохранении высокой твердости и износостойкости деталей. Структура стали после низкого отпуска представляет собой мартенсит отпуска. Основная область применения низкого отпуска - режущий и мерительный инструмент, а также машиностроительные детали, которые должны обладать высокой твердостью и износостойкостью.

Средний отпуск проводят при температуре $350 \ldots 450^{\circ} \mathrm{C}$. Цель

среднего отпуска - некоторое снижение твердости при значительном увеличении предела упругости. Структура стали представляет собой троостит отпуска, обеспечивающий высокие пределы прочности, упругости и выносливости, а также улучшение сопротивляемости действию ударных нагрузок.

Высокий отпуск проводят при температуре $550 . .650^{\circ} \mathrm{C}$. Целью высокого оттууска является достижение оптимального сочетания прочностных, пластических и вязких свойств. Структура стали представляет собой однородный сорбит отпуска с зернистым цементитом. Область применения высокого отпуска - конструкционные стали, детали из которых подвергаются воздействию высоких напряжений и ударным нагрузкам.

Термическая обработка, состоящая из закалки с высоким отпуском, улучшаюшая общий комплекс механических свойств, является основным видом термической обработки конструкционных сталей и называется улучшением.

Температуру отпуска обычно выбирают в зависимости от заданной твердости. В этом случае изделие закаливают на максимальную твердость, а затем отпуском твердость снижают до заданной. Изменение твердости при отпуске закаленной углеродистой стали, содержащей $0,8 \%$ углерода, показано на рис. 5.26.

Вязкость сталей, особенно легированных, зависит от режима отпуска: температуры, времени выдержки и скорости охлаждения после отпуска (рис. 5.27). При определенных температурах и медленном охлаждении в сталях появляется отпускная хрупкость. Принято различать отпускную хрупкость I и II рода.

Отпускная хрупкость I рода (необратимая) наблюдается при отпуске как легированных, так и углеродистых сталей при темпе-

Рис. 5.26. Зависимость твердости HRC закаленной эвтектоидной углеродистой стали от температуры отпуска $t_{\text {отл }}$

Рис. 5.27. Влияние температуры отпуска $t_{\text {отп }}$ и скорости охлаждения после отпуска на ударную вязкость KCU хромокремнистой стали

ратуре примерно $300^{\circ} \mathrm{C}$ (в интервале $250 \ldots 400^{\circ} \mathrm{C}$). Причина отпускной хрупкости I рода - неравномерность распада мартенсита по границам и внутри зерна при отпуске. Вблизи границ карбиды выделяются интенсивнее, там создается концентрация напряжений, что делает границы зерен более хрупкими. При повышении температуры отпуска или увеличении продолжительности нагрева структура по сечению зерна выравнивается, и отпускная хрупкость I рода устраняется. Повторный отпуск при температуре $250 \ldots 400^{\circ} \mathrm{C}$ не приводит к отпускной хрупкости.

Отпускная хрупкость I рода (обратимая) наблюдается при медленном охлаждении после отпуска при температуре $450 \ldots 550^{\circ} \mathrm{C}$. Этот вид отпускной хрупкости обратим. При медленном охлаждении по границам зерен успевают выделиться мелкие карбиды, фосфиды и нитриды, которые приводят к охрупчиванию зерен. При быстром охлаждении эти частицы не выделяются.

Данный вид хрупкости характерен для легированных сталей, причем чаще наблюдается в сталях с повышенным содержанием хрома и марганца. Введение в сталь даже небольших количеств молибдена ($0,2 \ldots 0,3 \%$) или вольфрама ($0,6 \ldots 1 \%$) резко снижает склонность к отпускной хрупкости II рода.

Мерами борьбы с отпускной хрупкостью II рода являются oxлаждение после отпуска не на воздухе, а в масле, для крупных деталей - даже в воде, а также дополнительное легирование стали молибденом или вольфрамом.

5.3. Поверхностное упрочнение стальных изделий

Упрочнение поверхностн методом пластического деформнрования. Эффективными способами упрочнения поверхностного слоя являются дробеструйная обработка, позволяющая обрабатывать стальные детали на глубину до 0,7 мм, и обкатка поверхности роликами на глубину до 15 мм. При этом происходит наклеп поверхности детали, позволяющий повысить ее усталостную прочность без изменения материала и режима термической обработки. Наклепу подвергают готовые детали, прошедшие механическую и термическую обработку.

При дробеструйной обработке на поверхность деталей из специальных дробеметов с большой скоростью направляют поток стальной или реже чугунной дроби диаметром $0,5 \ldots 1,5$ мм. Удары дроби вызывают пластическую деформацию поверхностного слоя, вследствие чего он становится более твердым. В нем создаются остаточные напряжения сжатия, тем самым повышается усталостная прочность. Если в поверхностном слое присутствует остаточный аустенит, благодаря наклепу происходит его фазовое превращение с образованием мартенсита, что дополнительно увеличи-

вает твердость и износостойкость. При дробеструйной обработке сглаживаются мелкие поверхностные дефекты, являющиеся концентраторами напряжений.

Дробеструйной обработке подвергают поверхность рессор и пружин, зубчатых колес, звенъев гусениц, гильз и поршней. В результате дробеструйной обработки предел выносливости рессор увеличивается в 1,5 раза и в несколько раз возрастает их долговечность.

Обкатку роликами проводят с помощью специальных приспособлений на обычных токарньх или строгальных станках. Давление на ролики осуществляется гидравлически или с помощью пружин. Обкатку роликами применяют для обработки шеек валов, осей железнодорожных вагонов, коленчатых валов и других деталей. Помимо упрочнения обкатка повышает чистоту обрабатываемой поверхности.

Поверхностная закалка. Поверхностная закалка заключается в нагреве поверхностного слоя стали до температуры выше температуры точки $A_{c 3}$ с последующим охлаждением для получения высокой твердости и прочности в поверхностном слое детали в сочетании с вязкой сердцевиной.

Высокая скорость высокочастотного нагрева (сотни градусов в секунду) обусловливает смещение фазовых превращений в область более высоких температур. Следовательно, температура высокочастотной закалки должна быть выше температуры закалки при обычном печном нагреве и тем выше, чем больше скорость нагрева и грубее выделения избыточного феррита в доэвтектоидных сталях. Например, сталь 40 при печном нагреве закаливают с температуры $840 \ldots 860^{\circ} \mathrm{C}$, при индукционном нагреве со скоростью $250^{\circ} \mathrm{C} / \mathrm{c}$ с температуры $880 \ldots 920^{\circ} \mathrm{C}$, а при скорости нагрева $400^{\circ} \mathrm{C} / \mathrm{c}-\mathrm{c} 930 \ldots 980^{\circ} \mathrm{C}$.

Нагрев под закалку производят токами высокой частоты (ТВЧ) - наиболее распространенным способом, в расплавленных металлах или солях, пламенем газовых или кислородно-ацетиленовых горелок, а также лазерным излучением.

При нагреве ТВЧ магнитный поток, создаваемый переменным током, проходящим по проводнику (индуктору), индуцирует вихревые токи в металле детали 1 , помещенной внутри индуктора 2 (рис. 5.28). Форма индуктора соответствует внешней форме изделия. Индуктор представляет собой медные трубки с циркулирующей внутри водой для охлаждения. Скорость нагрева зависит от количества выделившейся теплоты, пропорциональ-

Рис. 5.28. Поверхностная закалка с нагревом токами высокой частоты:
1- эакаливаемая деталь; 2индуктор; 3 - охладитель

ного квадрату силы тока и сопротивлению металла. Плотность тока по сечению детали неравномерна, на поверхности она значительно выше, чем в сердцевине. Основное количество теплоты выделяется в тонком поверхностном слое. Глубина проникновения тока в металл зависит от свойств нагреваемого металла и обратно пропорциональна квадратному корню из частоты тока. Чем болыше частота тока, тем тоныше получается закаленный слой. Обычно применяют машинные генераторы с частотой $500 \ldots 15000$ Гц и ламповые генераторы с частотой до 10^{6} Гц. При использовании машинных генераторов толщина закаленного слоя составляет $2 \ldots 10$ мм, ламповых от десятых долей миллиметра до 2 мм. После нагрева в индукторе деталь охлаждают с помощью специального охлаждающего устройства. Через имеющиеся в нем отверстия на поверхность детали разбрызгивается охлаждающщая жидкость.

Структура закаленного слоя состоит из мартенсита, а переходной зоны - из мартенсита и феррита. Глубинные слои нагреваются до температур ниже критических и при охлаждении не упрочняются. Для повышения прочности сердцевины перед поверхностной закалкой деталь иногда подвергают нормализации или улучшению. Нагрев длится обычно до 10 c , причем скорость нагрева составляет $100 \ldots 1000^{\circ} \mathrm{C} / \mathrm{c}$.

Достоинствами поверхностной закалки ТВЧ являются регулируемая глубина закаленного слоя; высокая производительность и возможность автоматизации; отсутствие обезуглероживания и окалинообразования; минимальное коробление детали. К недостаткам относятся высокая стоимость индуктора (индивидуального для каждой детали) и, следовательно, малая применимость ТВЧ к условиям единичного производства.

Для поверхностной закалки применяют обычно углеродистые стали, содержащие $0,4 \%$ углерода. Глубокая прокаливаемость при этом методе не используется, поэтому легированные стали обычно не применяют. После закалки проводят низкий оппуск при температуре $200^{\circ} \mathrm{C}$ или даже самооттуск. После закалки и отпуска твердость стали на поверхности $45 \ldots 55$ HRC, в сердцевине $25 \ldots 30$ HRC.

Высокочастотной закалке подвергают шейки коленчатых валов, кулачковых валов, гильзы цилиндров, поршневые пальцы, детали гусениц, пальцы, рессоры и т.д. Выбор толщины упрочняемого слоя зависит от условий работы детали. Если от детали требуется только высокая износостойкость, толщина упрочняемого слоя составляет $1,5 \ldots 3$ мм, в случае высоких контактных нагрузок и возможной перешлифовки оптимальная толщина возрастает до $5 . .10$ мм.

Для поверхностной закалки можно использовать нагрев лазером, что позволяет избежать необходимости изготовления индивидуальных индукторов. Лазеры - это квантовые генераторы оптического диапазона, в основу работы которых положено усиление электромагнитных колебаний за счет индукционного излучения атомов (мо-

лекул). Лазерное излучение распространяется очень узким пучком и характеризуется высокой концентрацией энергии. Источниками генерируемого излучения служат твердые тела (рубины, алюминиевые гранаты, иттрий, стекла) и газы ($\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{CO}_{2}$).

Под действием лазерного излучения поверхность деталей за короткий промежуток времени ($10^{-7} \ldots 10^{-3}$ ч) нагревается до высоких температур. После прекращения облучения нагретые участки быстро охлаждаются благодаря интенсивному отводу теплоты холодными объемами металла. Происходит закалка тонкого поверхностного слоя. Лазерная обработка поверхности стальных и чугунных деталей существенно увеличивает их износостойкость, предел выносливости при изгибе и предел контактной выносливости. Лазерная обработка - перспективный метод поверхностного упрочнения изделий сложной формы, работающих в условиях изнашивания и усталостного нагружения.

Химико-термическая обработка стали. Химико-термической обработкой называют процесс, сочетающий в себе поверхностное насыщение стали тем или иным элементом при высокой температуре и термическое воздействие, в результате которых происходит изменение химического состава, микроструктуры и свойств поверхностных слоев деталей.

Химико-термическая обработка включает в себя цементацию, азотирование, цианирование, алитирование, силицирование и т.д. Насыщение поверхностного слоя происходит при нагреве детали до определенной температуры в среде, легко выделяющей насыщающий элемент в активном состоянии, и выдержке при этой температуре. Среды, выделяющие насыщающий элемент, могут быть газообразными, жидкими и твердыми.

В отличие от поверхностной закалки при ХТО разница в свойствах достигается изменением не только структуры металла, но и его химического состава. Химико-термическая обработка не зависит от формы деталей, обеспечивает получение упрочненного слоя одинаковой толшины по всей поверхности, дает более существенное различие в свойствах поверхности и сердцевины деталей. Поверхностная закалка изменяет только структуру, а ХТО - химический состав и структуру поверхностного слоя. Вместе с тем ХТО уступает поверхностной закалке по производительности.

Поверхностный слой детали, отличаюшийся от исходного материала по химическому составу, называется диффузионным слоем, толщина которого зависит от температуры и длительности вьдержки при этой температуре. Материал детали под диффузионным слоем с неизменившимся химическим составом называется сердцевиной.

Цементация стали. Цементацией называется процесс диффузионного насыщения поверхностного слоя стальных деталей углеродом. Цель цементации - достижение высокой твердости и износостойкости поверхности детали в сочетании с вязкой сердцеви-

ной. На цементацию поступают механически обработанные детали с припуском на шлифование 50 ... 100 мкм. В тех случаях, когда цементации подвергается только часть детали, остальные участки защищают либо специальными огнеупорными обмазками, либо тонким слоем ($20 \ldots 40$ мкм) меди, нанесенным электролитическим способом.

Цементации подвергают стали с низким содержанием углерода $(0,1 \ldots 0,2 \%)$. После цементации концентрация утлерода на поверхности достигает 1%. Глубина цементованного слоя (при содержании утлерода примерно $0,4 \%$) обычно $0,5 \ldots 2,5$ мм. Для достижения высокой твердости поверхности и вязкой сердцевины после цементации всегда проводят закалку с низким отпуском.

Различают два основных вида цементации: в твердой и газовой среде. Среда, поставляющая утлерод к поверхности детали, подвергаемой цементации, называется карбюризатором.

Твердую цементацию производят в специальных стальных ящиках, в которых детали укладывают попеременно с карбюризатором. Яшики закрывают крышками и замазывают огнеупорной глиной для предотвращения утечки газов. В качестве твердого карбюризатора используют дубовый и березовый древесный утоль и активизаторы BaCO_{3} или $\mathrm{Na}_{2} \mathrm{CO}_{3}$. При нагреве до температуры $930 \ldots 950^{\circ} \mathrm{C}$ идут реакции

$$
2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} ; \mathrm{BaCO}_{3}+\mathrm{C} \rightarrow \mathrm{BaO}+2 \mathrm{CO} ; 2 \mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{C}
$$

Образующиеся активные атомы углерода диффундируют в решетку γ-железа.

Процесс цементации проводят при температуре выше температуры точки $A_{\text {c }}$ (обычно при $910 \ldots 930^{\circ} \mathrm{C}$, реже при $1000 \ldots 1050^{\circ} \mathrm{C}$), когда сталь находится в аустенитном состоянии, которое характеризуется высокой растворимостью углерода. Толщина цементованного слоя в зависимости от состава стали и назначения изделия может составлять $0,5 \ldots 2$ мм.

Газовая цементация является основным процессом массового производства. Стальные детали нагревают в газовых смесях, содержащих $\mathrm{CO}, \mathrm{CH}_{4}$ и др. Газовая цементация проходит быстро, так как не требует времени на прогрев ящика и карбюризатора; слой толщиной 1 мм образуется за $6 \ldots 7$ ч.

После цементации характерно неравномерное распределение углерода по сечению детали. Полученный в результате цементации наружный слой содержит более $0,8 \%$ углерода и имеет структуру заэвтектоидных сталей - перлит и вторичный цементит. Глубже лежит слой эвтектоидного состава с перлитной структурой, а далее - слой с ферритно-перлитной структурой.

После цементации из-за длительной выдержки при высоких температурах сталь становится крупнозернистой. Это обстоятельство необходимо учитывать при назначении обязательной после

цементации термической обработки, целью которой является упрочнение поверхности с одновременным измельчением зерна и получением вязкой сердцевины.

В зависимости от назначения детали применяют различные варианты термической обработки (рис. 5.29). Менее ответственные детали подвергают закалке непосредственно с цементационного нагрева с последующим низким отпуском (рис. $5.29, a$). Крупное зерно аустенита, выросшее в результате длительной цементации, дает грубокристаллический мартенсит отпуска в поверхностном слое и крупнозернистую ферритно-перлитную структуру в сердцевине детали. Эти недостатки в определенной мере устраняются при использовании наследственно мелкозернистых сталей и применении газовой цементации, сокрашающей время пребывания стали при высокой температуре. Подстуживание при закалке до температуры $750 \ldots 800^{\circ} \mathrm{C}$ снижает внутренние напряжения, а обработка холодом уменьшает количество остаточного аустенита в цементованном слое.

При более высоких требованиях к структуре после цементации детали подвергают охлаждению на воздухе, однократной закалке с нагрева выше температуры точки $A_{c 3}$ и низкому отпуску (рис. 5.29, б). При этом в сердцевине и на поверхности детали происходят перекристаллизация и измельчение зерна. Однако в поверхностном высокоутлеродистом слое наблюдается некоторый перегрев, так как оптимальный закалочный нагрев заэвтектоидных сталей - это нагрев выше температуры точки $A_{c l}$, но ниже $A_{c m}$.

Рис. 5.29. Режимы термической обработки стали после цементации: a - менее ответственных деталей; б - ответственных деталей; в - особо ответственных деталей

Особо ответственные детали после цементации подвергают двойной закалке с низким отпуском (рис. 5.29, в). При первой закалке с температуры на $30 \ldots 50^{\circ} \mathrm{C}$ вьшше температуры точки $A_{c 3}$ происходит перекристаллизация сердцевины детали с образованием мелкого аустенитного зерна, обеспечивающего мелкозернистость продуктов распада. Одновременно при этом цементитная сетка в поверхностном слое растворяется. При нагреве под вторую закалку мартенсит, полученный после первой закалки, претерпевает отпуск, при этом образуются глобулярные карбиды, увеличивающие твердость поверхностного заэвтектоидного слоя. Кроме того, при второй закалке с температуры выше температуры точки $A_{c 1}$ на $30 \ldots 50^{\circ} \mathrm{C}$ обеспечивается мелкое зерно в поверхностном слое. После такой термической обработки поверхностный заэвтектоидный слой имеет структуру отпушенного мартенсита с включениями глобулярных карбидов. Структура сердцевины определяется химическим составом стали. При цементации углеродистой стали из-за низкой прокаливаемости сердцевина имеет ферритно-перлитную структуру.

Легированная сталь при цементации позволяет получать в сердцевине структуру сорбита, троостита или даже мартенсита, но благодаря низкой концентрации углерода сердцевина будет иметь высокую ударную вязкость.

Азотирование стали. Азотированием называется процесс насыщения поверхностного слоя азотом. Целью азотирования является создание поверхностного слоя с особо высокой твердостью, износостойкостью, повышенной усталостной прочностью и сопротивлением коррозии в водной среде, паровоздушной и влажной атмосфере.

Процесс азотирования заключается в выдержке в течение довольно длительного времени (до 60 ч) деталей в атмосфере аммиака при температуре $500 \ldots 600^{\circ} \mathrm{C}$. При более высокой температуре образуются более крупные нитриды, и твердость уменьшается. Азотирование проводят в стальных герметически закрытых ретортах в которые поступает аммиак. Реторту помещают в нагревательную печь. Поступающий из баллонов аммиак при нагреве разлагается на азот и водород: $\mathrm{NH}_{3} \rightarrow 3 \mathrm{H}+\mathrm{N}$.

Активные атомы азота проникают в решетку α-железа и диффундируют в ней. Образующиеся при этом нитриды железа еще не обеспечивают достаточно высокой твердости. Высокую твердость азотированному слою придают нитриды легирующих элементов, прежде всего хрома, молибдена, алюминия. При совместном легировании стали хромом, молибденом, алюминием твердость азотированного слоя достигает 1200 HV , в то время как после цементации и закалки твердость составляет 900 HV .

Благодаря высокой твердости нитридов легирующих элементов азотированию, как правило, подвергают легированные среднеуг-

леродистые стали: 38 X 2 M МА, 35 XMA , $38 \mathrm{X} 2 \mathrm{~B} Ф Ю А$, а также некоторые итамповые стали, например 3X2B8, 5XHM.

Азотированию обычно подвергают готовые изделия, прошедшие механическую и окончательную термическую обработку (закалку с высоким отпуском $600 \ldots 675^{\circ} \mathrm{C}$, температура которого выше максимальной температуры азотирования). После такой термической обработки металл приобретает структуру сорбита, имеющую высокую прочность и вязкость. Эта структура сохраняется в сердцевине детали и после азотирования. Высокая прочность металической основы необходима для того, чтобы тонкий и хрупкий азотированный слой не продавливался при работе детали. Высокая твердость азотирования достигается сразу и не требует последующей термической обработки. Это главное достоинство процесса азотирования.

Участки, не подлежащие азотированию, защищают нанесением тонкого слоя олова ($10 \ldots 15$ мкм) электролитическим методом или жидкого стекла. Глубина азотированного слоя достигает $0,3 \ldots 0,6$ мм. Из-за сравнительно низких температур скорость азотирования значительно меньше, чем скорость цементации, и составляет 0,01 мм/ч и менее.

По сравнению с цементацией азотирование имеет ряд преимуществ и недостатков. Преимуществами азотирования являются более высокая твердость и износостойкость поверхностного слоя, сохранение им высоких свойств при нагреве до $500^{\circ} \mathrm{C}$, а также высокие коррозионные свойства. В азотированном слое создаются остаточные напряжения сжатия, что повышает усталостную прочность. Кроме того, после азотирования не требуется проведение закалки, что позволяет избежать сопутствующих закалке дефектов.

K недостаткам азотирования по сравнению с цементацией относятся бо́льшая продолжительность процесса и необходимость применения дорогостоящих легированных сталей. ІІоэтому азотирование проводят при изготовлении более ответственных деталей, от которых требуется особо высокое качество поверхностного слоя.

Азотирование применяют в машиностроении для изготовления измерительного инструмента, гильз, цилиндров, зубчатьх колес, шестерен, втулок, коленчатых валов и др.

Цианирование стали. Цианированием (нитроцементацией) называется процесс совместного насыщения поверхности стальных деталей азотом и углеродом. Основная цель цианирования состоит в повышении твердости и износостойкости деталей.

При цианировании нагрев осуществляют либо в распллавленных солях, содержацих цианистые соли NaCN или KCN , либо в газовой среде, состоящей из смеси метана CH_{4} и аммиака NH_{3}. Состав и свойства цианированного слоя зависят от температуры проведения цианирования.

В зависимости от температуры процесса различают высокотемпературное ($850 \ldots 950^{\circ} \mathrm{C}$) и низкотемпературное ($500 \ldots 600^{\circ} \mathrm{C}$) циа-

нирование. Чем выше температура цианирования, тем меньше насыщение поверхностного слоя азотом и больше углеродом. Совместная диффузия углерода и азота протекает быстрее, чем диффузия каждого из этих элементов в отдельности.

При низкотемпературном цианировании поверхностный слой насыщается преимущественно азотом. Низкотемпературному цианированию обычно подвергают окончательно изготовленный и заточенный режуший инструмент из быстрорежущей стали с целью повышения его износостойкости и красностойкости. После низкотемпературного цианирования отпуск не производят. Глубина цианированного слоя $0,01 \ldots 0,04$ мм с твердостью 1000 HV .

После высокотемпературного цианирования на глубину $0,6 \ldots 1,8$ мм в течение $3 \ldots 10$ ч детали подвергают закалке и низкому отпуску Твердость после термической обработки составляет $59 . . .62$ HRC.

По сравнению с цементованным цианированный слой имеет более высокую твердостъ и износостойкость, а также более высокое сопротивление коррозии. В ваннах можно подвергать цианированию мелкие детали, например детали часовых механизмов, для которых достаточно получение слоя небольшой толщины.

Недостатком цианирования является высокая стоимость процесса, связанная с необходимостью строгого соблюдения правил безопасности из-за высокой токсичности цианистых солей.

Диффузиониая метализация. Процесс диффузионного насыщения поверхностньх слоев стали различными металлами называется диффузионной металлизацией. Детали, поверхность которых насыщена алюминием, хромом, кремнием, бором, приобретают ряд ценных свойств, например жаростойкость, коррозионную стойкость, повышенную износостойкость и твердость.

Металлизация бывает твердая, жидкостная и газовая. При жидкостной металлизации стальную деталь погружают в расплав металла. При твердой и газовой металлизации насыщение происходит с помощью летучих соединений хлора с металлом: $\mathrm{AlCl}_{3}, \mathrm{CrCl}_{3}$, SiCl_{4}, которые при температуре $100 \ldots 1100^{\circ} \mathrm{C}$ вступают в обменную реакцию с железом с образованием диффундирующего элемента в активном состоянии.

При алитировании, т.е. насыщении алюминием, которое обычно проводится в порошкообразных смесях или расплавленном алюминии, детали приобретают повышенную коррозионную стойкость благодаря образованию плотной пленки оксида алюминия $\mathrm{Al}_{2} \mathrm{O}_{3}$, предохраняющей металл от окисления. Толшина слоя составляет $0,2 \ldots 0,5$ мм. Твердый раствор алюминия в железе обладает высокой жаростойкостью.

При хромировании обеспечивается высокая стойкость к газовой коррозии до температуры $800^{\circ} \mathrm{C}$, а также стойкость к коррозии в воде, морской воде и кислотах. Толщина слоя составляет до 0,2 мм

Силицирование, т.е. насыщение кремнием, придает высокую кислотоупорность в соляной, серной и азотной кислотах и применяется для деталей, используемых в химической и нефтяной промышленности; толщина слоя составляет $0,3 \ldots 1$ мм.

Борирование придает поверхностному слою исключительно высокую твердость ($1800 \ldots 2000 \mathrm{HV}$), износостойкость и устойчивость к коррозии в различных средах. Борирование часто проводят при электролизе расплавленньх солей, например буры $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$; стальная деталь служит катодом. При температуре примерно $150^{\circ} \mathrm{C}$ и выдержке 205 ч на поверхности образуется твердый борид железа; толщина слоя достигает $0,1 \ldots 0,2$ мм.

Контрольные вопросы

1. Что такое термическая обработка?
2. С какой целью проводят предварительную термическую обработку?
3. Какие виды термической обработки проволят для повышения прочности и твердости углеродистой стали?
4. Почему низкоутлеродистые стали относят к незакаливаемым?
5. Ках влияет температура отпуска на свойства сталей?
6. Что такое улучшение? С какой целью его проводят?
7. Какую термическую обработку целесообразно проводить для инструментов, изготовленных из углеродистых сталей?
8. Какая термическая обработка позволяет получить максимальный предел упругости стали?
9. Какая обработка позволяет повысить твердость и прочность поверхностного слоя стального изделия?
10. Можно ли с помошью химико-термической обработки повысить коррозионную стойкость поверхностного слоя стальной детали?

ГЛАВА 6
 ПРОМЫШЛЕННЫЕ СТАЛИ И СПЛАВЫ

6.1. Легированные стали

Влияние легирующих элементов на превращения и свойства стали. Легирующими называют элементы, специально вводимые в сталь для изменения ее строения и свойств. Соответственно стали, содержащие легирующие элементы, называют легированными. При этом, если содержание кремния превышает $0,4 \%$ или марганца $0,8 \%$, они также относятся к легирующим элементам.

Концентрация некоторых легирующих элементов может быть очень малой. В количестве до $0,1 \%$ вводят ниобий и титан, а содержание бора обычно не превышает $0,005 \%$. Если концентрация элемента составляет примерно $0,1 \%$ и менее, легирование стали принято называть микролегированием.

Появление и широкое распространение легированных сталей обусловлено непрерывным ростом требований, предъявляемых к материалам. Легирование производят с целью изменения механических (прочность, пластичность, вязкость), физических (электропроводность, магнитные характеристики, радиационная стойкость) и химических (коррозионная стойкость в разных средах) свойств.

Необходимый комплекс свойств обычно обеспечивается не только легированием, но и термической обработкой, позволяющей получать наиболее оптимальную структуру металла. Легированные стали дороже углеродистых, поэтому применять их без термической обработки нерационально.

Применение легирующих элементов существенно влияет на себестоимость стали. При использовании тех или иных легирующих элементов руководствуются не только их влиянием на свойства стали, но и экономическими соображениями, в частности стоимостью добычи и получения, а также дефицитностью.

Основными легирующими элементами являются $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Mn}$, $\mathrm{Si}, \mathrm{W}, \mathrm{Mo}, \mathrm{V}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Ti}, \mathrm{Nb}, \mathrm{Zr}, \mathrm{B}$. Часто сталь легируют не одним, а несколькими элементами, например Cr и Ni , получая хромоникелевую сталь, Cr и Mn - хромомарганцевую сталь, Cr , $\mathrm{Ni}, \mathrm{Mo}, \mathrm{V}$ - хромоникельмолибденованадиевую сталь.

Легирующие элементы, вступая во взаимодействие с железом и углеродом, могут участвовать в образовании различных фаз в легированных сталях:

легированного феррита - твердого раствора легирующего элемента в Fe_{α};

легированного аустенита - твердого раствора легирующего элемента в Fe_{γ};

легированного цементита - твердого раствора легирующего элемента в цементите или при увеличении содержания легирующего элемента сверх определенного предела - специальных карбидов.

Если проанализировать с помощью двойных диаграмм состояния систему железо - легирующий элемент, как легирующие элементы влияют на расширение области твердого раствора γ-железа (легированного аустенита) и, наоборот, на сужение области твердого раствора γ и соответственно расширение области твердого раствора α, т.е. легированного феррита, то по этому влиянию все легирующие элементы можно разделить на две группы: расширяющие область твердых растворов γ - аустенитообразующие легирующие элементы и сужающие γ-область (расширяющие область твердьх растворов α) - ферритообразующие легирующие элементы.

K числу аустенитообразующих легирующих элементов относятся $\mathrm{Ni}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Cu}, \mathrm{C}, \mathrm{N} . \mathrm{K}$ числу ферритообразующих легирующих элементов относятся $\mathrm{Cr}, \mathrm{Si}, \mathrm{Al}, \mathrm{Mo}, \mathrm{V}, \mathrm{Ti}, \mathrm{W}, \mathrm{Nb}, \mathrm{Zr}$.

При легировании сталей аустенитообразующими элементами в болышом количестве может произойти полное «выклинивание» области α-железа, и в этом случае стали будут иметь аустенитную структуру при комнатной температуре - аустенитные стали.

Наоборот, при легировании сталей ферритообразующими элементами в большом количестве может произойти «выклинивание» области γ-железа, и стали приобретут чисто ферритную структуру - ферритные стали.

При комбинированном легировании сталей аустенитообразующими и ферритообразующими элементами структура стали будет состоять из аустенита и феррита (аустенитно-ферритные стали).

В большинстве конструкционньх сталей феррит при температуре эксплуатации является основной структурной составляющей, занимающей не менее 90% объема металла. Поэтому от свойств феррита во многом зависят свойства стали в целом. Чем больше разница в атомных размерах железа и легирующего элемента, тем больше искажение кристаллической решетки, тем выше твердость, прочность, но ниже пластичность и особенно вязкость феррита (см. рис. 3.9).

Карбщды в легированньх сталих. Карбидообразующими легирующими элементами называют элементы, обладающие бо́льшим, чем железо, сродством к углероду. По возрастанию сродства к углероду и устойчивости карбидных фаз карбидообразующие элементы располагаются в следующий ряд: $\mathrm{Fe}-\mathrm{Mn}-\mathrm{Cr}-\mathrm{Mo}-\mathrm{W}-\mathrm{Nb}-$ Zr -Ti. Чем устойчивее карбид, тем труднее он растворяется в аустените и выделяется при оттуске.

При введении в сталь в сравнительно небольшом количестве легирующий карбидообразующий элемент сначала растворяется в

цементите, замещая часть атомов железа; при этом образуется легированный цементит, например (FeMn$)_{3} \mathrm{C}$. С увеличением содержания легирующего элемента сверх предела растворимости образуются специальные карбиды типа $\mathrm{Cr}_{7} \mathrm{C}_{3}, \mathrm{Mn}_{3} \mathrm{C}$ и др.

По строению кристаллической решетки различают карбиды двух групп. K карбидам первой группы относятся $\mathrm{Fe}_{3} \mathrm{C}, \mathrm{Mn}_{3} \mathrm{C}, \mathrm{Cr}_{7} \mathrm{C}_{3}$, $\mathrm{Ct}_{23} \mathrm{C}_{6}$, имеюшие сложные кристалические решетки. Такие карбиды недостаточно прочны и при нагреве в процессе термической обработки стали распадаются с образованием твердого раствора легирующих элементов в аустените. Карбиды второй группы $\mathrm{Mo}_{2} \mathrm{C}$, WC, TiC имеют простые кристаллические решетки, характеризуются большей прочностью и распадаются при более высоких температурах нагрева.

Все карбиды обладают высокой твердостью, но твердость карбидов второй группы несколько выше твердости карбидов первой группы.

С повышением дисперсности карбидов растет твердость и прочность стали.

Классифнкация легированных сталей. Легированные стали классифицируют по структуре в равновесном состоянии, по структуре после охлаждения на воздухе, по количеству легирующих элементов и по назначению.

По равновесной структуре стали подразделяют на доэвтектоидные с избыточным ферритом в структуре, эвтектоидные с перлитной структурой, заэвтектоидные с избыточными карбидами и ледебуритные стали, в структуре которьх присутствуют первичные карбиды, выделившиеся из жидкой стали. Последнее обстоятельство объясняется тем, что легирующие элементы сдвигают влево точки S, E диаграммы железо - углерод (см. рис. 4.3). Поэтому граница между перечисленными сталями проходит при меньшем содержании углерода по сравнению со значениями, указанными на диаграмме $\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$.

Учитывая, что некоторые элементы резко сужают или расширяют область γ-железа, кроме этих групп сталей различают aycтeнитные и ферритные стали.

Углеродистые стали бывают первых трех классов, легированные - всех шести классов.

По структуре после охлаждения на воздухе различают перлитные стали, характеризующиеся низким содержанием легирующих элементов и, соответственно, невысокой устойчивостью переохлажденного аустенита; мартенситные стали со средним содержанием легирующих элементов и, соответственно, высокой устойчивостью аустенита; аустенитные стали, содержашие большое количество легирующих элементов и сохраняющие аустенитную структуру при комнатной температуре.

По количеству легирующих элементов различают низколегированные стали, содержащие до $2,5 \%$ легирующих элементов, сред-

нелегированные $-2,5 \ldots 10 \%$, высоколегированные стали, содержащие более 10% легирующих элементов.

По назначению различают три группы сталей: конструкционные (машиностроительные и строительные); инструментальные (штамповые, для режущего и мерительного инструмента); с особыми физическими и химическими свойствами (коррозионно-стойкие, жаропрочные, электротехнические, магнитные и др.).

6.2. Маркировка сталей

В России принята буквенно-цифровая система маркировки легированных сталей. Каждая марка стали содержит определенное сочетание букв и цифр. Легирующие элементы обозначают буквами русского алфавита: X - хром, H - никель, В - вольфрам, М - молибден, Ф - ванадий, Т - титан, Ю - алюминий, Д медь, Г - марганец, С - кремний, К - кобальт, Ц - цирконий, Р - бор, Б - ниобий. Буква А в начале марки показывает то, что сталь автоматная, в середине марки - содержание азота, в конце марки - то, что сталь высококачественная.

Для марок конструкционных сталей первые две цифры показывают содержание углерода в сотых долях процента. Если содержание легирующего элемента больше 1%, после буквы указывается его среднее значение в целых процентах. Если содержание легирующего элемента примерно 1% или менее, после соответствующей буквы цифра не ставится.

В качестве основных легирующих элементов в конструкционных сталях применяют хром до 2%, никель $1 . .4 \%$, марганец до 2%, кремний $0,6 \ldots 1,2 \%$. Такие легирующие элементы, как молибден, вольфрам, ванадий, титан, обычно вводят в сталь в сочетании с хромом и никелем с целью дополнительного улучшения тех или иных физико-механических свойств. В конструкционных сталях эти элементы обычно содержатся в следующих количествах, $\%: 0,2 \ldots 0,4 \mathrm{Mo} ; 0,5 \ldots 1,2 \mathrm{~W} ; 0,1 \ldots 0,3 \mathrm{~V} ; 0,1 \ldots 0,2 \mathrm{Ti}$.

Например, сталь 18 ХГТ содержит, \%: 0,17...0,23 C; $1 \ldots 1,3 \mathrm{Cr}$; $0,8 \ldots 1,1 \mathrm{Mn}$; примерно $0,1 \mathrm{Ti}$; сталь $38 \mathrm{XH} 3 \mathrm{MФА}-0,33 \ldots 0,4 \mathrm{C}$; $1,2 \ldots 1,5 \mathrm{Cr} ; 3 \ldots 3,5 \mathrm{Ni} ; 0,35 \ldots 0,45 \mathrm{Mo} ; 0,1 \ldots 0,18 \mathrm{~V}$; сталь $30 Х$ ССА $0,28 \ldots 0,34 \mathrm{C} ; 1 \ldots 1,4 \mathrm{Cr} ; 0,8 \ldots 1,1 \mathrm{Mn} ; 1,1 \ldots 1,4 \mathrm{Si}$.

В инструментальныхх сталях в начале обозначения марки стали ставится цифра, показывающая содержание углерода в десятых долях процента. Начальную цифру опускают, если содержание углерода примерно 1% или более.

Например, сталь $3 \mathrm{X} 2 \mathrm{~B} 8 \Phi$ содержит, $\%: 0,3 \ldots 0,4 \mathrm{C} ; 2,2 \ldots 2,7 \mathrm{Cr}$; $7,5 \ldots 8,5 \mathrm{~W} ; 0,2 \ldots 0,5 \mathrm{~V}$; сталь 5 ХНМ $-0,5 \ldots 0,6 \mathrm{C} ; 0,5 \ldots 0,8 \mathrm{Cr}$; $1,4 \ldots 1,8 \mathrm{Ni} ; 0,19 \ldots 0,3 \mathrm{Mo}$ сталь ХВГ - 0,9 ... $1,05 \mathrm{C} ; 0,9 \ldots 1,2 \mathrm{Cr}$; 1,2 .. 1,6 W; 0,8... 1,1 Mn.

Для некоторых групп сталей принимают дополнительные обозначения. Марки автоматных сталей начинаются с буквы А, подшипниковых - с буквы Ш, быстрорежущих - с буквы \mathbf{P}, электротехнических - с буквы Э, магнитотвердых - с буквы Е.

При маркировке электротехнических сталей (1211, 1313, 2211 ит.д.) первая цифра обозначает класс по структурному состоянию и виду прокатки, вторая - содержание кремния, третья потери на гистерезис, четвертая - группу по основной нормируемой характеристике. Вместе три первые цифры означают тип стали, а четвертая - порядковый номер этого типа стали.

Марки строительных сталей обозначают С235, С245, С255, С345, С590K и т.д., где буква С означает, что сталь строительная, цифры - предел текучести проката в МПа, а буква К - вариант химического состава. Если в конце обозначения стоит буква Д, это значит, что сталь дополнительно легирована $0,15 \ldots 0,3 \%$ меди, например С345Д.

Для изготовления рельсов широкой колеи типов Р75, P65, P50 применяют стали марок М76, М74, где буква М указывает мартеновский способ выплавки, а цифры - среднее содержание углерода в сотых долях процента.

В конце обозначения марок особо высококачественных сталей могут стоять буквы, показывающие способы ее дополнительного переплава. Буквы ВД означают, что с целью улучшения качества сталь была подвергнута вакуумно-дуговому переплаву, буква Ш электрошлаковому, ПД - плазменно-дуговому, ВИ - вакуумноиндукционной выплавке.

Нестандартные лесированные стали, выпускаемые заводом «'Эектросталь», обозначают сочетанием букв ЭИ (электросталь исследовательская) или ЭП (электросталь пробная). Легированную сталь, выпускаемую Златоустовским металлургическим заводом, маркируют буквами ЗИ, заводом «Днепроспецсталь» - ДИ. Во всех случаях после сочетания букв идет порядковый номер стали, например ЭИ417, ЭП767, ЗИ8, ДИ8 и т.д. После освоения марки металлургическими и машиностроительными заводами условные обозначения заменяет общепринятая маркировка, отражающая химический состав стали.

В табл. 6.1 приведены названия сталей, широко используемых промышленностью, на русском, английской, немецком и французском языках.

Литейные стали маркируются той же буквенно-цифровой системой, что и деформируемые. Но в конце марки дополнительно ставится буква Л, что означает литейную сталь.

Жесть в зависимости от назначения, качества поверхности и свойств подразделяют на марки ЧЖК, ЧЖР, ГЖГ, ГЖР, ЭЖК, ЭЖК-Д, ЭЖР-Д. Буквы в обозначении марок означают: ЖК жесть консервная, ЖР - жесть разного назначения, кроме тары

Таблица 6.1. Названия сталеё (type of steels)

Русский язык	Английский язык	Немецкий язык	Французский язык
Сталь автоматная	Free cutting (free mashining)	Automatenstahl	Acier de décolletage
Сталь арматурная	Reinforcing steel	Beton (form) Stahl	Acier à beton
Сталь быстрорежущая	Higt speed steel	Schnell (arbeits) Stahl	Acier (à coupe) rapide
Сталь высокопрочная	High-strength steel	Hochfester Stahl	Acier à haute résistance
Сталь для глубокой вытяжки	Deep drawing steel	Tiefziehstahl	Acier pour emboutissage profond
Сталь для магистральных трубопроводов	Pipe-line steel	Stahl für Hochdruckgaslei- tungen, Leitungsrohrstahl, Pipe-line-stahl	Acier pour pipe-line
Сталь для поверхностной закалки	Steel for superficial hardening	Stahl für Oberflachenhartung	Acier pour trempe superficielle
Сталь для холодного выдавливания	Steel for cold extrusion	Kaltfliesspress-stahl	Acier pour extrusion à froid
Сталь жаропрочная	High-temperature steel	Warmfester Stahl	Acier résistant à chaud
Сталь жаростойкая	Heat-resistant steel	Hitzebestandiger Stahl	Acier refractaire
Сталь износостойкая	Wear resistant steel	Verschleissfester Stahl	Acier résistant à l'usure

Сталь инструментальная	Tool steel	Werkzeugstahl	Acier à outils
Сталь конструкционная	Structural steel	Baustahl, Konstruktionsstahl	Acier de construction
Сталь коррозионно-стойкая	Corrosion-resistant steel	Korrusionsbestandigen Stahl	Acier résistant à la corrosion
Сталь нержавеюшая	Stainlees steel	Nichtrostender (rost-freier) Stahl	Acier inoxydable
Сталь подшипниковая	Bearing steel	Lagerstahl	Acier pour paliers à roulement
Сталь пружинная	Spring steel	Federstahl	Acier à ressorts
Сталь рельсовая	Rail steel	Schienenstahl	Acier à rails
Сталь строительная	Building steel	Baustahl	Acier de construction
Сталь судостроительная navale (листовая)	Ship plate	Schiffsblech	Acier résistance à la chaleur
Сталь теплостойкая	Heat resistant steel	Warmfester Stahl	Acier pour transformateurs
Сталь трансформаторная	Transformer steel	Transformatorenstahl	Acier pour roulements à billes
Сталь шарикоподшипни- ковая	Ball-bearing steel	Kugellagerstahl	Acier pour bouterolles et étampes
Сталь штамповая	Die steel	Gesenkstahl	

для пищевых продуктов, Ч - черная, Г - горячего лужения, Э электротехнического лужения, Д - жесть с дифференциальным покрытием.

6.3. Конструкционные стали

Характернстика конструкционных сталей. Конструкционные стали должны обладать высокой конструктивной прочностью, обеспечивать длительную и надежную работу конструкции в условиях эксплуатации. Поэтому особенность требований, предъявляемых к конструкционным материалам, состоит в необходимости обеспечения комплекса высоких механических свойств, а не одной ка-кой-либо характеристики.

Материалы, идущие на изготовление конструктивных элементов, деталей машин и механизмов, наряду с высокой прочностью и пластичностью должны обладать хорошим сопротивлением ударным нагрузкам, обладая запасом вязкости. При знакопеременных нагрузках конструкционные материалы должны обладать высоким сопротивлением усталости, а при трении - сопротивлением изнашиванию. Во многих случаях необходимо сопротивление коррозии. Учитывая, что в деталях всегда имеются дефекты, являющиеся концентраторами напряжений, конструкционные материалы должны обладать высоким сопротивлением хрупкому разрушению и распространению трещин.

Помимо высокой надежности и конструктивной прочности конструкционные материалы должны иметь высокие технологические свойства - хорошие литейные свойства, обрабатываемость давлением, резанием, хорошую свариваемость. Конструкционные материалы должны иметь низкую стоимость и не должны содержать дефицитных легируюцих элементов.

Из всех материалов, применяемых в настоящее время и в прогнозируемом будущем, только сталь позволяет получать сочетание высоких значений различных механических характеристик и хорошую технологичность при сравнительно невысокой стоимости. Поэтому сталь является основным и наиболее распространенным конструкционным материалом. Легирование позволяет повысить уровень механических свойств.

Основными преимуществами легированных конструкционных сталей по сравнению с углеродистыми являются более высокая прочность за счет упрочнения феррита и большей прокаливаемости, меньший рост аустенитного зерна при нагреве и повышенная ударная вязкость, более высокая прокаливаемость и возможность применения более мягких охладителей после закалки, устойчивость против отпуска за счет торможения диффузионных процессов. Отпуск при более высокой температуре дополнительно сни-

жает закалочные напряжения. Легированные стали обладают более высоким уровнем механических свойств после термической обработки. Поэтому детали из легированных сталей, как правило, должны подвергаться термической обработке.

Различают следуюшие виды конструкционных сталей: углеродистые, в том числе автоматные; строительные; цементуемые; улучшаемые; высокопрочные; рессорно-пружинные; подшипниковые; износостойкие; судостроительные; для пищевой промышленности.

Автоматные стали, изготовленные по ГОСТ 1414-75, применяют для массового изготовления крепежа на станках-автоматах. Основное требование к ним - хорошая обрабатываемость резанием, достигаемая за счет увеличения содержания серы и фосфора до $0,1 \ldots 0,2 \%$, а также добавления селена и свинца. Маркируются автоматные стали буквой А и двумя цифрами, показывающими среднее содержание утлерода в сотых долях процента: А12, А20, A30.

При введении свинца в количестве $0,15 \ldots 0,3 \%$ стали маркируются буквами АС и цифрами, показывающими среднее содержание углерода в сотых долях процента: АС11, АС14. При дополнительном легировании другими элементами их обозначают так же, как в обозначении марок конструкционных сталей: АС35Г2, АСЗ8ГХМ и т.д.

Низколегированные строительные стали. Строительные стали содержат относительно малые количества углерода $-0,1 \ldots 0,25 \%$ (ГОСТ 538-88, ГОСТ $27772-88$). По сравнению с утлеродистыми сталями более высокая прочность строительных низколегированных сталей достигается упрочнением феррита за счет легирования малыми количествами кремния и марганца, а также хрома, никеля, меди и некоторых друтих элементов.

Эти стали используют в горячекатаном или нормализованном состоянии для армирования железобетона, изготовления сварных конструкций в строительстве, мостостроении, вагоностроении, сельскохозяйственном машиностроении, корпусов судов в судостроении, магистральных нефте- и газопроводов.

Детали строительных конструкций обычно соединяют сваркой. Поэтому основным требованием к строительным сталям является хорошая свариваемость. Это означает, что сталь при сварке не должна давать горячих и холодных трещин и свойства сварного соединения (металла шва и зоны термического влияния) не должны существенно отличаться от свойств основного металла.

Склонность стали к образованию горячих и холодных трещин зависит от содержания углерода. Горячие трещины образуются в сварном шве в период кристаллизации. Образованию горячих трещин способствует расширение интервала кристаллизации металла шва. Интервал кристаллизации растет с увеличением содержания углерода. Металл шва и околошовной зоны нагревается выше кри-

тических точек. При охлаждении протекает процесс распада аустенита, сопровождающийся объемными изменениями. Чем выше содержание углерода, тем значительнее объемные изменения, тем больше опасность образования холодных трещин. Поэтому стали, используемые для изготовления строительных конструкций, не должны содержать более $0,25 \%$ углерода.

Строительные углеродистые стали обыкновенного качества марок Ст2, Ст3 имеют предел текучести $\sigma_{0,2}=240$ МПа. При содержании $1,5 \%$ марганца и $0,7 \%$ кремния предел текучести увеличивается до $360 \mathrm{MПа}, \mathrm{т.е} \mathrm{в} 1,$.5 раза.

K низколегированным строительным сталям для строительных конструкций относятся стали марок $14 \Gamma 2,17 \Gamma С, 14 Х$ ГС, $15 \mathrm{XCHД}$. Сталь 15 XCH , содержащая никель и медь, работает в конструкциях при температуре до $-60^{\circ} \mathrm{C}$ без перехода в хрупкое состояние. Кроме того, введение этих элементов увеличивает коррозионную стойкость стали в атмосферных условиях. Введение в стали небольших добавок ванадия и ниобия (до $0,1 \%$) совместно с азотом $(0,015 \ldots 0,025 \%)$ обеспечивает дополнительное упрочнение за счет образования карбонитридов этих элементов и измельчения зерна. К сталям такого типа относятся низколегированные стали марок $14 Г 2 А \Phi, 17 Г 2 А Ф Б$ и др., имеющие $\sigma_{0,2}=450$ МПа носле нормализации. Такие стали используют в строительстве и машиностроении в виде листов и сортового фасонного проката для изготовления сварных конструкций без дополнительной термической обработки.

Применение в строительных конструкциях более прочньх низколегированных сталей вместо углеродистых дает возможность снизить расход металла на $15 \ldots 12 \%$. Несмотря на более высокую стоимость, их использование экономически целесообразно.

Дополнительное повышение механических свойств и снижение порога хладноломкости достигается с помощью контролируемой прокатки. Контролируемая прокатка заключается в проведении деформации, особенно в конце процесса, при более низкой температуре ($800 \ldots 850^{\circ} \mathrm{C}$) с увеличением степени деформации в последних проходах. Эффект контролируемой прокатки состоит в значительном измельчении зерна, а также дисперсном упрочнении частицами карбонитридов.

Для армирования обычного и предварительно напряженного железобетона используют гладкий или периодический прокат из более прочных сталей с повышенным (до $0,3 \%$) содержанием углерода: 25 Г2С, $30 Х$ ГСА.

В мостостроении для изготовления сварных конструкций применяют стали с высокой прочностью ($\sigma_{0,2} \geq 600 \mathrm{MПa}$): $10 \mathrm{XCHД}$, $15 \mathrm{XCHД}$,10 Г2С1Д,16Г2АФ и др.

В вагоностроении и сельскохозяйственном машиностроении применяют высокопрочные стали ($\sigma_{0,2} \geq 750 \mathrm{MПа}$): 12 Г2СМФ, $14 Г С М Ф Р$ и др.

В судостроении для корпусов судов щироко применяют низкоуглеродистые улучшаемые стали типа АБ с пределом текучести $390 \ldots 785$ МПа. Эти стали, легированные никелем, хромом, медью, ванадием, обеспечивают высокую прочность за счет дисперсионного упрочнения сталей с ферритно-перлитной структурой.

Для обеспечения надежной работы магистральных трубопроводов (нефте- и газопроводов), особенно в условиях Севера, рекомендуется применять низколегированные стали с $\sigma_{\mathrm{B}} \geq 500 \mathrm{M}$ Ма; $\sigma_{\mathrm{T}} \geq 300 \mathrm{MПа} ; \delta \geq 16 \%$ и ударной вязкостью при $-70^{\circ} \mathrm{C}$ не менее 40 Дж/ cm^{2}.

Для изготовления нефтепроводных труб большого диаметра (до 2500 мм) применяют углеродистые ($\mathrm{C} \leq 0,22 \%, \mathrm{Mn} \leq 0,65 \%, \mathrm{Si} \leq$ $\leq 0,37 \%$) и низколегированные ($\mathrm{C} \leq 0,20 \%$, Мn до $1,65 \%$ и добавки $\mathrm{Cr}, \mathrm{V}, \mathrm{Nb}$ и др.) стали.

Для изготовления магистральных газопроводных труб большого диаметра применяют стали 14 ХГС ($\sigma_{\mathrm{B}}=580 \mathrm{M}$ Ма, $\sigma_{\mathrm{r}}=350 \mathrm{M}$ Ма)), $17 \Gamma 1 \mathrm{C}\left(\sigma_{\mathrm{B}}=520 \mathrm{M} П \mathrm{a}, \sigma_{\mathrm{r}}=370 \mathrm{M}\right.$ Па), $16 Г 2 С А Ф\left(\sigma_{\mathrm{B}}=600 \mathrm{M}\right.$ Па, $\sigma_{\mathrm{T}}=$ $=420$ МПа) , 16Г2АЮ ($\left.\sigma_{\mathrm{B}}=550 \mathrm{MПа}, \sigma_{\mathrm{T}}=370 \mathrm{MПа}\right), 08 Г 2 \mathrm{MФБ}$ $\left(\sigma_{\mathrm{B}}=600 \mathrm{M}\right.$ Ма, $\left.\sigma_{\mathrm{\tau}}=450 \mathrm{M} \mathrm{\Pi a}\right)$ в горячекатаном состоянии и стали $09 \Gamma 2 С\left(\sigma_{\mathrm{B}}=500 \mathrm{M}\right.$ Ма, $\sigma_{\mathrm{T}}=350 \mathrm{M}$ а), $17 Г С Ф\left(\sigma_{\mathrm{B}}=600 \mathrm{M}\right.$ Па, $\sigma_{\mathrm{T}}=$ $=420$ МПа) в термоупрочненном состоянии.

Кроме того; в последнее время для магистральных трубопроводов рекомендуются двухфазные стали с ферритно-бейнитной или ферритно-мартенситной структурой после контролируемой прокатки. Состав таких сталей следующий, $\%: 0,03 \ldots 0,1 \mathrm{C} ; 1,6 \mathrm{Mn}$; $0,6 \mathrm{Cr} ; 0,6 \mathrm{Si} ; 0,02 \mathrm{Ti} ; 0,003 \ldots 0,18 \mathrm{Nb}$; временное сопротивление $\sigma_{\mathrm{B}}=700$ МПа при $t_{50}=-80 \ldots-90^{\circ} \mathrm{C}$. Включения феррита способствуют повышению вязкости и пластичности стали при низких температурах.

Для защиты трубопроводов от коррозии в зависимости от условий их эксплуатаџии применяют различные защитные покрытия битумное, полиэтиленовое, эпоксидное и др.

Цементуемые стали. Для изготовления деталей, работающих под действием динамических нагрузок в условиях поверхностного износа, применяют низкоуглеродистые стали, содержащие обычно не более $0,2 \%$ углерода, подвергаемые цементации, закалке и низкому отпуску. Твердость поверхности готовой детали должна составлять примерно $20 \ldots 40$ HRC. В отличие от слабопрокаливающихся углеродистых сталей при цементации и термической обработке легированных сталей происходит дополнительное упрочнение сердцевины. Такое упрочнение тем больше, чем более легирована сталь.

В зависимости от степени упрочняемости сердцевины различают три группы цементуемых сталей (carburizing steel): с неупрочняемой, слабо- и сильноупрочняемой сердцевиной (табл. 6.2) (ГОСТ 1050-88, ГОСТ 4543-71).

Таблица 6.2. Характеристика цементуемьх сталей после закалки и низкого отпуска

$\begin{gathered} \text { Груп- } \\ \text { па } \end{gathered}$	Марка стали	Содержание, \%					$\begin{aligned} & \sigma_{0,2}, \\ & \text { мПа } \end{aligned}$	$\begin{gathered} \sigma_{v}^{v} \\ M \sqcap a \end{gathered}$	$\begin{aligned} & \delta, \\ & \% \end{aligned}$	$\begin{gathered} \psi, \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{KCV} \\ & \mathrm{Z} / \mathrm{cm}^{2} \end{aligned}$
		C	Mn	Ni	Cr	Другие легирующие элементы					
1	10	0,07...0,14	0,35 ...0,65	-	$\begin{gathered} \text { Не более } \\ 0,15 \end{gathered}$	-	205	330	31	55	-
	20	0,17...0,24	0,35 ...0,65	-	$\begin{gathered} \text { Не более } \\ 0,25 \end{gathered}$	-	245	410	25	55	-
H	15X	0,12 ..0,18	0,4 ...0,7	-	0,7... 1	-	490	690	12	45	70
	20X	0,17 ...0,23	0,5 ...0,8	-	0,7... 1	-	635	780	11	40	60
	15XФ	0,12 ..0,18	0,4...0,7	-	0,8...1,1	0,06 ...0,12 V	540	740	13	50	80
III	20XH	0,17...0,23	0,4...0,7	1... 1,4	0,45 ...0,75	-	590	780	14	50	80
	18XIT	0,17...0,23	0,8...1,1	-	1...1,3	0,03 ...0,09 Ti	885	980	9	50	80
	12XH3A	0,09 ...0,16	0,3 ...0,6	2,75 ...3,15	0,6...0,9	-	685	930	11	55	90
	12 X 2 H 4 A	0,09 ... 0,15	0,3 ... 0,6	3,25 ... 3,65	1,25...1,65	-	930	1130	10	50	90

К первой группе относятся углеродистые стали марок $10 ; 15 ; 20$. Их применяют для малоответственных деталей с неупрочняемой сердцевиной и деталей небольших размеров. Под цементованным слоем при закалке аустенит превращается в ферритно-перлитную смесь.

Вторую группу составляют низколегированные хромистые стали марок 15X, 20X, имеющие слабоупрочняемую сердцевину. Дополнительное легирование малыми добавками ванадия (сталь $15 \mathrm{X} \mathrm{\Phi}$) позволяет получить более мелкое зерно, что улучшает пластичность и вязкость стали.

Стали третьей группы используют для изготовления деталей, испытывающих значительные ударные нагрузки, имеющих больщое сечение или сложную конфигурацию, или для деталей, подвергающихся действию больших знакопеременных напряжений.

В состав этих сталей вводят никель: $20 \mathrm{XH}, 12 \mathrm{XH} 3 \mathrm{~A}, 12 \mathrm{X} 2 \mathrm{H} 4 \mathrm{~A}$. Вследствие его дефицитности никель иногда заменяют марганцем, вводя, кроме того, небольшое количество титана или ванадия для измельчения зерна (18ХГТ).

Легирование хромоникелевых сталей вольфрамом или молибденом (например, сталь марки 18 X 2 H 4 BA или 18 X 2 H 4 MA) дополнительно стабилизирует переохлажденный аустенит, а следовательно, еще больше увеличивает прокаливаемость стали. В результате закалки в масле сердцевина деталей приобретает структуру мартенсита. Такие стали применяют для крупных тяжелонагруженных деталей тита зубчатых колес, осей и др., которые устойчивы к динамическим нагрузкам.

Улучшаемые стали. Улучшаемыми конструкционными стаяями (heat treatable steel) называют среднеуглеродистые стали ($0,3 \ldots 0,5 \%$ углерода), содержащие не более 5% легирующих элементов, используемые после операции улучшения, состоящей из закалки и высокого отпуска. Закалку таких сталей обычно проводят в масле. Температура отпуска составляет $550 \ldots 650^{\circ} \mathrm{C}$. После термической обработки улучшаемые стали имеют структуру сорбита, хорошо воспринимающего ударные нагрузки.

Улучшаемые стали имеют высокую прочность, вязкость, малую чувствительность к концентраторам напряжений и хорошую прокаливаемость. В случае сквозной прокаливаемости после одинаковой термической обработки свойства различных марок улучшаемых сталей близки между собой. Поэтому выбор той или иной марки улучшаемой стали в каждом конкретном случае обусловлен прокаливаемостью стали, сечением детали и сложностью ее конфигурации, наличием концентраторов напряжений.

Улучшаемые стали могут быть условно разбиты на пять групп (ГОСТ 4543-71). С увеличением номера группы растет степень легирования и размер сечения, в котором достигается сквозная прокаливаемость (табл. 6.3).

Таблица 6.3. Характеристика улучшаемьх конструкционных сталей после термнческой обработки

$\begin{aligned} & \text { Групा- } \\ & \text { па } \end{aligned}$	Марка стали	Содержание, \%						Порог лладно$t_{50}{ }^{\circ} \mathrm{C}$	Среднее значение критического диаметра D_{95}, мм
		C	Mn	Si	Cr	Ni	Друтие легирующие элементы		
I	40	0,37...0,44	-	-	-	-	-	-20	10
II	40X	0,36 ..0,44	-	-	0,8...1,1	-	-	-40	15
III	30XM	0,26 $\ldots 0,34$	-	-	0,8...1,1	-	0,15 .. $0,25 \mathrm{Mo}$	-50	25
	40XГ	0,36 ...0,45	0,9... 1,2	-	0,9... 1,2	-	-	-20	25
	30XГС	0,28...0,35	0,8... 1,1	0,9 ... 1,2	0,8... 1,1	-	-	-20	25
IV	40XH	0,36 ...0,44	-	-	0,45 ...1,75	1...1,4	-	-60	$35 . . .40$
	40XHM	0,37...0,44	-	-	0,6 ...0,9	1,2... 1,6	0,15 ...0,25 Mo	-70	50
V	38XH3M9	0,3...0,42	-	-	1,2...1,5	3...3,4	$\begin{gathered} 0,35 \ldots 0,45 \mathrm{Mo} \\ 0,1 \ldots 0,2 \mathrm{~V} \end{gathered}$	100	100

* Порог хладноломкости указывает температура, при хоторой в изломе ударных надрезанных образцов имеется не менее 50%

Обычное содержание кремния в улучшаемых сталях составляет $0,17 \ldots 0,37 \%$, марганца $0,5 \ldots 0,8 \%$, фосфора и серы менее $0,035 \%$.

К группе I относятся углеродистые стали марок $35 ; 40 ; 45$, имеюшие критический диаметр D_{95} до $10 \mathrm{mм}$, при котором достигается сквозная прокаливаемость, и содержащие в структуре не менее 95% мартенсита.

Группа II представлена хромистыми сталями марок 30X, 40X. Критический диаметр $D_{95}=15 \ldots 20$ мм. Недостатком сталей этой группы является склонность к отпускной хрупкости II рода. Для них необходимо быстрое охлаждение после отпуска (в масло, воду).

В группу III входят хромистые стали, дополнительно легированные еще одним или двумя элементами $30 \mathrm{XM}, 40 \mathrm{XI}$, 30 X ГТ ($D_{95}=20 \ldots 25 \mathrm{mм}$).

Для увеличения прокаливаемости в хромистые стали дополнительно вводят марганец ($40 \mathrm{X} \mathrm{\Gamma}$) и бор (40 XP); молибден (30XM) вводят для снижения отпускной хрупкости II рода.

Высокими свойствами обладают принадлежащие к этой группе стали, называемые хромансилями: $20 \mathrm{XГС}, 30 Х Г С$. Эти стали хорошо свариваются при высокой прочности $\sigma_{\mathrm{B}}=1200 \mathrm{M}$ Ма и КСV $=$ $=40$ Дж $/ \mathrm{cm}^{2}$. Их недостатком является склонность к отпускной хрупкости II рода.

K группе IV относятся хромоникелевые стали, содержащие до $1,5 \%$ никеля: $40 \mathrm{XH}, 40 \mathrm{XHM}$. Их критический диаметр $D_{95}=40$ мм. Эти стали при пониженной температуре эксплуатации обладают бо́льшим запасом вязкости, чем стали предыдущих групп.

Группу V составляют комплекснолегированные стали, содержащие $3 \ldots 4 \%$ никеля: $38 \mathrm{XH} 3 \mathrm{M}, 38 \mathrm{XH} 3 \mathrm{MФА}$. Эти стали, хотя и сравнительно дорогостоящи, относятся к лучшим маркам улучшаемых сталей. Критический диаметр D_{95} составляет 100 мм и более при низкой склонности к хрупкому разрушению. Из сталей этой группы изготавливают сложные по конфигурации детали, подвергаемые ударным нагрузкам. Их недостатками являются склонность к флокенообразованию и трудность обработки резанием.

Высокопрочные стали. Высокопрочными называют стали с временным сопротивлением более 1500 M Ма. Высокопрочное состояние может быть достигнуто при использовании средне- и высокоуглеродистых комплекснолегированных сталей после закалки и низкого отпуска. Однако при этом снижаются пластичность и вязкость стали, что может привести к хрупким разрушениям деталей и конструкций. Применение низкоотпущенных высокопрочных сталей возможно лишь в тех случаях, когда по условиям работы отсутствуют динамические нагрузки.

Современными направлениями достижения высокопрочного состояния без снижения работоспособности конструкций являются такие методы упрочняющей обработки стали, как ТМО, и использование таких новых высокопрочных материалов, как мартен-

ситно-стареющие стали и ПНП-стали (ПНП - пластичность, наведенная превращением).

Высокопрочные мартенситно-стареюшие стали характеризуются высокими значениями прочности ($\sigma_{\mathrm{B}} \geq 2000 \mathrm{MПа}$) в сочетании с высокой вязкостью и пластичностью ($\psi \geq 50 \%, \mathrm{KCU} \geq 50$ Дж/см ${ }^{2}$). Опасность хрупких разрушений уменьшается благодаря минимальному содержанию углерода (не более $0,03 \%$)

Упрочнение сталей достигается совмещением двух механизмов упрочнения: мартенситного превращения $\gamma \rightarrow \alpha$, сопровождающегося фазовым наклепом, и старения мартенсита. Основным легируюцим элементом является никель, содержание которого составляет $17 \ldots 26 \%$. Для более эффективного протекания процесса старения мартенсита стали дополнительно легируют титаном, алюминием, молибденом, ниобием, а также кобальтом.

Широкое распространение имеет сталь 03 H 18 K 9 M 5 T , содержацая, \%: не более $0,03 \mathrm{C} ; 17 \ldots 19 \mathrm{Ni} ; 7 \ldots 9 \mathrm{Co} ; 4 \ldots 6 \mathrm{Mo} ; 0,5 \mathrm{Ti}$. Сталь 03 H 18 K 9 M 5 T подвергают закалке на воздухе при температуре $800 \ldots 850^{\circ} \mathrm{C}$. После закалки сталь имеет структуру безуглеродистого мартенсита со следующими свойствами: $\sigma_{\mathrm{в}}=1200 \mathrm{M}$ Па; $\sigma_{0,2}=$ $=1000 \mathrm{MПa} ; \delta=20 \% ; \psi=75 \% ; \mathrm{KCU}=20$ Дж/см². В закаленном состоянии сталь хорошо обрабатывается давлением, резанием и хорошо сваривается.

Мартенситно-стареющая сталь получает основное упрочнение при старении, т.е. отпуске при температуре $450 \ldots 500^{\circ} \mathrm{C}$. Упрочнение при старении связано с выделением из мартенсита дисперсных частиц интерметаллидов типа $\mathrm{Ni}_{3} \mathrm{Mo}, \mathrm{NiTi}, \mathrm{Fe}_{2} \mathrm{Mo}, \mathrm{Ni}_{3}(\mathrm{Ti}, \mathrm{Al})$. Если интерметаллические фазы находятся на стадии предвыделения, когда они еще когерентно связаны с твердым раствором и имеют очень малые размеры, то в этом случае достигается наибольшее упрочнение. Легирование кобањтом увеличивает эффект старения. Механические свойства после старения: $\sigma_{\mathrm{s}}=2000 \mathrm{MПа;} \sigma_{0,2}=1800 \mathrm{MПа;} \delta=12 \%$; $\psi=50 \% ; \mathrm{KCU}=50$ Дж $/ \mathrm{cм}^{2}$. При высокой прочности сталь сохраняет высокое сопротивление хрупкому разрушению. Вязкость разрушения K_{Ic} мартенситно-стареющей стали составляет $50 \ldots 70 \mathrm{M}$ Ма $\cdot \mathrm{m}^{1 / 2}$. При том же значении предела текучести вязкость разрушения обычных легированных сталей не превышает 30 M Ма $\cdot \mathrm{m}^{1 / 2}$. При температуре $-196^{\circ} \mathrm{C}$ сталь имеет свойства: $\sigma_{\mathrm{B}}=2400 \mathrm{M}$ Ма; $\delta=10 \%$; $\mathrm{KCU}=30$ Дж/см ${ }^{2}$. Сталь 03 H 18 K 9 M 5 T теплоустойчива до температуры $450^{\circ} \mathrm{C}$.

Мартенситно-стареющие стали применяют в самолетостроении, ракетостроении - отраслях, в которьх важна удельная прочность, а также в криогенной технике, где они нашли применение благодаря высокой пластичности и вязкости при низких температурах.

Высокопрочные ПНП-стали относятся к классу аустенитных сталей. Одна из применяемых марок содержит, $\%: 0,03 \mathrm{C} ; 8 \ldots 10 \mathrm{Cr}$; $8 \ldots 10 \mathrm{Ni} ; 4 \mathrm{Mo} ; 1 \ldots 2,5 \mathrm{Mn}$; до 2 Si . После закалки от температуры
$1000 \ldots 1100^{\circ} \mathrm{C}$ и получения при комнатной температуре аустенитной структуры (точки начала мартениситного превращения M_{n} и начала образования мартенсита деформации $M_{\text {д }}$ находятся ниже $0^{\circ} \mathrm{C}$) сталь подвергают деформации при температуре $450 \ldots 600^{\circ} \mathrm{C}$. При деформации происходит наклеп аустенита, выделение из него углерода и легирующих элементов с образованием дисперсных карбидов (дисперсионное упрочнение). Вследствие обеднения аустенита этими элементами точка M_{\AA} смещается в область положительных температур, а точка M_{H} остается ниже комнатной температуры. В результате такой обработки ПНП-стали приобретают высокую прочность ($\sigma_{\mathrm{s}} \geq 1800 \mathrm{M}$ Ма; $\sigma_{0,2} \geq 1400 \mathrm{MПа}$) при высокой пластичности ($\delta \geq 30 \%$).

Высокая пластичность обусловлена различием температурных уровней начала мартенситного превращения M_{H} и начала образования мартенсита деформации $M_{\text {п }}$. Так как ПНП-стали имеют точку M_{H} ниже, а точку $M_{\text {д }}$ выше комнатной температуры, при испытаниях на растяжение происходит локализация деформации, аустенит только на этом участке превращается в мартенсит и упрочняется, вследствие чего деформация сосредоточивается в соседних объемах. Превращение аустенита в мартенсит не дает локализоваться деформации, шейка в образце при испытании на растяжение не образуется, благодаря чему реализуется высокая пластичность стали.

Рессорно-пружинные стали. Основными требованиями, предъявляемыми к рессорно-пружинным сталям, являются высокое сопротивление малым пластическим деформациям (высокий предел упругости), высокий предел выносливости и повышенная релаксационная стойкость с сохранением упрутих свойств в течение длительного времени. В пружинах и рессорах пластическая деформация не допускается, поэтому высокие значения пластичности и вязкости менее сушественны.

Высокие упругие свойства обеспечиваются при содержании утлерода $0,5 \ldots 0,7 \%$ и получении трооститной структуры за счет закалки и среднего отпуска при температуре $350 \ldots 450^{\circ} \mathrm{C}$. Углеродистые пружинные стали после термической обработки на троостит имеют $\sigma_{0,2} \geq 800 \mathrm{M} П$ а, легированные $-\sigma_{0,2} \geq 1000 \mathrm{M}$ Ма.

Рессорно-пружинные стали обычно легируют кремнием и марганцем (ГОСТ 14959-79), иногда в сочетании с другими элементами (табл. 6.4). Введение кремния задерживает распац мартенсита при отпуске. Кремний и марганец упрочняют феррит и увеличивают прокаливаемость стали.

Рессорно-пружинные стали должны обладать хорошей закаливаемостью и прокаливаемостью. Присутствие после закалки в структуре продуктов перлитного превращения или остаточного аустенита ухудшает упругие свойства стали. Для повышения сопротивления пластическим деформациям важную роль играет получение мелкозернистой структуры.

Табли ца 6.4. Химическнй состав пружинннх сталей

Марка стали	Содержание, \%		
	C	Mn	Si
65	$0,62 \ldots 0,7$	$0,5 \ldots 0,8$	$0,17 \ldots 0,37$
70	$0,67 \ldots 0,75$	$0,5 \ldots 0,8$	$0,17 \ldots 0,37$
65Γ	$0,62 \ldots 0,7$	$0,9 \ldots 1,2$	$0,17 \ldots 0,37$
60 C 2	$0,57 \ldots 0,65$	$0,6 \ldots 0,9$	$1,5 \ldots 2$
70 C 3 A	$0,66 \ldots 0,74$	$0,6 \ldots 0,9$	$2,4 \ldots 2,8$
$60 \mathrm{C} \mathrm{\Gamma}$	$0,57 \ldots 0,65$	$0,8 \ldots 1$	$1,3 \ldots 1,8$
40 ХФА	$0,37 \ldots 0,44$	$0,5 \ldots 0,8$	$0,17 \ldots 0,37$

Средние значения механических свойств углеродистых рессор-но-пружинных сталей после термической обработки следующие: $\sigma_{0,2}=800 \ldots 1000 \mathrm{M}$ аа; $\sigma_{\mathrm{B}}=1000 \ldots 1200 \mathrm{M}$. $10 ; \delta=5 \ldots 8 \% ; \psi=$ $=25 \ldots 30 \%$; предел выносливости при изгибаюшей нагрузке $500 \ldots 650 \mathrm{M}$ Ма, при кручении $300 \mathrm{MПа}$. Величина предела выносливости уменьшается при наличии поверхностных дефектов и обезуглероживании. После дробеструйной обработки в поверхностных слоях создаются остаточные сжимающие напряжения, что увеличивает выносливость. Предел усталости в результате поверхностного наклепа повышается в $1,5-2$ раза.

При легировании рессорно-пружинньх сталей кремнием и другими элементами механические свойства следуюшие: $\sigma_{\mathrm{B}}=1300 \ldots$ 1800 МПа, $\sigma_{0,2}=1100 \ldots 1600$ МПа при $\delta=5 \ldots 8 \%, \psi=20 \ldots 35 \%$.

Пружины из углеродистых, марганцевых, кремнистых сталей работают при температуре не выше $200^{\circ} \mathrm{C}$. При нагреве до температуры $300^{\circ} \mathrm{C}$ используют пружины из стали 50ХФА, а при более высоких температурах - из более теплостойких сталей: до $500^{\circ} \mathrm{C}$ из стали ЗХ2В8Ф, до $600^{\circ} \mathrm{C}$ - из стали Р18.

Для работы в агрессивных средах пружины изготавливают из хромистых коррозионно-стойких сталей типа $40 \times 13,95 \mathrm{X} 18$ и др. В некоторых случаях для работы в агрессивных средах и в криогенных условиях целесообразно применять мартенситно-стареющие стали.

Судостроительные стали. Корпусные стали для судов (судостроительные стали) (ГОСТ 5521-93) применяют для изготовления сварных конструкций, эксплуатируемых в интервале температур $-60 \ldots+150^{\circ} \mathrm{C}$ в условиях коррозионного воздействия морской воды, повторно-статических и динамических нагружений.

В начале 1950 -х гг. для постройки корпусов судов согласно ГОСТ 5521 - 50 использовали углеродистые стали с пределом текучести $220 \ldots 270$ МПа и относительным удлинением $12 \ldots 22 \%$. В настоящее время (ГОСТ 5521-93) за счет применения легированных

сталей и совершенствования обработки прочностные характеристики возросли до $350 \ldots 750$ МПа по пределу текучести при относительном удлинении $19 . . .22 \%$.

Повышенные требования к качеству судостроительного материала из-за резкого увеличения водоизмещения судов помимо перехода на сварку вместо клепки обусловили применение всего комплекса новых технологических процессов, разработанных к настоящему времени: микролегирование, внепечное рафинирование, контролируемая прокатка и спреерное охлаждение в потоке стана. Изменилась само понятие «судостроительная сталь». В данную категорию теперь входят не только металлы для корпусов надводных судов, но и материалы для эксплуатируемых при низких температурах прибрежных сооружений, а также стали для подводных кораблей и устройств, работающих на больших глубинах. K ним относятся морские плавучие буровые установки, стационарные морские платформы, глубоководные аппараты и др.

Основным разработчиком сталей для судостроения в России является Санкт-Петербургский ЦНИИ конструкционных материалов «Прометей».

Высокая прочность при необходимой вязкости и пластичности, в том числе при низких температурах, достигается путем:

легирования ферритной матрицы никелем и медью, которое ослабляет ковалентную составляющую межатомной связи;

использования микролегирования, способствуюшего формированию мелкозернистой структуры;

легирования молибденом, которое подавляет склонность стали к отпускной хрупкости;

использования специальньх методов выплавки и рафинирования, обеспечивающих низкое содержание вредных примесей и водорода, гарантирующее высокую сопротивляемость слоистым разрушениям в узлах сварных конструкций, в том числе при высоких растягиваюших напряжениях в направлении толщины листа;

создания оптимальных режимов термической обработки, которые максимально подавляют среднетемпературную отнускную хрупкость и обеспечивают получение значительной доли превращения $\gamma \rightarrow \alpha$ в бейнитной области.

Стали, вязкие в холодном состоянии, применяют в судостроении как для изготовления корпусов ледоколов и специальных судов, так и для установок сжижения, хранения и транспортирования газов (аммиак, природный газ и др.).

Большое значение в судостроении имеют свариваемые ферритные стали. Для улучшения вязкости таких сталей и снижения порога хладноломкости в них вводят марганец в количестве до $1,8 \%$ и уменьшают содержание углерода ниже $0,18 \%$. Последнее делают и для улучшения свариваемости, так как углерод приводит к образованию большого количества мартенсита в зоне термического

влияния сварного шва при охлаждении после сварки и вследствие этого - к подкалке.

Особенно целесообразно для снижения порога хладноломкости легирование никелем. При небольших концентрациях никеля (до 2%) действие его на вязкость стали с низким содержанием углерода основано на снижении температуры превращения и обусловленном этим обстоятельством уменьшении размера зерна феррита. Более высокое содержание никеля уже при нормализации вызывает образование бейнита и мартенсита. При содержании никеля примерно 9% вязкость дополнительно увеличивается за счет небольшого количества аустенита, который вновь образуется во время отпуска и его содержание остается стабильным.

Наряду с содержанием специально вводимых легирующих элементов большое влияние на вязкость оказывает чистота стали по вредным примесям. Уменьшение содержания серы приводит к росту значений ударной вязкости, а каждые $0,01 \%$ фосфора смецают порог хладноломкости в среднем на $10^{\circ} \mathrm{C}$.

Вследствие ярко выраженной зависимости вязкости от размера зерна условия прокатки также оказывают воздействие на порог хладноломкости. С уменьшением конечной температуры прокатки и увеличением степени обжатия в нижней температурной области при рекристаллизации возникают меньшие по величине зерна аустенита. Следствием этого является более мелкое ферритное зерно при фазовом превращении во время охлаждения. Прокаткой при пониженных температурах можно изготавливать листы с высокими вязкими свойствами в горячекатаном состоянии. Мелкозернистая структура прокатки положительно сказывается на последующей термической обработке и улучшает вязкость в нормализованном состоянии. Дальнейшее улучшение свойств достигается благодаря ускоренному охлаждению (закалке) после аустенизации с последующим отпуском. Это улучшение особенно эффективно, когда сталь, содержащая достаточно легирующих элементов, претерпевает превращение при охлаждении в области мартенсита или нижнего бейнита и затем подвергается отпуску для получения требуемой вязкости

В табл. 6.5 приведены значения механических свойств современных судостроительных сталей.

В судостроении широко применяют литейные высокопрочные конструкционные стали для изготовления отливок сложной конфигурации. Для крупных корпусных литых деталей типа кронштейнов, гребных винтов, рулей используют стали марок 08 ГДНФЛ и $08 Г 2$ ДНФЛІ, а для высоконагруженных соединительных элементов опорных колонн морских буровых установок, деталей механизма поворота плавучих кранов и литых крупнотоннажных крюков (грузоподъемностью свыше 800 т) - высокопрочные хладостойкие сваривающиеся стали марок АБ-1Л и АБ-3Л (табл. 6.6).

Марка	Толщина проката (заго-	σ, МПа	$\sigma_{0,2}, \mathrm{M} П \mathbf{}$	$\delta_{5}, \%$	$\psi, \%$	$\begin{aligned} & \mathrm{KCV}^{20}, \\ & \text { (*/ } \mathrm{cm}^{2} \end{aligned}$	KV, Дж	Критическая температура хрупкости, ${ }^{\circ} \mathrm{C}$	Параметр трещиностойкости при сварке $C_{\text {зкв }}$
				не менее					
Ab	10... 40	510... 690	Не менее 390	21	-	-	78*	-80	0,175 $\ldots 0,255$
ABA	10... 40	510... 690	Не менее 390	21	-	-	78*	-80	0,175 ...0,255
AB1	10... 70	570... 710	$\begin{gathered} \text { Не менее } \\ 490 \end{gathered}$	20	53	-	47**	-60...-80	0,221 ...0,328
AB1A	10... 70	570... 710	Не менее 490	21	60	-	78*	-80	0,221 ..0,328
AE2	10... 30	Не менее 637	588... 686	18	55	-	78**	-80	0,185 ..0,275
Ab2K	31... 70.	Не менее 637.	588... 686	18	55	-	78**	-80...-100	0,258...0,345
AB2A	$71 . . .130$	$665 . .805$	Не менее 590	16	55	-	59***	-50...-90	0,275 $\ldots 0,378$
AE3	10... 40	360... 1020	Не менее 730	11	45	78,5	-	-40	0,315 ...0,458

AБ3A	$10 \ldots 40$	Не менее 833	$784 \ldots 882$	14	55	98	-	$-150 \ldots-170$	$0,274 \ldots 0,354$
A64	$10 \ldots 60$	Не менее 833	$784 \ldots 882$	14	50	98	-	$-120 \ldots-140$	$0,3 \ldots 0,376$
AБ4K	$61 \ldots 100$	Не менее 833	$784 \ldots 882$	14	55	98	-	$-120 \ldots-140$	$0,315 \ldots 0,39$
АБ5A	$41 \ldots 60$	Не менее 1029	$980 \ldots 1078$	13	50	78,5	-	$-100 \ldots-120$	$0,308 \ldots 0,382$
АБ6A	$61 \ldots 100$	Не менее 1029	$980 \ldots 1078$	13	50	78,5	-	-100	$0,322 \ldots 0,396$
АБ7A	$61 \ldots 100$	$1251 \ldots 1421$	Не менее 1176	11	48	-	-	-60	$0,41 \ldots 0,57$

Примечания: 1. Для всех указанных сталей количество волокнистой составляющей в изломе составляет 90%.
2. $C_{\text {экв }}=\mathrm{C}+\frac{\mathrm{Mn}+\mathrm{Cr}}{20}+\mathrm{Cu}+\frac{\mathrm{Mo}}{15}+\frac{\mathrm{Ni}}{60}+\frac{\mathrm{Si}}{30}+\frac{\mathrm{V}}{10}+5 \mathrm{~B}$, где $\mathrm{C}, \mathrm{Mn}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Si}, \mathrm{V}, \mathrm{B}-$ процентное содержание соответствующих элементов.
${ }^{*}$ При температуре $-60^{\circ} \mathrm{C}$
** При температуре $-40^{\circ} \mathrm{C}$
*** При температуре $-50^{\circ} \mathrm{C}$

Таблица 6.6. Механические свойства сталей для отливок

Марка стали	$\begin{aligned} & \sigma_{0,0}, \\ & \mathrm{M} \mathrm{O}_{\mathrm{a}} \end{aligned}$	$\stackrel{\sigma_{\mathrm{g}},}{\mathrm{M} a}$	$\begin{aligned} & \delta_{s}, \\ & \% \end{aligned}$	$\begin{aligned} & \psi, \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{KU}^{-40}, \\ \text { Дж } \end{gathered}$	$\begin{gathered} \mathrm{KV}^{20}, \\ \text { дж } \end{gathered}$	$\begin{gathered} \mathrm{KV} V^{-40}, \\ \text { Дж } \end{gathered}$	$t_{x},{ }^{\circ} \mathrm{C}$
	не менее							
08ГДНФЛ	350	450	20	45	35	-	-	$-40 \ldots-20$
08Г2ДНФЛ	380	480	20	45	50	-	-	-40...-20
АБ-1JI	600	-	17	50	-	70	-	$-100 . .-80$
АБ-3Л	600	-	15	50	-	70	40	$-100 \ldots-80$

Примечание. $t_{\text {к }}$ - критическая температура хрулкости.
Таблица 6.7. Механнческне свойства сталей для гребных винтов

Марка стали	$\sigma_{0,2}$, МПІа	σ_{B}, МПа	$\delta_{5}, \%$	$\psi, \%$	KV^{-10}, Дж
	не менее				
08X14НДЛ	500	650	15	40	21
08X15Н4ДМЛ	600	750	17	45	40

Все стали обладают хорошей технологичностью при литье и сварке. Учитывая, что корпусные детали имеют сложную конфигурацию, значительные массу и размеры, их зачастую изготавливают в литосварном исполнении, применяя ручную и полуавтоматическую сварку без последующей термической обработки или электрошлаковую сварку с последующей местной термической обработкой области шва.

Механические свойства сварных соединений для всех сталей аналогичны механическим свойствам основного металла.

Для тяжелонагруженных гребных винтов ледоколов и ледокольнотранспортных судов ЦНИИКМ «Прометей» созданы высокопрочные коррозионно-стойкие стали: мартенситного класса марки $08 \mathrm{X14НДЛ} \mathrm{и} \mathrm{переходного} \mathrm{аустенитно-мартенситного} \mathrm{класса} \mathrm{марки}$ $08 \mathrm{X15H} 4 Д М Л$, механические свойства которых приведены в табл. 6.7.

Разработанная технология позволяет изготавливать лопасти и ступицы сборных гребных винтов диаметром до 605 мм с толщиной корневых сечений лопасти до 400 мм и массой до $30 \ldots 50$ т.

Документами, определяющими перечень материалов для использования в судостроении, являются Правила Морского Регистра и Правила Речного Регистра, в которых помимо стального проката описаны стальные поковки, трубы, литье, отливки из чугуна и цветных сплавов, полуфабрикаты из сплавов для корпусных конструкций, стали для тросов и цепей, пластмассы и клеящие вещества. Правила Регистров регламентируют порядок, объемы и способы испытаний судостроительных материалов. За

рубежом Правила по классификации и строительству сведены в следующих документах: Lloyd's Register of Shipping (LR) - Beликобритания; Germanischer Lloyd (GL) - Германия; Register Italiania Novile (RINA) - Италия; Det Norske Veritas (DNV) Норвегия; American Bureau of Shipping (ABS) - США.

6.4. Инструментальные стали и сплавы

По назначению инструментальные стали подразделяют на стали для режущего, штампового и измерительного инструментов. Кроме того, для изготовления режущего инструмента, особенно при скоростной обработке, широко применяют твердые сплавы.

Стали и сплавы для режущего инструмента. Основные требоваиия, предбявляемье к сталям. Режущий инструмент работает в условиях длительного контакта и трения с обрабатываемым металлом. В процессе эксплуатации должны сохраняться неизменными конфигурация и свойства режущей кромки. Материал для изготовления режущего инструмента должен обладать высокой твердостью (не менее $60 \ldots 62$ HRC) и износостойкостью, т.е. способностью длительное время сохранять режущие свойства кромки в условиях трения.

Чем больше твердость обрабатываемьх материалов, толще стружка, выше скорость резания, тем больше энергия, затрачиваемая на процесс обработки резанием. Механическая энергия переходит в тепловую. Выделяющаяся теплота нагревает резец, деталь, стружку и частично рассеивается. Поэтому основным требованием, предьявляемым к инструментальным материалам, является высокая теплостойкость, т.е. способность сохранять твердость и режущие свойства при длительном нагреве в процессе работы. По теплостойкости различают три группы инструментальных сталей для режущего инструмента: нетеплостойкие, полутеплостойкие и теплостойкие.

При нагреве до $200 \ldots 300^{\circ} \mathrm{C}$ у нетеплостойких сталей в процессе резания углерод выделяется из мартенсита закалки и начинается коагуляция карбидов цементитного типа, что приводит к потере твердости и износостойкости режущего инструмента. К нетеплостойким относятся углеродистые и низколегированные стали, содержащие до 4% легирующих элементов. Полутеплостойкие стали, к которым относятся некоторые среднелегированные стали, содержащие более 4% хрома и другие карбидообразующие элементы, например 9Х5ВФ, сохраняют твердость до температуры примерно $400^{\circ} \mathrm{C}$. Теплостойкие стали сохраняют твердость и износостойкость при нагреве до температуры несколько выше $60{ }^{\circ} \mathrm{C}$.

Углеродистые и низколегированные стали имеют низкую теплостойкость и невысокую прокаливаемость, поэтому их используют для легких условий работы при малых скоростях резания. Быст-

рорежущие стали, имеющие более высокую теплостойкость и прокаливаемость, применяют для более тяжелых условий работы. Еще более высокие скорости резания допускают твердые сплавы и керамические материалы. Из существуюших материалов наибольшей теплостойкостью обладает нитрид бора - эльбор. Эльбор позволяет обрабатывать материалы высокой твердости, например закаленную сталь, при высоких скоростях.

Углеродистые стали. Углеродистые инструментальные стали (ГОСТ 1435-90) маркируются буквой У, а следующая за ней цифра показывает содержание углерода в десятых долях процента. Для изготовления инструмента применяют углеродистые качественные стали марок У7-У13 и высококачественные стали марок У7АУ13А. Качественные стали содержат не более $0,03 \%$ серы и фосфора, высококачественные - не более $0,02 \%$.

По назначению различают углеродистые стали для работы при ударных нагрузках и для статически нагруженного инструмента.

Стали марок У7 - У9 применяют для изготовления инструмента при работе с ударными нагрузками, от которого требуется высокая режущая способность (зубила, клейма по металлу, деревообрабатывающий инструмент, в частности пилы, топоры и т.д.).

Стали марок У10-У13 идут на изготовление режущего инструмента, не испытывающего при работе толчков, ударов и обладающего высокой твердостью (напильники, шаберы, острый хирургический инструмент и т.п.). Из стали этих марок иногда изготавливают также простые штампы холодного деформирования.

Углеродистые доэвтектоидные стали после горячей пластической обработки (ковки или прокатки) и последующего охлаждения на воздухе имеют структуру, состоящую из пластинчатого перлита и небольшого количества феррита, а заэвтектоидные стали - пластинчатого перлита и избыточного цементита, который обычно образует сплошную или прерывистую сетку по границам бывших зерен аустенита.

Термическая обработка углеродистьх инструментальных сталей состоит из двух операций: предварительная обработка и окончательная обработка.

Предварительная термическая обработка сталей заключается в отжиге при температуре $740 \ldots 760^{\circ} \mathrm{C}$, цель которого получить микроструктуру, состоящую из зернистого перлита - псевдоперлита, поскольку при такой микроструктуре после закалки сталь приобретает наиболее однородные свойства и облегчается механическая обработка инструмента.

Окончательная термическая обработка состоит из закалки и низкого отпуска. Закалку проводят в воде от температуры $780 \ldots 810^{\circ} \mathrm{C}$, т.е. от температур, расположенных несколько выше точки $\boldsymbol{A}_{c 3}$ для доэвтектоидных сталей и ниже точки $\boldsymbol{A}_{c m}$ для заэвтектоидных.

У глеродистые стали имеют очень высокую критическую скорость закалки - примерно $200 . . .300^{\circ} \mathrm{C} / \mathrm{c}$. В связи с этим недопустимо даже малейшее замедление охлаждения при закалке, так как это может привести к частичному распаду аустенита при температурах перлитного интервала и, как следствие, к появлению мягких пятен. Особенно быстро протекает распад аустенита в углеродистых сталях при температурах, близких к $500 \ldots 550^{\circ} \mathrm{C}$, где он начинается почти мгновенно, протекает чрезвычайно интенсивно и в течение нескольких секунд полностью заканчивается. Поэтому только инструменты малого диаметра могут после закалки в воде прокаливаться насквозь. Однако при этом в них возникают болышие внутренние напряжения, которые могут вызвать существенные деформации.

Инструменты крупных размеров при закалке в воде и в водных растворах солей, кислот и щелочей, охлаждающая способность которых выше, чем воды, закаливаются на мартенсит лишь в тонком поверхностном слое. Структура же глубинных зон инструментов представляет собой продукты распада аустенита в перлитном интервале температур. Сердцевина инструментов, имеющая такую структуру, является менее хрупкой по сравнению с мартенситной структурой. Поэтому инструменты, имеющие такую сердцевину, лучше переносят толчки и удары по сравнению с инструментами, закаленными насквозь на мартенсит.

Углеродистые стали наиболее целесообразно применять для инструментов небольшого сечения (до 5 мм), которые можно закаливать в масле и достигать при этом сквозной прокаливаемости, а также для инструментов диаметром или наименьшей толщиной $18 \ldots 25$ мм, в которых режущая часть приходится только на поверх ностный слой, например напильники, зенкеры, метчики.

Углеродистые инструментальные стали отпускают при температурах не более $200^{\circ} \mathrm{C}$ во избежание снижения твердости. Твердость окончательно термически обработанного инструмента из углеродистых сталей обычно лежит в интервале 56... 64 HRC

Достоинствами углеродистых инструментальных сталей являются низкая стоимость, хорошая обрабатываемость давлением и резанием в отожженном состоянии. Их недостатками являются невысокие скорости резания, ограниченные размеры инструмента из-за низкой прокаливаемости и его значительные деформации после закалки в воде.

Легированные стали. Низколегированные стали для режущего инструмента (13X6, 9XC) также не обладают высокой теплостойкостью и обычно пригодны для работы при температуре не выше $200 . . .250^{\circ} \mathrm{C}$. Среднелегированные стали типа 9Х5ВФ, 3Х4B3М3Ф2 имеют более высокую теплостойкость ($300 \ldots 500^{\circ} \mathrm{C}$). В отличие от углеродистых легированные стали обладают больеей устойчивостью переохлажденного аустенита, следовательно, большей прокаливаемостью и несколько более высокой износостойкостью. Их

Таблица 6.8. Химический состав легированных инструментальных
сталей

Марка стали	C	Mn	Si	Cr	W	V
	13 X	$1,25 \ldots 1,4$	$0,3 \ldots 0,6$	$0,15 \ldots 0,35$	$0,4 \ldots 0,7$	-
9 XC	$0,85 \ldots 0,95$	$0,3 \ldots 0,6$	$1,2 \ldots 1,6$	$0,95 \ldots 1,25$	-	-
ХВГ	$0,9 \ldots 1,05$	$0,8 \ldots 1,1$	$0,15 \ldots 0,35$	$0,9 \ldots 1,2$	$1,2 \ldots 1,6$	-
ХВСГ	$0,95 \ldots 1,05$	$0,6 \ldots 0,9$	$0,65 \ldots 1$	$0,6 \ldots 1,1$	$0,5 \ldots 1,2$	-
9 ХЗВФ	$0,85 \ldots 1$	$0,15 \ldots 0,4$	$0,15 \ldots 0,4$	$4,5 \ldots 5,5$	$0,8 \ldots 1,2$	$0,15 \ldots 0,3$

можно закаливать в масле до критического диаметра 40 мм и более. Применение масла или полимерных закалочных сред позволяет уменьшить деформацию и коробление инструмента, который может иметь большее сечение, а благодаря меньшему короблению и бо́льшую длину.

Низколегированная сталь 13X имеет сравнительно неглубокую прокаливаемость и рекомендована для инструментов диаметром до 15 мм. Из этой стали изготавливают хирургический, гравировальный инструменты, лезвия безопасных бритв. Стали 9ХС, ХВГ, ХВСГ (ГОСТ 5950-73) (табл. 6.8) используют для изготовления инструментов крупного сечения: сверл, разверток, протяжек диаметром $60 . . .80 \mathrm{mм}$.

Обычная термическая обработка легированных режущих сталей состоит из закалки от температуры $830 \ldots 870^{\circ} \mathrm{C}$ в масле или ступенчатой закалки и отпуска при температуре $200^{\circ} \mathrm{C}$. Твердость после термической обработки составляет $61 \ldots 65 \mathrm{HRC}$. Если необходимо увеличить вязкость, температуру оппуска повышают до $200 \ldots 300^{\circ} \mathrm{C}$. Вследствие некоторого распада мартенсита твердость после этого снижается до $55 . .60 \mathrm{HRC}$.

Быстрорежсуцие стали. С увеличением скорости резания возрастают требования к теплостойкости стали. Этим требованиям в большей мере удовлетворяют быстрорежущие стали, впервые предложенные в 1902 г.

Быстрорежущие стали маркируют буквой Р, цифры показывают среднее содержание вольфрама - основного легирующего элемента. Среднее содержание углерода во всех быстрорежущих сталях обычно несколько меныше 1%, хрома - до 4%, поэтому эти элементы не указываются. Содержание остальных легирующих в цельх процентах указывается как обычно цифрами, следуюцими за их буквенным обозначением.

Быстрорежущая сталь после закалки и отпуска имеет структуру высоколегированного отпущенного мартенсита с карбидами и сохраняет первоначальную структуру практически неизменной при

Таблица 6.9. Химнческий состав быстрорежуших сталей

Марка стали	Содержание, \%					
	C	Cr	W	V	Мо	Со
P18	$0,73 \ldots 0,83$	$3,8 \ldots 4,4$	$17 \ldots 18,5$	$1 \ldots 1,4$	До 1	До 0,5
P9	$0,85 \ldots 0,95$	$3,8 \ldots 4,4$	$8,5 \ldots 9,5$	$2,3 \ldots 2,7$	До 1	До 0,5
P6М5	$0,82 \ldots 0,9$	$3,8 \ldots 4,4$	$5,5 \ldots 6,5$	$1,7 \ldots 2,1$	$4,8 \ldots 5,3$	До 0,5
Р6М5Ф	$0,95 \ldots 1,05$	$3,8 \ldots 4,3$	$5,7 \ldots 6,7$	$2,3 \ldots 2,7$	$4,8 \ldots 5,3$	До 0,5
Р6М5К5	$0,84 \ldots 0,92$	$3,8 \ldots 4,3$	$5,7 \ldots 6,7$	$1,7 \ldots 2,1$	$4,8 \ldots 5,3$	$4,7 \ldots 5,2$

нагреве до температуры $620^{\circ} \mathrm{C}$. Резцы из быстрорежущей стали позволяют увеличить скорость резания в $2-4$ раза и стойкость инструментов в $10-30$ раз по сравнению с теми же характеристиками инструмента из сталей с низкой теплостойкостью.

Химический состав некоторых быстрорежущих сталей (ГОСТ 19265-73) приведен в табл. 6.9.

Потеря твердости при нагреве обусловлена в первую очередь распадом мартенсита и коагуляцией выделившихся карбидов. Коагуляция карбидов в углеродистой и легированной сталях при температуре выше $300^{\circ} \mathrm{C}$ ведет к быстрой потере твердости.

a

2

6

θ

Рис. 6.1. Микроструктура быстрорежущей стали P6M5, увеличение в 500 раз:
a - литое состояние; 6 - после ковки и отжига; в - после закалки; z - после отпуска

Теплостойкость быстрорежущих сталей обусловлена легированием их карбидообразующими элементами - вольфрамом, ванадием и молибденом в количествах, достаточных для связывания почти всего углерода в специальные карбиды. Распад мартенсита и коагуляция специальных карбидов происходит при температуре $600 \ldots 650^{\circ} \mathrm{C}$.

Микроструктура быстрорежущей стали приведена на рис. 6.1. При затвердевании литой быстрорежущей стали образуется эвтектика, напоминающая ледебурит и располагающаяся по границам зерен. Быстрорежущие стали относятся к ледебуритному классу. После ковки или прокатки сетка эвтектики подвергается дроблению с измельчением входящих в нее карбидов и более равномерным их распределением в основной матрице.

После прокатки или ковки быстрорежушую сталь подвергают изотермическому отжигу для уменьшения твердости и облегчения механической обработки. Сталь выдерживают при температуре $740^{\circ} \mathrm{C}$ до полного превращения аустенита в перлитно-сорбитную структуру.

Высокую теплостойкость инструмент из быстрорежущих сталей приобретает после закалки и мнопократното отпуска. При нагреве под закалку необходимо обеспечить максимальное растворение карбидов и получение высоколегированного аустенита. Такая структура увеличивает прокаливаемость и позволяет получить после закалки мартенсит с высокой теплостойкостью. Температура закалки сталей составляет, ${ }^{\circ} \mathrm{C}$: P18 - $1270 \ldots 1290$; P9 - $1220 \ldots 1240$; P6M5 $1210 \ldots 1230$. Во избежание трешин и деформации инструмента изза низкой теплопроводности сталей применяют ступенчатый нагрев под закалку в расплавленных солях, а закалку производят в масле. После закалки структура быстрорежущей стали состоит из высокоуглеродистого мартенсита, нерастворенных при нагреве избыточных карбидов и примерно 30% остаточного аустенита. Остаточный аустенит снижает твердость, режущие свойства стали, ухудшает ее шлифуемость; его присутствие в структуре нежелательно.

При многократном отпуске из остаточного аустенита выделяются дисперсные карбиды, легированность аустенита уменьшается, и он претерпевает мартенситное превращение. Обычно применяют трехкратный отпуск при температуре $550 \ldots 570^{\circ} \mathrm{C}$ в течение $45 \ldots 60$ мин. Режим термической обработки инструмента из быстрорежущей стали P18 показан на рис. 6.2. Число отпусков может быть сокращено при обработке холодом после закалки, в результате которой уменьшается содержание остаточного аустенита. Обработке холодом подвергают инструменты сравнительно простой формы. Твердость после закалки составляет $62 \ldots 63$ HRC, а после отпуска увеличивается до 63 ... 65 HRC.

Известно применение порошков быстрорежущих сталей для изготовления инструмента. Исходная шихта состоит из предвари-

Рис. 6.2. Режимы термической обработки инструмента из быстрорежущей стали P18:
a - закалка и трехкратный отпуск; 6 - закалка, обработка холодом, отпуск

тельно тонко измельченной стружки быстрорежущей стали, которую формуют в холодном состоянии с последующим спеканием формованных заготовок. Спекание производят в вакууме при температуре $1200 \ldots 1250^{\circ} \mathrm{C}$ в течение $3 \ldots 5$ ч. Для уменьшения пористости порошковую быстрорежущую сталь подвергают горячей штамповке или горячему прессованию. После этого изделия подвергают термической обработке, характерной для данной марки стали. Порошковая быстрорежуцая сталь обладает более высокой теплостойкостью, чем сталь, изготовленная традиционными методами, и, как следствие, большей износостойкостью. Это объясняется более высокой степенью легированности аустенита элементами, входящими в состав стали, мелкодисперсной структурой и равномерным распределением карбидной фазы. В структуре порошковой быстрорежущей стали отсутствует карбидная неоднородность. Быстрорежушая сталь, изготовленная методом порошковой металлургии, имеет стойкость в $1,5-2$ раза выше, чем стойкость быстрорежущей стали, полученной традиционным способом.

В табл. 6.10 указаны основные стали для режушего инструмента различного назначения (по данным Ю.А. Геллера).

Таблица 6.10. Стали для режущего пнструмента

Тип инструмента	Рекомендуемая марка стали
Резцы и резцовые головки: фасонные на автоматах долбежные, строгальные, отрезные	$\begin{aligned} & \mathrm{P} 18, \mathrm{P} 12 \Phi 3 \\ & \mathrm{P} 6 \mathrm{M} 5, \mathrm{P} 12, \mathrm{P} 9 \end{aligned}$
Сверла: для обработки металлов твердостью до 260 HB для обработки металлов большей твердости для труднообрабатываемых металлов	$\begin{aligned} & \text { P6M5, P6M3Ф } \\ & \text { P12Ф3 } \\ & \text { P12Ф3, P12Ф4K5 } \end{aligned}$
Фрезы: резьбовые червячные: для резания с повышенной скоростью для резания труднообрабатываемьх сплавов	P6M5, P12, P8M3, P18 P6M5, P12Ф3, P12, P8M3 P12Ф4K5, P8M3K6C P12Ф4K5, P8M3K6C, Р9М4К8Ф, Р12M3Ф2K8
Долбяки	P6M5, P12, P8M3
Протяжки диаметром: до $80 \ldots 100 \mathrm{mм}$ более $100 \mathrm{mм}$	P12, P6M5, P12Ф3, P8M3 ХВСГ, Р6M5
Метчики: машинные ручные	$\begin{aligned} & \text { P6M5, P18 } \\ & 11 Х \Phi, ~ У 11 A, ~ У 12 A ~ \end{aligned}$
Плашки круглые: для нарезания мягких металлов для нарезания твердых металлов	$\begin{aligned} & \text { XBCГ } \\ & \text { P6M5, P8M3 } \end{aligned}$
Развертки: машинные машинные для труднообрабатываемых сплавов ручные	P6M5, P8M3, P12Ф3, P12 P8M3K6C XBC厂, P6M5, P8M3
Зенкеры: для обработки мягких металлов для обработки твердых металлов	P6M5, P12, P8M3 P9M4K8Ф, P8M3K6C
Пилы: сегменты к круглым пилам и ножовочные полотна машинные и ручные для обработки древесины	P9, P6M5 Х6ВФ, 9ХФ, У10А
Напильники: для мягких металлов для твердьхх металлов	$\begin{aligned} & \text { 13X, X, Y13A } \\ & \text { P6M5, P8M3 } \end{aligned}$
Стамески, долота, топоры для обработки древесины	7ХФ, У7A

Металакерамические твердье спла-
cb. Металлокерамические твердые сплани (ГОСТ 3882-74) являются инструментальными материалами, состоящими из карбидов тугоплавких металлов и цементирующего металла - кобальта, играющего роль связки. На рис. 6.3 проиллюстрировано влияние температуры исแытания на твердость различных инструментальных материалов. Твердые спланы обладают наиболее высокой твердостью и сохраняют ее при нагреве до высоких температур.

Твердые сплавы изготавливают методом порошковой металлургии. Применяпт карбиды вольфрама, титана и тантами, а за рубежом - также карбиды ниопия и ванадия. Сплавы получают спеканием порошков карбидов с порошком кибальта, являюшегося связуюшим комнонентом, при температуре $1400 \ldots 1550^{\circ} \mathrm{C}$ после предварительноғо прессования. Твердые сплавы изготавливают в виде пластин, кьторые медным припоем припаивают к державке из обычной углеродистой стали. Твердые сплавы применяют для резцов, сверл,巾рез и другого инструмента.

Инструмент из металлокерамических твердых сплавов характеризуется высокой твердостью ($80 \ldots 97 \mathrm{HRA}$), износостойкостью в сочетании с высокой теплостойкостью (до $800 \ldots 1000^{\circ} \mathrm{C}$), недоститком является высокая хрупкость.

Скорость резания твердыми сплавами в 5-10 раз выше скорости резания быстрорежущими сталями.

В зависимости от состава карбидной основы различают три группы твердых сплавов: вольфрамовые, титанвольфрамовые и титантииталвольфрамовые.

Сплавы первой группы изготавливают на основе карбида вольфрама WC и кобальта. Сплавы этой группы называют однокарбидІыми и обозначают буквами ВК и цифрой, показывающей содержание кобальта в процентах. Например, сплав ВК 3 содержит 3% кобальта и 97% карбида вольфрама. Содержание кобальта может меняться (сплавы BK6, BK8). Чем больше содержание кобальта, тем выше прочность, хотя и несколько ниже твердость сплава. 'Тнердые сплавы вольфрамовой групны имеют наибольшую прочность, но более низкую твердость по сравнению со сплавами других групп, теплостойки до температуры $800^{\circ} \mathrm{C}$. Их обычно применякю лля обработки чугуна, сплавов цветных металлов и различных неметаллических материалов, даюших прерывистую стружку.

Сплавы второй группы (двухкарбидные) изготавливают на основе карбидов WC и ТіС на кобальтовой связке. Их маркируют буквами Т, К и цифрами. Цифры после буквы Т указывают содержание карбида титана в процентах, а цифры после буквы K - содержание кобальта. Например, сплав T15K6 содержит 15% карбида титана, 6% кобальта, остальное, т.е. 79%, карбида вольфрама. Карбид вольфрама растворяется в карбиде титана при температуре спекания, образуя твердый раствор (Ti, W) С, имеющий более высокую твердость, чем карбид вольфрама. Сплавы этой группы имеют более высокую ($900 \ldots 1000^{\circ} \mathrm{C}$) теплостойкость, повышающуюся с увеличением содержания карбидов титана. Их в основном применяют для высокоскоростной обработки сталей.

Для изготовления сплавов третьей группы используют карбиды вольфрама, титана, тантала и порошок кобальта в качестве связки. Эти сплавы маркируют буквами ТТ, К и цифрами. Цифра, стоящая после букв ТТ, указывает суммарное содержание карбидов титана TiC и тантала TaC , а цифра, стоящая после буквы K , содержание кобальта. Например, сплав ТT7K12 содержит 4% карбида титана, 3% карбида тантала, 12% кобальта и 81% карбида вольфрама. В структуре этих сплавов присутствует твердый раствор (Ti, Ta, W) С и избыток карбида вольфрама. Сплавы этой группы имеют более высокую прочность, чем сплавы второй группы, и лучшую сопротивляемость ударным воздействиям, вибрации и выкрашиванию. Их применяют для более тяжельх условий резания (черновое точение стальных слитков, поковок, литья).

Общим недостатком рассмотренных сплавов помимо высокой хрупкости является повышенная дефицитность исходного вольфрамового сырья - основного компонента, определяющего их повышенные физико-механические характеристики. Поэтому перспективно направление использования безвольфрамовых твердых сплавов. Хорошо себя зарекомендовали сплавы, для которых в качестве основы используется карбид титана, а в качестве связки никель и молибден. Такие сплавы маркируют буквами КТС и ТН. Твердые сплавы КТС-1 и КТС-2 содержат $15 \ldots 17 \%$ никеля и $7 . . .9 \%$ молибдена соответственно, остальное - карбид титана. В твердых сплавах типа $\mathrm{TH}-20, \mathrm{TH}-25, \mathrm{TH}-30$ в качестве связующего металла применяют в основном никель в количестве $16 \ldots 30 \%$. Концентрация молибдена составляет $5 \ldots 9 \%$, остальное - карбид титана. Твердость подобных твердых сплавов составляет $87 \ldots 94$ HRA, сплавы имеют высокую износостойкость и коррозионную стойкость. Их используют для изготовления режущего инструмента и быстроизнашиваюшихся деталей технологического оборудования.

Особотвердые инструментальные материалы созданы на основе нитрида бора и нитрида кремния. В них нет пластичной металлической связки. Изделия из таких материалов изготавливают либо с помощью взрыва, либо в условиях сверхвысоких давлений и высоких

температур. Изделия из нитридов бора и кремния используют в качестве материала инденторов (наконечников) для измерения твердости тугоплавких материалов в интервале температур $700 \ldots 1800^{\circ} \mathrm{C}$, как абразивный материал и в качестве сырья для изготовления сверхтвердых материалов, применяемых для оснащения режущей части инструментов для обработки закаленных сталей, твердых сплавов, стеклопластиков, цветных металлов. Особотвердые инструментальные материалы обладают высокой твердостью ($94 . . .96$ HRA), прочностью, износостойкостью, теплопроводностью, высокой стабильностью физических свойств и структуры при повышшении температуры до $1000^{\circ} \mathrm{C}$. Их достоинством является доступность и дешевизна исходного продукта, благодаря чему они используются для замены вольфрамсодержащих твердых сплавов.

Для изготовления доводочных паст, шлифовальных кругов применяют абразивные материалы, представляюшие собой порошки либо скрепленные связкой, либо нанесенные на гибкую основу ткань или бумагу. Различают природные и искусственные абразивные материалы. К природным относятся алмазы, гранаты, корунд, к искусственным - искусственные алмазы, гексагональный нитрид бора (эльбор), карборунд.

Стали для измерительного инструмента. Стали этого назначения должны обладать высокой твердостью и износостойкостью, сохранять постоянство формы и размеров в течение длительного срока экспнуатации. Кроме того, от них требуется хорошая обрабатываемость для получения высокого класса чистоты поверхности и малая деформация при термической обработке.

Для измерительного инструмента обычно применяют высокоуглеродистые стали У8-У12 и низколегированные стали марок $\mathrm{X}, \mathrm{XГС}, ~ Х В Г, ~ 9 Х С, ~ с о д е р ж а щ и е ~ п р и м е р н о ~ 1 \% ~ у г л е р о д а ~ и ~ д о ~ 1,5 \% ~$ хрома. Их твердость после термической обработки должка быть не менее 60 ... 64 HRC.

После обычной термической обработки в структуре высокоутлеродистых сталей обычно присутствует остаточный аустенит, обусловливающий ее нестабильность. Для обеспечения высокой твердости стали и стабильности размеров инструмента в процессе эксплуатации проводят специальную термическую обработку. Термическая обработка состоит из закалки в масле, для особо точных инструментов включает дополнительно обработку холодом при температуре $-80^{\circ} \mathrm{C}$ и длительный (до 30 ч) низкотемпературный отпуск - старение при температуре $120 \ldots 170^{\circ} \mathrm{C}$. Нагрев при более высокой температуре недопустим из-за снижения твердости и износостойкости инструмента. Длительный отпуск предотвращает процессы старения и распад мартенсита в течение всего периода эксплуатации инструмента.

Для измерительных инструментов большого размера и сложной геометрии используют азотируемые стали типа 38 X 2 M ЮА.

Марка стали	Содержание, \%							
	C	Si	Mn	Cr	w	V	Mo	Ni
Для деформирования в холодном состоянии								
Х6B9	1,05 ... 1,15	0,15 ...0,35	0,15 ...0,4	5,5 ..6,5	1,1...1,5	0,5 ..0,8	-	-
X12	2...2,2	0,1 ...0,4	0,15 ...0,45	11,5 ... 13	-	-	-	-
X12M ${ }^{\text {¢ }}$	1,45 ...1,65	0,1...0,4	0,15 ...0,45	11...12,5	-	0,15 ...0,3	0,4 ...0,6	-
X1291	1,25... 1,45	0,15 ...0,35	0,15 ..0,4	11...12,5	-	0,7...0,9	-	-
Для деформирования в горячем состоянии								
7X3	0,65 ...0,75	0,15 ...0,35	0,15 ...0,4	3,2 ...3,8	-	-	-	-
5XHM	0,5 ...0,6	0,1...0,4	0,5 ...0,8	0,5 ...0,8	-	-	0,15 ...0,3	1,4...1,8
4ХМФС	0,37... 0,45	0,5 ...0,8	0,5 ...0,8	1,5 ...1,8	-	0,3 ...0,5	0,9 ... 1,2	-
3X2B89	0,3 .. 0,4	0,15 ...0,4	0,15 ...0,4	2,2 ...2,7	7,5...9	0,2 ..0,5	-	-

Примечание. Содержание серы и фосфора в сталях всех марок должно быть менее $\mathbf{0 , 3 \%}$.

Штамповые стали. Штамповые стали (ГОСТ 5950-73) применяют для изготовления штампов холодного и горячего деформирования, пуансонов, матриц, фильер, пресс-форм для литья под давлением. Химический состав некоторых марок штамповых сталей приведен в табл. 6.11. В зависимости от температурных условий эксплуатации различают штамповые стали для деформирования в холодном и горячем состоянии.

Стали для цтампов холодного дефоркирования. Стали этого типа должны обладать высокой твердостью и износостойкостью, высокой прочностью и удовлетворительной вязкостью для работы при ударных нагрузках.

В зависимости от назначения различают три группы штамповых сталей для деформирования в холодном состоянии.

K первой группе относятся стали для вытяжных и вырубных штампов. Основные требования, предъявляемые к этим сталям, высокая твердость и износостойкость. Для изготовления штампов этой группы применяют утлеродистые стали марок У10-У12 и низколегированные стали Х, ХВГ, ХВСГ. После неполной закалки их отпускают при температуре $150 \ldots 180^{\circ} \mathrm{C}$ на твердость 60 HRC. На поверхности образуется твердый износостойкий слой, а сравнительно вязкая за счет несквозной прокаливаемости сердцевина позволяет работать при умеренных ударных нагрузках.

Стали с повышенным содержанием хрома $6 . .12 \%$: Х6ВФ, X12, $\mathrm{X} 12 \mathrm{M}, \mathrm{X} 12 \Phi 1$ - имеют более высокую износостойкость и глубокую прокаливаемость. Высокая твердость этих сталей достигается благодаря присутствию в структуре большого количества карбидов хрома $\mathrm{Cr}_{7} \mathrm{C}_{3}$, что, однако, приводит к росту карбидной неоднородности. Структура и свойства высокохромистых сталей в значительной мере определяются правильным выбором режима термической обработки, особенно температуры закалки. С ее увеличением возрастает концентрация углерода и хрома в аустените, что приводит к повышению твердости мартенсита. Однако при закалке с чрезмерно высокой температуры в структуре увеличивается содержание остаточного аустенита и твердость стали падает. После закалки обычно проводят низкий отпуск на твердость 61 ... 63 HRC.

Хорошо зарекомендовали себя стали Х12Ф4M, Х6Ф4M. Молибден и ванадий, дополнительно введенные в состав этих сталей, способствуют получению мелкозернистой структуры. Износостойкость штампов из стали Х12Ф4М в $1,5-2$ раза выше по сравнению с износостойкостью штампов из стали X12M.

Вторую группу составляют стали для штампов холодного выдавливания, испытывающие большие удельные давления. Также стали должны хорошо сопротивляться деформации и иметь высокую прочность. Присутствие в их структуре остаточного аустенита недопустимо. Для этого необходимо проведение высокого отпуска при температуре не ниже $500^{\circ} \mathrm{C}$. Поэтому, хотя эти стали и относятся к сталям

для штампов холодного деформирования, они должны иметь довольно высокую теплостойкость (например, сталь 6X4M2ФС).

К третьей групше относятся стали для высадочных и чеканочных штампов, работаюших при высоких ударных нагрузках. Сложность создания таких сталей состоит в том, что для повышения твердости необходимо увеличение содержания углерода, что может приводить к снижению ударной вязкости. Обычно для штампов этого назначения используют сталь 7Х3. Более высокую стойкость показала сталь марки 6Х3ФС.

Стали для штампов горячего деформирования. В еще более тяжелых условиях работают штамповые инструменты для горячего формообразования. Материал штампов соприкасается с горячим металлом и нагревается, причем нагрев чередуется с охлаждением. Эффективность использования таких прогрессивных методов точного формообразования, как горячая объемная штамповка, прессование и литье под давлением, зависит от стойкости инструмента. С расширением номенклатуры обрабатываемых сплавов, увеличением производительности и мощности оборудования формообразующий инструмент испытьвает возрастающие нагрузки. Требования к материалу инструмента непрерывно растут.

Материал для горячих штампов должен удовлетворять комплексу требований. К ним в первую очередь относятся высокая прочность (не менее $1000 \mathrm{MПа}$), необходимая для сохранения формы штампа при высоких удельных давлениях во время деформирования, и высокая теплостойкость, позволяющая сохранить высокие твердость и прочностные свойства при длительном температурном воздействии. Стали должны иметь достаточную вязкость для предупреждения поломок при ударном нагружении, высокое сопротивление термической усталости (разгаростойкости), сохраняя способность выдерживать многократные нагревы и охлаждения без образования сетки трещин. Горячештамповые стали должны иметь хорошую окалиностойкость и высокую прокаливаемость для обеспечения необходимых механических свойств по всему сечению, что особенно важно для массивных штампов.

В соответствии с указанными требованиями для штампов горячего формообразования применяют легированные стали, содержащие $0,3 \ldots 0,6 \%$ углерода, подвергаемые закалке и отпуску при температуре $550 \ldots 680^{\circ} \mathrm{C}$ с целью получения трооститной и троос-титно-сорбитной структуры.

Для молотовых шттампов применяют сталь 5ХНМ и ее аналоги: 5 ХНВ, 5 ХНТ, 5 ХГМ. После закалки и отпуска при температуре $550^{\circ} \mathrm{C}$ сталь 5 ХНМ при комнатной температуре имеет следующие механические свойства: $\sigma_{\mathrm{в}}=1200 \ldots 1300 \mathrm{M}$ Па; $\delta=10 \ldots 12 \% ; \mathrm{KCU}=$ $=40$ Дж/см ${ }^{2}$; при нагреве до $500^{\circ} \mathrm{C}: \sigma_{\text {в }}=850 \ldots 900 \mathrm{M}$ Ма; $\sigma_{0,2}=$ $=600 \ldots 650$ МПа. При температуре эксплуатации свыше $500^{\circ} \mathrm{C}$ стойкость инструмента из стали 5ХНМ резко падает.

Хорошо зарекомендовали себя на автотракторных машиностроительных заводах стали 4 ХМФС, 5Х2СФ и 4ХСНМЦР. Внедрение этих сталей взамен стали 5 XHM для штамповки углеродистых и низколегированных сталей позволило повысить стойкость инструмента в 2-3 раза. Для изготовления крупногабаритных прессовых и молотовых штампов применяют сталь 5 X 2 HM СС, обеспечивающую повышение стойкости более чем в 2 раза.

Для пресс-форм литья под давлением и прессования цветных металлов и сплавов до последнего времени использовали сталь 3 Х2В8Ф. Ее недостатком является низкая технологичность, кроме того, сталь 3Х2В8Ф чувствительна к ударным нагрузкам и содержит значительные количества дорогого и дефицитного вольфрама.

Взамен стали 3Х2В8Ф предложена сталь марки 3Х2М2Ф, используемая для изготовления пресс-форм литья под давлением медных и алюминиевых сплавов, а также для изготовления прессшайб и внутренних втулок контейнеров при прессовании медных сплавов. Применение стали 3Х2М2Ф позволило повысить стойкость инструмента в $1,5-3$ раза.

Для изготовления крупного прессового инструмента на заводах цветной металлургии применяют стали 3ХВ4СФ и 4ХСН2МВФ.

С развитием техники требуется расширение диапазона рабочих температур штамповых сталей (свыше $700 \ldots 800^{\circ} \mathrm{C}$). Обычные жаропрочные сглавы нетехнологичны, так как плохо обрабатываются резанием. Разработан принципиально новый класс штамповых сталей для горячего формообразования - стали с регулируемым аустенитным превращением при эксплуатации. Примером такой стали служит сталь 4Х2Н5М3К5Ф, сочетающая технологические достоинства сталей на ферритной основе с высокой эксплуатационной стойкостью, свойственной жаропрочным аустенитным сталям и сплавам.

Для увеличения твердости при высоких температурах используют ХТО: азотирование, диффузионное хромирование, борирование. На поверхность гравюры штампа из газовой фазы проводят осаждение карбидов титана, имеющих особо высокую твердость.

Контрольные вопросы

1. С какой целью проводят легирование сталей?
2. Какие элементы чаще всего используют для легирования сталей?
3. Как маркируют легированные стали?
4. В чем разница маркировки конструкционных и легированных сталей?
5. Как влияют легирующие элементы на прокаливаемость сталей?
6. Сколько углерода содержат строительные стали повышенной прочности?
7. Какие стали относятся к цементуемым?
8. Какие изделия изготавливают из улучшаемых сталей?
9. Какие требования предъявляют к инструментальным сталям?

ГЛАВА 7
 СТАЛИ И СПЛАВЫ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

7.1. Коррозия и коррозионно-стойкие материалы

Общие сведения. Коррозией (от лат. corrodere - разъедать, разрушать) называют разрушение материалов под влиянием окружающей среды в результате ее химического или электрохимического воздействия.

Обычно рассматривают коррозию металлических материалов. Однако это явление характерно не только для металлов и сплавов, аналогичные процессы могут происходить и в неметаллических материалах - пластмассе, керамике. Примером такого коррозионного воздействия может служить износ футеровки плавильных печей под воздействием жидкого химически активного шлака.

В зависимости от свойств окружающей среды и характера ее физико-химического воздействия на материал различают:

химическую коррозию, обусловленную воздействием сухих газов, а также жидкостей, не являющихся электролитами (нефть, бензин, фенол);

электрохимическую коррозию, обусловленную воздействием жидких электролитов: водных растворов солей, кислот, щелочей, влажного воздуха, грунтовых вод, т.е. растворов, содержащих ионы и являющихся проводниками электричества.

Химическая коррозия. Наиболее распространенным видом химической коррозии является газовая коррозия при высоких температурах - процесс взаимодействия с кислородом или активными газовыми средами (галогены, диоксид серы, сероводород, пары серы, диоксид углерода и т.д.). При газовой коррозии разрушаются такие ответственные узлы и детали, как лопатки газовых турбин, сопла реактивных двигателей, арматура печей.

В производственных условиях чаще всего сталкиваются с окислением металлов, в случае сплавов на основе железа - с образованием окалины. Защитные свойства металлов от окисления обусловлены образованием сплошных оксидных пленок на их поверхности. Для обеспечения сплошности пленок необходимо, чтобы объем оксида $V_{\text {ок }}$ был больше объема металла $V_{\text {мет }}$ из которого он образовался: $V_{\text {ок }} / V_{\text {мет }}>1$. В противном случае получается прерывистая пленка, не способная эффективно защитить металл от коррозии. Такая пленка характерна для магния ($V_{\text {ок }} / V_{\text {мет }}=0,79$), что затрудняет зациту сплавов на его основе от коррозии.

Помимо сплошности оксидные пленки должны обладать высокими механическими свойствами, хорошо сцепляться с металлом и иметь достаточную толщину, обеспечивающую высокие защитные характеристики. Этим требованиям удовлетворяет пленка оксида хрома $\mathrm{Cr}_{2} \mathrm{O}_{3}$, что обусловливает высокую устойчивость против коррозии сталей и жаростойких сплавов с высоким содержанием хрома.

Рис. 7.1. Схема электрохимического коррозионного прошесса:
А - анод; K - катод

Электрохимическая коррозия. Наиболее распространенный вид коррозии металлов - электрохимическая коррозия. При электрическом контакте двух металлов или двух различающихся по свойствам фазовых составляющих одного металла, которые обладают разными электродными (электрохимическими) потенциалами, но находятся в одном электролите, образуется гальванический элемент. Поведение металлов или отдельных фаз зависит от значения их электродного потенциала. Металл или фаза, имеющие более отрицательный электродный потенциал (анод), отдают положительно заряженные ионы в раствор и растворяются (рис. 7.1). Избыточные электроны перетекают в металл или фазу, имеющие более высокий электродный потенциал (катод). Катод при этом не разрушается, а электроны из него удаляются во внешнюю среду. Чем ниже электродный потенциал металла или фазы по отношению к стандартному водородному потенциалу, принятому за нулевой уровень ${ }^{1}$, тем легче металл или фаза отдают ионы в раствор, тем ниже их коррозионная стойкость.

Значения электродного потенциала E_{0} некоторых металлов приведены ниже:

Элемент ... Mg	Al	Mn	Zn	Cr	Fe	Co	Ni
E_{0}, B-2,36	-1,66	-1,18	-0,76	-0,74	-0,44	-0,28	-0,25
Элемент ... Sn	Pb	H	Cu	Hg	Ag	Au	
$E_{0}, \mathrm{~B} \ldots0,14$	-0,13	0	+0,34	+0,79	+0,8	+1,5	

Ход электрохимического процесса определяется разностью потенциалов элементов. Для пары $\mathrm{Cu}-\mathrm{Zn}$ разность потенциалов составляет 1,1 В. В случае замкнутой цепи медь является катодом, а цинк анодом, что приводит к его растворению. Если приложить напря-

[^3]жение свыше 1,1 В, анод и катод поменяются местами, что приведет к растворению меди и восстановлению металлического цинка.

Приведенная схема работы гальванической пары лежит в основе электрохимической коррозии металлов и сплавов. Разные фазовые составляющие, присутствующие в структуре сплава, находясь в электролите, приобретают разные по величине и знаку электродные потенциалы. Чем больше различие в электродных потенциалах отдельных фазовых составляющих, тем активнее будет протекать коррозионный процесс и коррозионное разрушение сплава. Электрохимическая гетерогенность поверхности металла является причиной коррозии. Более коррозионно-стойкими являются сплавы со структурой однородного твердого раствора. Однако даже в случае однородной структуры коррозия может развиваться за счет образования анодных областей из-за наличия межкристаллитной пористости, различия остаточных напряжений в отдельньх зернах и других факторов.

Особенно сильно электрохимическая коррозия развивается при контакте в конструкции разнородных материалов с разными потенциалами (например, коррозия стальных деталей в контакте с медными или магниевых сплавов в контакте со сталью). Иллюстрацией могут служить две стальные пластинки, одна из которых покрыта оловом, а друтая цинком (рис. 7.2). Нарушение этих пленок приводит к тому, что из-за разности электродных потенциалов железо в пластинке с оловом становится анодом, а в пластинке с цинком - катодом. Цинк, разрушаясь, защищает железо от коррозии. Этим объясняется долговечность строительной жести, домашних ведер, оцинкованных кузовных листов и т.п.

Схемы основных разновидностей электрохимической коррозии приведены на рис. 7.3. В случае однофазного материала, например чистого металла или однородного твердого раствора, коррозия распространяется равномерно по всей поверхности детали - происходит так называемая общая, или равномерная, коррозия (рис. 7.3, a). Обработка, ведущая к гомогенизации структуры, делает сплав более устойчивым против электрохимической коррозии. Примером такой обработки является закалка хромоникелевой коррозионно-стойкой стали или отжиг оловянных бронз, имеющих после литья неодно-

Рис. 7.2. Схема коррозии при катодном (a) и анодном (б) защитном покрытии

Рис. 7.3. Основные разновидности электрохимической коррозии (a) и их относительное влияние на прочность листового дуралюмина (б):
I - равномерная коррозия; 2 - местная коррозия; 3 - межкристаллитная коррозия; ΔG - потеря массы дуралюмина

родное строение вследствие ликвации. Наоборот, нагрев сплавов, приводящий к распаду пересыщенного твердого раствора и выделению частиц второй фазы, снижает коррозионную стойкость. Разность потенциалов отдельных составляющих микроструктуры способствует электрохимической коррозии.

В неоднородных металлах коррозия носит местный характер, oxватывая отдельные анодные участки их поверхности с низким значением электродного потенциала (рис. 7.3, б). К местной коррозии относятся питтинг, или точечная коррозия, пятнистая и язвенная ее разновидности. Очаги местной коррозии являются концентраторами напряжений. Анодньми участками могут быть границы зерен и фаз, в то время как зерна сами по себе являются катодами. В этом случае развивается наиболее опасный вид коррозии - межкристаллитная коррозия, которая почти незаметна с поверхности и распространя-

Рис. 7.4. Схема формирования межкристаллитной коррозии высокохромистой стали (стрелками указаны зоны диффузии хрома и углерода):
1 - распределение хрома в граничной области; 2 - граница зерен; А анодная зона; K - катодная зона

Рис. 7.5. Влияние содержания хрома на изменение электрохимического потенциала стали E_{0}

ется в глубь металла по границам зерен (рис. 7.3, в). В результате межкристаллитной коррозии нарушается связь между зернами, при постукивании по металлу пропадает характерный металлический звук и после приложения нагрузки металл легко разрушается.

Межкристаллитная коррозия высокохромистой стали обусловлена выделением при повышенньх температурах по границам зерен карбидов типа $\mathrm{Cr}_{23} \mathrm{C}_{6}$. Такие карбиды образуются в результате диффузии углерода из всего объема зерна, а хрома - только с приграничньх областей (рис. 7.4). Углерод перемещается по межузельному механизму диффузии (по механизму внедрения), который по сравнению с перемещением атомов по механизму замещения характеризуется высокой подвижностью. Это приводит к снижению содержания хрома в приграничных областях ниже его критической концентрации $12 \ldots 14 \%$ и скачкообразному падению электродного потенциала с $+0,2$ до $-0,6 \mathrm{~B}$ (рис. 7.5). Границы зерен становятся анодом по отношению к металлу внутри зерен. Эффективным средством, подавляющим межкристаллитную коррозию, является максимальное снижение содержания углерода и введение в сталь таких сильных карбидообразующих элементов, как титан или ниобий, обладающих бо́льшим сродством к углероду, чем хром.

При одновременном действии коррозионной среды и нагрузки или остаточных напряжений возникает коррозия под напряжением, проявляющаяся в виде коррозионного растрескивания или сетки трещин. Места концентрации напряжений имеют более низкий электродный потенциал и приобретают характер анодных участков.

Из жизненных ситуаций известно, что в поврежденных местах кузовов автомобилей, а также в местах деформаций (на рис. 7.6 обведены штриховой линией) продукты коррозии появляются чаще

a

6

Рис. 7.6. Коррозионные пары, образовавшиеся в результате деформации: a - согнутый пруток; $б$ - соединение листов; А - анод; K - катод

всего. Высокие остаточные напряжения являются причиной ускоренной коррозии сварных швов, околошовной зоны, болтовых, заклепочных и других соединений.

Большое влияние на процесс коррозии в водных средах оказывает растворенный в жидкости кислород. При достаточном содержании кислорода на поверхности образуется защитная оксидная пленка, повышающая электродный потенциал металла. Наиболее опасные анодные зоны создаются в местах плохой аэрации, где затруднен доступ кислорода из воздуха. Хорошо известно, что та часть стальной плиты, которая находилась под слоем песка, корродирует в большей степени по сравнению с той частью, которая оставалась под непосредственным влиянием атмосферы. Стальные гвозди в старых деревянных конструкциях разрушаются гораздо быстрее, чем их головки, расположенные снаружи. Аналогичное явление наблюдается в щелях замкнутых профилей, на стыке листов, на резьбовой поверхности в болтовых соединениях, на грязной поверхности и т.Д. Примеры таких случаев изображены на рис. 7.7, а в табл. 7.1 представлены некоторые группы коррозионных пар.

Внутренние напряжения сами по себе не являются причиной появления коррозии. Интенсифицируя коррозию, они становятся инициаторами анодного процесса. Коррозии способствует неоднородность внутренней структуры материала. Коррозионные явления усиливаются при наложении анодной напряженности на структурную.

Состав атмосферы также оказывает влияние на коррозию сплавов. В городах, где воздух загрязнен промышленными газами, коррозия проявляется значительно сильнее, чем в сельской местности. Для стальных деталей особенно вредными являются сернистый газ SO_{2}, сероводород $\mathrm{H}_{2} \mathrm{~S}$, хлор Cl_{2} и хлороводород HCl (опасный также для алюминиевых и магниевых сплавов). Для медных сплавов характерна повышенная коррозия в атмосфере аммиака NH_{3}.

Рис. 7.7. Коррозионные пары, образовавшиеся при загрязнении поверхности стального листа (a), в устье трещины (б), в щели замкнутого профиля (в):
А - анод; K - катод

Таблица 7.1. Примеры коррозионных пар

Группа коррозионных пар	Коррозионная пара	Анод	Катод
Коррозионные пары из двух разных материалов	$\mathrm{Fe}-\mathrm{Zn}$	Zn	Fe
	$\mathrm{Fe}-\mathrm{Sn}$	Fe	Sn
	$\mathrm{Fe}-\mathrm{H}_{2}$	Fe	H_{2}
	$\mathrm{Cu}-\mathrm{H}_{2}$	H_{2}	Cu
	Перлит	Феррит	Цементит
	$\mathrm{Cu}-\mathrm{Al}$	Al	Cu
Структурные или напряженные коррозионные пары	Границы зерен	Область с большей внутренней энергией	Область с меньшей внутренней энергией
		Границы зерен	Тело зерна
	Мелкие и крупные зерна	Мелкие зерна	Крупные зерна
	Дефекты структуры	Дефекты	Структура без дефектов
	Деформированные детали	Зона деформации	Недеформированная зона
	Напряженныс болтовые, клепаные, сварные соединения	Напряженные зоны	Зоны, свободные от напряжений или с меньшими напряжениями
Концентрационные коррозионные пары	Разная концентрация электролита	Зона с менышей концентрацией реагента	Зона с большей концентрацией реагента
		Электролит с меньшей концентрацией	Электролит с большей концентрацией
	Разная коншентрация кислорода (доступ воздуха)	Меньшая концентрация кислорода затруднен доступ воздуха	Большая концентрация кислорода облегчен доступ воздуха
	Загрязненная поверхность	Загрязненные или окисленные области	Участки чистой поверхности

По повышению коррозионной агрессивности атмосферы могут быть расположены в следующий ряд: сухая континентальная, морская чистая, морская индустриальная, индустриальная, индустриальная сильно загрязненная.

Коррозионная усталость - это процесс постепенного накопления повреждений материала под действием переменных напряжений и коррозионноактивных сред. Образование и развитие усталостных трещин сопровождается проникновением коррозионной среды в эти трецины и облегчает разрушение. Этому виду разрушения подвержены практически любые конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Особая опасность коррозионно-усталостного разрушения состоит в том, что оно может проходить практически в любых, в том числе таких слабых коррозионных средах, как влажный воз-

Рис. 7.8. Диаграммы усталости:
I - предел усталости (истинный); 2 - предел коррозионной усталости (условный при числе циклов переменного нагружения $N=10^{7}$) дух, газы, влажные машинные масла и др. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, прежде всего в энергетической, нефтегазодобываюшей, горнорудной промышленности, в морском, наземном и воздушном транспорте.

При коррозионно-усталостном нагружении разрушение может произойти при напряжениях, значительно меньших обычного предела усталости (рис. 7.8). При этом кривая коррозионной усталости стремится к оси абсцисс, а величина условного предела усталости приближается к нулевому значению. Объясняется это тем, что даже при минимальньх напряжениях или их отсутствии недостаточно зашищенный металл разрушится только от коррозии. Прогрессирующий рост трещин усталости обусловлен, с одной стороны, низким значением электродного потенциала в месте концентрации напряжений, а с другой - легким разрушением зашитной оксидной пленки в устье трещины при переменном нагружении.

Оценка коррозионной стойкости. Для характеристики коррозионных свойств материалов обычно проводят их испытания на стойкость против общей коррозии, межкристаллитной коррозии и коррозионного растрескивания.

Испьтаания на общую коррозию проводят на образцах с большим отношением поверхности к объему. Коррозионную среду выбирают с учетом условий эксплуатации материала. Испытания проводят в жидкости при постоянном или многократно повторяемом переменном нагружении образцов, в кипящем соляном растворе, в парах или окружающей атмосфере.

В России, США и Германии применяют пятибалльную систему оценки общей коррозии (табл. 7.2). Критерием коррозионной стойкости является скорость коррозии.

Табли ца 7.2. Пятибалльная пкала коррозионной стойкости металлов

Балл	Скорость коррозии, мм/тод	Категория стойкости
1	Не более 0,1	Сильностойкие
2	$0,1 \ldots 1$	Стойкие
3	$1,1 \ldots 3$	Пониженностойкие
4	$3,1 \ldots 10$	Малостойкие
5	Более 10	Нестойкие

Для оценки коррозионной стойкости полимерньх материалов применяют трехбалльную шкалу по относительному изменению прочностных и деформационных свойств, а также изменению массы при воздействии среды (табл. 7.3).

Испытания на межкристалиитную коррозию проводят по ГОСТ 6032-84. Основной причиной межкристаллитной коррозии кор-розионно-стойких материалов является нагрев при обработке давлением или сварке, приводящий к электрохимической гетерогенности между приграничными участками и объемом зерен.

Температурно-временна́я область выделения по границам зерен коррозионно-стойких сталей карбидов хрома приведена на рис. 7.9. Внутри этой области находится область сенсибилизации - повышенной чувствительности к межкристаллитной коррозии. Склонность к межхристаллитной коррозии проявляется в температурном интервале $t_{\max }-t_{\min }$ за минимальное время $\tau_{\min }$, в течение которого происходит сенсибилизация.

Таблица 7.3. Трехбалльная система оценок химической стойкости полимерных материалов

Тип пластмассы	$\begin{gathered} \text { Оцен- } \\ \text { ка } \\ \text { стой- } \\ \text { кости } \end{gathered}$	Изменение механических показателей		Изменение массы (за 42 cyr)	
		Изменение прочностных свойств, \%	Изменение деформационных свойств, \%	Увеличение массы, \%	Уменьшение массы, \%
Термопласты	1	Менее 10	Менее 10	Менее 5	Менее 3
	2	$\begin{gathered} \text { Свыше } 10 \\ \text { до } 15 \end{gathered}$	$\begin{gathered} \text { Свыше } 10 \\ \text { до } 20 \end{gathered}$	$\begin{gathered} \text { Свыше } 5 \\ \text { до } 15 \end{gathered}$	$\begin{gathered} \text { Свыше } 3 \\ \text { до } 20 \end{gathered}$
	3	Свыше 15	Свыше 20	Свыше 15	Свыше 20
Реактопласты	1	Менее 15	-	Менее 5	Менее 5
	2	$\begin{gathered} \text { Свыше } 15 \\ \text { до } 25 \end{gathered}$	-	$\begin{gathered} \text { Свыше } 5 \\ \text { ло } 8 \end{gathered}$	$\begin{gathered} \text { Свыше } 5 \\ \text { до } 8 \end{gathered}$
	3	Свыше 25	-	Свыше 8	Свыше 8

Рис. 7.9. Температурно-временна́я область склонности коррозионно-стойкой аустенитной стали к межкристаллитной коррозии (МКК), связанной с обеднением границ зерен по хрому:
К - карбиды; t_{p} - температура растворения карбидов; γ - аустенит

При испытаниях на межкристаллитную коррозию хромистые стали подвергают провоцирующему нагреву при температуре $1100^{\circ} \mathrm{C}$ в течение 30 ч, а хромоникелевые аустенитные - при температуре примерно $700^{\circ} \mathrm{C}$ в течение 60 ч. После нагрева образцы длительное время выдерживают в кипящем водном растворе серной или азотной кислоты. Выбор длительности выдержки и вида коррозионной среды зависит от конкретной марки стали и ее назначения.

Для контроля склонности к межкристаллитной коррозии образцы либо изгибают на оправке на угол 90°, либо подвергают травлению специальными реактивами и металлографическому исследованию. Отсутствие трещин на поверхности образца свидетельствует о его стойкости к коррозии.

На рис. 7.10 приведена микроструктура стали $08 \times 18 \mathrm{H} 10$ после испытаний на межкристаллитную коррозию в разных средах.

Испытания на коррозионное растрескивание проводят при нагружении образца в коррозионной среде, соответствующей служебным условиям эксплуатации детали. Среда не должна вызывать общей коррозии и оказывать воздействие на ненагруженные об-

Рис. 7.10. Микроструктура стали 08X18H10 после закалки от температуры $1050^{\circ} \mathrm{C}$ в воде и отпуска при температуре $700^{\circ} \mathrm{C}$, увеличение в 500 раз: $a-$ межкристаллитная коррозия при испытании в растворе 25%-ной $\mathrm{HNO}_{3}+40$ г/л Cr^{6+}, время 200 ч; $6-$ то же в растворе кипяшей 65%-ной $\mathrm{HNO}_{3}+\mathrm{Cr}^{\text {б+ }}$

Рис. 7.11. Испытание на коррозионное растрескивание в струбцине (a) и на кольцах (б) с клином для определения времени до образования коррозионных трещин

разцы металла. Для хромоникелевых аустенитных сталей примером такой среды может служить кипящий раствор смеси солей MgCl_{2}, NaCl и NaNO_{3}. Агрессивность сред должна быть не менъше той, в которой должны служить испытуемые материалы.

Испытания на коррозионное растрескивание могут проводиться либо в условиях, вызываюших разрушение материалов (испытания на растяжение, на вязкость разрушения и усталость), либо путем определения времени появления первой трещины. Последний вид испытаний заключается в фиксации нагруженных образцов в специальных приспособлениях или с помощью создания напряжений клином в разрезанных кольцах (рис. 7.11). Время до появления трешин характеризует стойкость материалов против коррозионного растрескивания.

Методы защиты от коррозии. Многообразие процессов электрохимической коррозии и условий ее проявления обусловили широкий диапазон способов защиты от этого явления. Многое зависит от конструкции изделия. Конструктор-проектировщик первым должен предусмотреть защиту от коррозии, рационально подобрать материалы и так спроектировать конструкцию, чтобы максимально ограничить влияние неизбежных анодных областей и появление таких областей в ходе эксплуатации.

Методы защиты от коррозии можно объединить в следующие группы:

- нанесение защитных покрытий и пленок;
- изменение электрохимического потенциала защищаемого материала по отношению к среде на границе фаз;
- модификация коррозионной среды.

Борьба с коррозией с применением зацитных покрытий является наиболее распространенным способом. Его эффективность зависит не только от выбора подходящего покрытия, но и от соответствующей обработки поверхности материала. Поверхность ма-

териала должна быть очищена от органических загрязнений (масла и смазки) ржавчины, окалины и т.п. В связи с этим подготовка поверхности состоит в мытье, обезжиривании и механической очистке шлифованием, полированием, очистке шетками или дробеструйной обработке. Чистую поверхность металла получают также химическим или электролитическим травлением в растворах кислот.

В качестве защитных применяют металлические и неметаллические покрытия.

Металлические покрытия могут быть выполнены из металла более или менее благородного, чем подложка. В связи с этим их подразделяют на две группы: катодные и анодные покрытия.

К катодным покрытиям относятся покрытия, электрохимический потенциал которых в данных условиях болыший, чем у защищаемого металла. На алюминий почти всегда наносят катодные покрытия. Покрытия из благородных металлов на стали имеют такой же характер. Катодные покрытия защищают металл только благодаря его изоляции от воздействующей среды. Поэтому свою роль они выполняют только при наличии полной сплошности. Если в катодном покрытии образуется щель, в условиях коррозии она становится катодом, а открытая часть защищаемого металла анодом. Анодная поверхность при этом значительно меньше, чем катодная. Электрохимическое разрушение металла концентрируется на небольшой поверхности. Учитывая опасности, кроюшиеся в возможных несплошностях катодных покрытий, их делают сравнительно большой толщины. Схематически этот вид разрушения показан на рис. 7.12, a.

Анодные покрытия - это покрытия, выполненные из металла, у которого электродный потенциал меньше, чем у защищаемого металла. Для железа, работающего в малокислых или нейтральных растворах, анодными покрытиями являются цинк, алюминий. Защитные свойства анодных покрытий состоят не только в механической изоляции металла от коррозионной среды, но и в электрохимическом воздействии. В случае нарушения покрытия и образо-

Рис. 7.12. Примеры катодной защиты стали:
$a-$ катод - сталь, анод - Zn или $\mathrm{Mg} ; 6$ - защита присоединением к источнику постоянного тока; в -- протекторная зацита корпуса корабля

вания коррозионного элемента защищаемый металл, являющийся катодом, не разрушается. Небольшие несплошности в анодньх покрытиях не опасны (рис. 7.12, б).

Металлические покрытия наносят электроосаждением, погружением в расплавленные металлы, металлизацией напылением, химическим осаждением солей, диффузией и т. д. В последнее время все большее распространение получает нанесение покрытий в вакууме - испарением металлов в вакууме с последующей конденсацией паров на защищаемой поверхности. Этим способом производят алюминирование, кадмирование и цинкование в вакууме стальных деталей.

Неметаллические покрытия применяют в случае возникновения химической реакции металла в соответствующих средах. К ним, в частности, относят оксидные алюминиевые покрытия, полученные в ходе специального электролитического процесса. Фосфатные покрытия применяют в большинстве случаев с дополнительными защитными средами, как, например, краски, лаки и т.п. Фосфатирование стали состоит в погружении изделия в разбавленный раствор фосфорной кислоты и кислых фосфатов цинка или магния. В результате реакции образуется нерастворимый фосфат железа, который в ходе процесса плотно покрывает поверхность металла. K этой же группе относят керамические покрытия и стекловидные эмали. Такие покрытия достаточно стойки к воздействию минеральных и органических кислот. Их недостатком является повышенная хрупкость и низкая стойкость в условиях резких перепадов температур.

K органическим покрытиям относятся разнообразные лакокрасочные материалы.

Знание механизма коррозии позволило создать методы коррозионной защиты путем наложения на металл потенциала, при котором он становится термодинамически устойчивым. К таким методам относятся катодная защита и уменьшение агрессивности среды, окружающей металлоконструкцию.

Катодная защита состоит в присоединении к зацищаемой конструкции анода протектора с более отрицательным электрохимическим потенциалом (рис. 7.12, в). Протектор (от лат. protector покровитель, защитник) и служит таким анодом, препятствующим разрушению защищаемого сплава; сам протектор при коррозии постепенно разрушается.

Протектором может являться любой металл, имеющий по отношению к данному сплаву более отрицательный потенциал. Однако разница в потенциалах не должна быть слишком большой, чтобы при электрохимическом процессе не происходило быстрого разрушения протектора.

Протекторы представляют собой обычно небольшие пластинки, присоединяемые к защищаемой детали заклепками или болта-

ми. Катодную или протекторную зашиту широко применяют при защите от морской и подземной коррозии металлоконструкций, коммуникаций, трубопроводов, сосудов и т.д. В качестве анодовпротекторов для защиты стальных изделий обычно применяют сплавы магния или цинка. Защита может также осуществляться присоединением защищаемого металла к отрицательному полюсу постоянного тока.

Для уменьшения агрессивности окружаюшей среды в нее вводят добавки, называемые ингибиторами коррозии, которые или способствуют пассивации металла, или значительно снижают скорость коррозии металлов. Условием использования ингибиторов является эксплуатация изделия в замкнутой среде постоянного состава.

Различают анодные и катодные ингибиторы.
В качестве анодных ингибиторов коррозии используют вещества, образующие нерастворимые соединения на анодных участках. Одним из таких пассиваторов является хромпик $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, вводимый в количестве $2 \ldots 3$ г/л в раствор охлаждающей жидкости.

Катодные ингибиторы тормозят катодный процесс. К их числу относятся различные травильные присадки, добавляемые в количестве $1 \ldots 2 \%$ в кислоты для снятия окалины без разрушения основного металла.

Летучие ингибиторы, такие как нитрат натрия NaNO_{2}, применяют для пропитки бумаги, в которую заворачивают детали, подлежащие хранению или транспортированию. Испаряясь, они насыщают окружающее детали пространство, создавая защитную газовую среду. Летучие ингибиторы опличаются высокой эффективностъю. Стальные изделия, завернутые в бумагу, обработанную NaNO_{2}, в условиях относительной влажности 85% не ржавеют в течение 5 лет.

Достоинством летучих ингибиторов является отказ от применения защитных покрытий, удобство расконсервации и постоянная готовность деталей к немедленному использованию без дополнительной обработки.

Коррознонно-стойкие стали. Для защиты от коррозии широко применяется явление пассивации. Пассивность - это состояние повышенной коррозионной устойчивости металлов и сплавов, вызванное преимущественным торможением анодньх процессов. Пассивное состояние возникает при образовании тонких прочньх и непрерывных оксидных пленок, равномерно покрываюших поверхность материала.

Переход от активного состояния к пассивному связан с увеличением электродного потенциала.

Устойчивость против коррозии повышается при введении в состав стали хрома, алюминия, кремния. Эти элементы образуют непрерывную прочную оксидную пленку и повышают электродный потенциал, т.е. увеличивают электроположительность стали. Алюминий и кремний повышают хрупкость стали и применяются

реже хрома. Густав Генрих Тамман предположил, что молярное содержание хрома в стали должно составлять $1 / 8$ или быть кратным этой величине. Для хрома в сплавах с железом это соответствует $11,7 \%$ (мас.). Из рис. 7.5 следует, что при содержании хрома более 12% сталь резко изменяет электродный потенциал с электроотрицательного ($-0,6$ B) на электроположительный ($+0,2$ B). На поверхности образуется защитная плотная пленка оксида хрома $\mathrm{Cr}_{2} \mathrm{O}_{3}$.

Сталь, содержащая $12 \ldots 14 \%$ хрома, устойчива к коррозии в атмосфере, морской воде, некоторых кислотах, щелочах и солях. Кроме хрома в состав коррозионно-стойких сталей вводят также другие элементы - чаще никель. С ростом содержания хрома коррозионная стойкость стали растет.

Коррозионно-стойкие стали подразделяют на хромистые ферритные, содержащие $12 \ldots 25 \%$ хрома и $0,07 \ldots 0,2 \%$ углерода, и хромистые мартенситные, содержащие $12 \ldots 18 \%$ хрома и $0,15 \ldots 1,2 \%$ углерода, а также аустенитные стали, содержащие $12 \ldots 18 \%$ хрома, $8 \ldots 30 \%$ никеля и $0,02 \ldots 0,25 \%$ углерода.

Хромистые стали после охлаждения на воздухе имеют ферритную, мартенситно-ферритную (с содержанием феррита более 10%) и мартенситную структуру. Хромистые стали коррозионно-стойки при температуре до $300{ }^{\circ} \mathrm{C}$ в водопроводной воде, влажной атмосфере, растворах азотной кислоты и многих органических кислотах. В морской воде хромистые стали подвержены коррозионному растрескиванию под напряжением. Марки, химический состав и свойства хромистых сталей приведены в табл. 7.4 (ГОСТ 5632-81).

Хромистые стали при нагреве и охлаждении претерпевают фазовое превращение $\gamma \leftrightarrow \alpha$, что позволяет их упрочнять, не теряя коррозионной стойкости.

Таблица 7.4. Свойства хромистых коррозионно-стойких сталей

Марка стали	Класс	$\begin{gathered} \text { Содержание } \\ \text { С, \% } \end{gathered}$	Термическая обработка					
			Отжиг		Закалка и высокий оттуск		Закалка и низкий отпуск	
				$\begin{aligned} & \delta, \\ & \% \end{aligned}$	$\begin{gathered} \sigma_{\mathrm{b}}, \\ \text { МПа } \end{gathered}$	$\begin{aligned} & \delta, \\ & \% \end{aligned}$	$\begin{gathered} \sigma_{\mathrm{p}}, \\ \mathrm{M}{ }^{\prime}, \end{gathered}$	δ, $\%$
08X13	Ферритный	Менее 0,08	400	20	500	30	-	-
12X13	Ферритномартенситный	0,09 ...0,15	400	20	600	20	-	-
20X13	Мартенситный	0,16 ...0,25	500	20	660	16	-	-
30X13	То же	0,26 ... 0,35	500	15	700	12	1600	3
40X13	"	0,36 ...0,45	600	15	800	9	1680	3

Примечание. В сталях всех марок содержание хрома $12 \ldots 14 \%$.

Прочность после закалки возрастает с увеличением содержания углерода. Отпуск не приводит к существенному обеднению твердого раствора хромом, и коррозионная стойкость сохраняется на высоком уровне.

Термическая обработка мартенситных сталей, например 20X13 30 X 13 , состоит из закалки от температуры $1000^{\circ} \mathrm{C}$ в масле и низкого отпуска при температуре $200 \ldots 300^{\circ} \mathrm{C}$. После такой обработки стали имеют структуру отпущенного мартенсита с твердостью 45... 50 НRC. Из них изготавливают режущий, формовочный, из мерительный и хирургический инструмент, пружины, предметы домашнего обихода.

Для изготовления подшипников, втулок, ножей и других деталей, работающих на износ в агрессивных средах, применяют сталь 95 X 18 . После закалки от температуры $1000 \ldots 1050^{\circ} \mathrm{C}$ в масло и отпуска при температуре $200 \ldots 30{ }^{\circ} \mathrm{C}$ сталь имеет высокую твердость не менее 55 HRC.

Мартенситно-ферритные стали закаливают от температуры $1000^{\circ} \mathrm{C}$ и подвергают высокому отпуску ($600 \ldots 700^{\circ} \mathrm{C}$) для получения сорбитной структуры. В отожженном состоянии эти стали пластичны, имеют повышенную ударную вязкость и могут подвергаться не только горячей, но и холодной обработке давлением. Мартенситноферритные стали применяют для изготовления деталей с повышенной пластичностью, подвергающихся ударным нагрузкам, работающих в слабоагрессивных средах (клапаны гидравлических прессов, мешалки, валы и шнеки в пищевой промышленности)

Ферритные стали подвергают отжигу при температуре $700 \ldots 800^{\circ} \mathrm{C}$ для получения однородного твердого раствора и увеличения коррозионной стойкости. Из сталей марок $08 \mathrm{X} 13,12 \mathrm{X} 17,15 \mathrm{X} 25 \mathrm{~T}, 15 \mathrm{X} 28$ изготавливают оборудование и оснастку предприятий пищевой и легкой промышленности, трубы теплообменной аппаратуры, работающие в агрессивных средах. Ферритные стали редко подвергают сварке, поскольку она приводит к росту зерна и снижению коррозионной стойкости.

Хромоникелевые аустенитные стали впервые были разработаны в 1910 г. немецким инженером Штраусом, работавшим на заводах фирмы Krupp. Хромоникелевые коррозионно-стойкие стали после охлаждения на воздухе имеют аустенитную, аустенитно-мартенситную и аустенитно-ферритную (феррита более 10%) структуру Широко применяемые стали марок 12 X 18 H 10 T , 12 X 18 H 9 , $04 \mathrm{X} 18 \mathrm{H} 10,03 \mathrm{X} 18 \mathrm{H} 12,17 \mathrm{X} 18 \mathrm{H} 9$ обычно содержат 18% хрома и $9 \ldots 12 \%$ никеля, имеют более высокую коррозионную стойкость по сравнению с хромистыми сталями и в отличие от хромистых сталей сохраняют ее при нагреве. Термическая обработка этих сталей заключается в закалке от температуры $1100^{\circ} \mathrm{C}$ в воде без отпуска. Высокая температура при закалке необходима для растворения карбидов и получения структуры однородного аустенита. Пос-

ле закалки стали имеют следующие основные свойства: чисто аустенитная структура, низкая твердость, высокая пластичность; они немагнитны, хорошо деформируются и свариваются. Высокая технологичность хромоникелевых сталей позволяет широко использовать их в качестве конструкционного материала

При медленном охлаждении хромоникелевые стали приобретают многофазную структуру, в которой кроме аустенита присутствует небольшое количество феррита и карбидов. Такая структура отрицательно сказывается на коррозионной стойкости и пластичности. Закалка стали из однофазной аустенитной области от температуры примерно $1050^{\circ} \mathrm{C}$ в воде фиксирует ту структуру, которая была при нагреве, а избыточные фазы не успевают выделиться.

Состояние однофазного аустенита с сохранением всего хрома в твердом растворе обеспечивает сталям максимальную коррозионную стойкость. Пластичность $\delta=35 \ldots 40 \%$ позволяет подвергать их холодной пластической деформации с наклепом и повышением прочности при сохранении коррозионной стойкости почти на прежнем уровне. Состав и свойства наиболее часто встречающихся марок аустенитных сталей приведены в табл. 7.5 (ГОСТ 5632-81).

Учитывая невысокую прочность и высокую пластичность таких сталей, их подвергают холодной деформации с наклепом, после чего прочность повышается.

Содержание углерода в коррозионно-стойких аустенитных сталях ограничено, и желательно, чтобы оно было ниже предела растворимости углерода в легированном никелем аустените при температуре $20^{\circ} \mathrm{C}$, составляющего $0,04 \%$. Присутствие в стали более высоких концентраций углерода может приводить к образованию карбидов хрома типа $\mathrm{Cr}_{23} \mathrm{C}_{6}$, вследствие чего твердый раствор обедняется хромом и создается двухфазная структура. При этом снижается коррозионная стойкость стали. Для предотвращения образования карбидов хрома, особенно при технологических нагревах, связанных с проведением операций сварки или пайки и опасностью возникновения межкристаллитной коррозии, в сталь вводят дополнительно титан, ниобий или тантал. Эти элементы связывают углерод в карбиды типа $\mathrm{TiC}, \mathrm{NbC}, \mathrm{TaC}$, оставляя хром в твердом растворе. Необходимое количество титана для введения в сталь определяют по формуле $\mathrm{Ti}=5(\mathrm{C}-0,02)$, где C - содержание углерода в стали.

Стали, не склонные к межкристаллитной коррозии, называют стабилизированными. Эффект стабилизации может быть достигнут введением сильных карбидообразующих элементов или снижением содержания углерода ниже $0,04 \%$.

Пассивации хромоникелевых аустенитных сталей способствует введение $0,5 \ldots 1,5 \%$ молибдена. Введение таких количеств молиб-

Т а бл и ца 7.5. Состав и свойства захаленных коррозионно-стойких сталей аустенитного класса

Марка стали	Содержание, \%						Механические свойства	
	C	Cr	Ni	Mn	Ti	Друтие элементы	$\sigma_{\mathrm{n}}, \mathrm{M}$ (а)	$\delta, \%$
04X18H10	Менее 0,04	17... 19	$9 . . .11$	-	-	-	500	45
08X18H10	Менее 0,08	17... 19	$9 . . .11$	-	-	-	520	45
12X18H10T	Менее 0,12	17... 19	$9 . . .11$	-	0,7	-	520	40
17X18H9	0,13 ...0,21	17... 19	8... 10	-	-	-	600	35
10X17H13M2T	Менее 0,1	16... 18	12... 14	-	0,3...0,6	1,8... 2,5 Mo	520	40
10X14F14H4T	Менее 0,1	13... 15	2,8...4,5	13... 15	0,6	-	650	35
12X17Г9AH4	Менее 0,12	$16 \ldots 18$	3,5 .. 4,5	8... 10,5	-	$0,15 \ldots 0,25 \mathrm{~N}$	700	40

дена в сталь 12 X 18 H 10 T уменьшает плотность критического тока пассивации в 10 раз. Аустенитные стали с молибденом не подвержены точечной коррозии в морской воде.

В пищевой промышленности хромоникелевые коррозионностойкие стали применяют в изделиях, контактирующих с агрессивными пищевыми средами (емкости, трубопроводы и т.д.).

В холодильной и криогенной технике такие стали используют для изготовления сосудов для хранения жидких газов, коргусов, адсорберов ацетилена, деталей центробежных машин.

Хромоникелевые коррозионно-стойкие стали содержат дефицитный и дорогостоящий никель, поэтому имеют высокую стоимость. В некоторых случаях применяют более дешевые стали, в которых весь никель или часть его заменены марганцем. До температуры $-196^{\circ} \mathrm{C}$ и в слабоагрессивных пищевых средах вместо стали 12 X 18 H 10 T может быть использована сталь 10×14 Г 14 H 4 T .

Также в целях экономии никеля промышленность выпускает двухслойные стали, в которых в основном слое использованы низколегированные или углеродистые стали, а в плакирующем слое - хромоникелевые коррозионно-стойкие стали и цветные металлы.

С помощью атомов внедрения (углерода и азота), располагающихся в междоузлиях решетки, можно существенно увеличить прочностные свойства аустенитных сталей. Учитывая отрицательное влияние утлерода на коррозионную стойкость, увеличение его содержания нецелесообразно. В отожженном и закаленном состояниях концентрация азота в хромоникелевых аустенитных сталях может быть доведена до $0,4 \%$, а при выплавке стали под давлением - до 1%. При этом предел текучести при комнатной температуре может возрасти до 500 M Па, а временное сопротивление до 1000 M Па. Азот повышает стабильность аустенита, поэтому для повышения коррозионной стойкости можно использовать более высокие концентрации хрома и молибдена, не увеличивая склонность стали к выделению интерметаллидных фаз. Примером может служить сталь 03 X 20 H 16 A 6 , используемая в криогенной технике.

Коррозионно-стойкие сплавы цветных металлов. Различают две группы коррозионно-стойких цветных металлов:

- непассивирующиеся металлы с высоким электродным потенциалом ($\mathrm{Au}, \mathrm{Pt}, \mathrm{Ag}, \mathrm{Cu}$ и сплавы на их основе);
- пассивирующиеся металлы, образующие на поверхности плотные защитные оксидные пленки ($\mathrm{Ti}, \mathrm{Al}, \mathrm{Cr}$).

Золото, платина, серебро коррозионно-стойки практически в любых средах, кроме некоторых концентрированных кислот. Медь сохраняет коррозионную стойкость во влажной атмосфере, морской воде и многих органических кислотах. Для подавления склонности латуней к коррозионному растрескиванию во влажной атмосфере проводят отжиг для снятия внутренних напряжений.

Токсичность ионов меди, образующихся в электролите в результате ее электрохимического растворения, ограничивает применение медных сплавов в пищевой промышленности.

Пассивирующиеся металлы характеризуются высокой коррозионной стойкостью в сухой и влажной воздушной среде, в органических и неорганических кислотах.

Титан по сопротивлению коррозии уступает только золоту и платине. Высокая коррозионная стойкость титана объясняется образованием на поверхности стойкой пассивирующей пленки оксида TiO_{2}, который сохраняет коррозионную стойкость даже при нагреве во влажной атмосфере. Титановые сплавы обладают высокой стойкостью к кавитационной коррозии в морской воде.

Алюминий и алюминиевые сплавы образуют на поверхности защитную оксидную пленку $\mathrm{Al}_{2} \mathrm{O}_{3}$, что обеспечивает их коррозионную стойкость во влажной атмосфере и в кислотной среде. Пленка устойчива в нейтральных средах, но легко растворяется в щелочах Поэтому в щелочных средах алюминий и его сплавы легко разрушаются. В морской воде алюминиевые сплавы подвержены коррозионному растрескиванию.

Такие легирующие элементы, как медь и железо, имеющие более высокий электродный потенциал, ухудшают коррозионную стойкость алюминиевых сплавов. Дуралюмины, легированные медью, по коррозионной стойкости существенно уступают чистому алюминию. Легирование электроотрицательныпи элементами кремнием и магнием не ухудшает пассивность, а марганец оказывает даже положительное влияние благодаря образованию соединения (MnFe) Al_{6}, что позволяет удалить железо из твердого раствора и устранить его отрицательное действие на коррозионную стойкость. Поэтому сплавы типа АМц сопротивляются коррозии даже лучше, чем технический алюминий.

Для защиты алюминиевых сплавов от коррозии применяют плакирование чистым алюминием и используют методы, основанные на искусственном утолщении защитной оксидной пленки путем анодной обработки и химического оксидирования.

7.2. Жаростойкие и жаропрочные стали и сплавы

Общая характеристнка. Согласно второму закону термодинамики коэффициент полезного действия любого теплового преобразователя энергии определяется выражением КПД $=1-T_{2} / T_{1}$, где второй член представляет собой отношение температуры на выходе T_{2} к температуре на входе в преобразователь T_{f}. Чем выше температура на входе, тем выше КПД. Возможность повышения температуры на входе в преобразователь зависит от теплостойкости используемых материалов.

Основными характеристиками материалов, работающих при высоких температурах, являются жаростойкость и жаропрочность.

Жаропрочные и жаростойкие материалы применяют для изготовления деталей установок, которые подвергаются механическим нагрузкам при высоких температурах (например, тепловые электростанции (ТЭЦ), установки нефтехимических предприятий и нефтеперерабатывающей промышленности, промышленные нагревательные печи, газовые турбины и авиационные двигатели).

Современные ТЭЦ используют пар, нагретый до температуры $500 \ldots 560^{\circ} \mathrm{C}$, а в некоторых случаях - до $650^{\circ} \mathrm{C}$. Стационарные газовые турбины и воздухонагреватели работают при температуре свыше $700^{\circ} \mathrm{C}$. Наиболее высокие рабочие температуры в авиационных двигателях и химических установках достигают $1100^{\circ} \mathrm{C}$ и выше.

Жаростойкие стали. Способность металла сопротивляться химической коррозии в сухой газовой среде при высоких температурах называется жаростойкостью или окалиностойкостью. Железо с кислородом может образовывать оксиды трех видов: $\mathrm{FeO}, \mathrm{Fe}_{3} \mathrm{O}_{4}$, $\mathrm{Fe}_{2} \mathrm{O}_{3}$. До температуры $560 \ldots 60{ }^{\circ} \mathrm{C}$ окалина состоит преимушественно из плотного слоя оксидов $\mathrm{Fe}_{2} \mathrm{O}_{3}$ и $\mathrm{Fe}_{3} \mathrm{O}_{4}$, что затрудняет диффузию атомов кислорода и металла. Выше $60{ }^{\circ} \mathrm{C}$ происходит растрескивание этих оксидов и вместо них защита металла осуществляется лишь рыхлым оксидом FeO , что облегчает доступ кислорода к поверхности металла. Нагрев свыше $600^{\circ} \mathrm{C}$ приводит к интенсивному окислению сплавов на основе железа (рис. 7.13).

Основным фактором, влияющим на жаростойкость, является химический состав металла, определяюший защитные свойства оксидной пленки. В табл. 7.6 приведена сравнительная оценка жаростойкости некоторых чистых ме-

Рис. 7.13. Зависимость скорости окисления железа от температуры таллов, определенная по пятибалльной шкале скорости окисления в воздушной среде в интервале рабочих температур.

Рыхлый оксид магния практически не защищает металл при нагреве. Магний не только быстро окисляется, но и легко воспламеняется при нагреве, благодаря чему используется в пиротехнике.

Оксиды металлов второй группы при нагреве разрушаются как за счет сублимации (Mo, W), так и благодаря растворению в металле входящего в них кислорода (Ti, Zr).

Таблица 7.6. Жаростойкость металліов на воздухе при рабочих температурах

Балл	Метали	Оценка жаростойкости			Определяющий фактор
		качественная	температурный интервал, ${ }^{\circ} \mathrm{C}$	скорость окисления, $r /\left(\mathbf{m}^{2} \cdot \mathbf{4}\right)$	
1	Mg	Очень плохая	$500 \ldots 600$	$10^{-1} \ldots 10$	Рыхлая оксидная пленка
2	Nb, Mo, W, Ti, Zr	Плохая	$700 . . .800$	$10 \ldots 10^{3}$	Разрушение (деградация) оксидной пленки
3	Cu, Fe, Ni, Co	Удовлет-ворительная	500... 600	$10^{-3} \ldots 10^{-1}$	Высокая дефектность сравнительно плотной оксидной пленки
			700... 800	$10^{-1} \ldots 1$	
4	Al, Zn, Sn, Pb, Cr, Be	Хорошая	400... 600	Менее 10^{-6}	Плотная оксидная пленка
			$700 \ldots 800$	$10^{-4} \ldots 10^{-3}$	
5	$\begin{aligned} & \mathrm{Ag}, \mathrm{Au}, \\ & \mathrm{Pt} \end{aligned}$	Отличная	-	-	Низкое сродство к кислороду

При повыпении температуры сверх определенного предела возрастает дефектность оксидов металлов третьей группы. Для технического железа предельная рабочая температура нагрева в воздушной среде составляет $560^{\circ} \mathrm{C}$.

Металлы четвертой группы благодаря плотной оксидной пленке с высокими защитными свойствами при нагреве имеют хорошую жаростойкость. Хром и алюминий наряду с кремнием используют для повышения жаростойкости легированных сталей. Оксид легирующего элемента должен быть плотным, не подверженным растрескиванию при нагреве, иметь высокие температуры сублимации и плавления.

Учитывая, что высокое содержание алюминия и кремния способствует охрупчиванию и ухудшает технологическую пластичность при обработке давлением, основным легируюшим элементом в жаростойких сталях является хром. Жаростойкие свойства растут с увеличением его содержания в стали. Сталь, содержащая 5% хрома, сохраняет окалиностойкость до температуры $600^{\circ} \mathrm{C}(15 \mathrm{X} 5), 9 \%$ (40X9C2) - до $800^{\circ} \mathrm{C}, 17 \%(08 \mathrm{X} 17 \mathrm{~T})$ - до $900^{\circ} \mathrm{C}$. Хромистые марки сталей относятся к сталям ферритного класса.

Критерии жаропрочности. При длительной работе под нагрузкой, не превышающей предела текучести, и нагреве до темпера-

туры $0,4-0,5$ или более абсолютной температуры плавления $T_{\text {пл }}$ металл испытывает медленную пластическую деформацию. Такая деформация называется ползучестью или крипом.

При деформации нагретого металла в нем развиваются два противоположных процесса: упрочнение за счет наклепа при пластической деформации и разупрочнение в результате рекристаллизации. Если второй процесс преобладает, в металле начинает развиваться диффузионное разупрочнение - отдых, коагуляция фаз, рекристаллизация, способствующие ползучести.

Жаропрочностью называется способность материала сопротивляться деформации и разрушению при высоких температурах. Основными критериями жаропрочности металлов является предел ползучести и предел длительной прочности.

Методика определения пределов длительной прочности и ползучести приведена в гл. 2.

Срок службы, на который рассчитана машина или механизм, определяет выбор критерия жаропрочности и материала для их изготовления.

В соответствии с некоторыми рекомендациями срок службы некоторых жаропрочных конструкций в зависимости от назначения составляет, ч:

Ракеты и их силовые установки ... 1
Силовые установки самолетов-истребителей 100
Силовые установки гражданских самолетов 1000
Газовые турбины локомотивов и судов 10000
Газовые турбины сташионарных силовых установок 30000
Паровые турбины стационарных силовых установок 100000
Если надежность работы конструкции зависит от ее деформации при ползучести, характеристикой жаропрочности служит предел ползучести, определяющий скорость установившейся ползучести на участке $B C$ (см рис. $2.35, \sigma$) при заданных температуре и напряжении. Если лимитируюшим фактором надежности конструкции является опасность разрушения детали, критерием жаропрочности служит предел длительной прочности, определяющий время до разрушения при заданном напряжении и температуре.

В предварительно нагруженньх крепежньх деталях (болты, гайки, шпильки) ползучесть при повышенных температурах способствует релаксации напряжений, что приводит к ослаблению натяга и образованию зазора. Испытания на релаксацию проводят с целью определения скорости релаксации напряжений при определенной нагрузке и повышенной температуре.

При испытаниях образец нагружают до заданного значения упругой деформации, а после выдержки в течение определенного времени при заданной температуре нагрузку снимают и производят замер остаточной части упругой деформации. По разности зна-

чений первоначальной и конечной упругой деформации определяют пластическую деформацию.

Критерием сопротивления релаксации является изменение напряжения за время τ при заданной темптературе $\Delta \sigma=\sigma_{0}-\sigma$, где σ_{0}, σ - соответственно начальное и конечное напряжение. Релаксационную стойкость можно определять испытанием кольцевых образцов, в которых начальное напряжение создается клином, вставляемым в прорезь.

Влияние структуры на жаропрочность сшлавов. До температур $0,5 T_{\text {пл }}$ деформация ползучести определяется стабильностью дислокационной структуры. При более высоких температурах активизируются диффузионные процессы, происходит растворение скоплений атомов легируюших элементов и примесей, что ослабляет степень закрепления дислокаций и облегчает их перемещение по кристаллу. В этих условиях сопротивление ползучести будет определяться силами межатомной связи.

Прочность межатомньх связей большинства металлов недостаточна при высоких температурах. Для повышения жаропрочности необходимо снизить подвижность дислокаций и замедлить диффузию. Аустенитная сталь с ГЦК решеткой твердого раствора в отличие от ферритной стали с ОЦК решеткой характеризуется более плотной упаковкой атомов. Благодаря этому коэффициент диффузии для γ-железа с ГЦК решеткой примерно на два порядка меньше, чем для α-железа с ОЦК решеткой. В частности, этим объясняется резкое изменение скорости ползучести стали при температуре превращения ОЦК - ГЦК. Аустенитные стали с ГЦК решеткой имеют значительно более высокую жаропрочность по сравнению со сталями с ОЦК решеткой.

Создание препятствий перемещению дислокаций достигается применением материалов, упрочненных дисперсными частицами. Упрочняющими фазами в жаропрочных сталях являются специальные карбиды, в никелевых сплавах - выделения γ^{\prime}-фазы с регулярной решеткой типа $\mathrm{Ni}_{3}(\mathrm{Ti}, \mathrm{Al}, \mathrm{Nb}, \mathrm{Ta})$. В сплавах, упрочненных большим количеством γ^{\prime}-фазы, деформация обусловлена сдвигом в частицах этой фазы, поэтому такие сплавы характеризуются высокой прочностью и вязкостью. Гетерогенная структура с дисперсными частицами в сталях достиғается после закалки и отпуска, а в жаропрочных сплавах - после закалки и старения.

Прочность межатомных связей в кристаллической решетке возрастает при легировании элементами с высокой температурой плавления - Cr , Мо, W, Nb, Ta. Кроме того, эти элементы снижают коэффициент самодиффузии и сдвигают температуру рекристаллизации в область более высоких температур, что также способствует росту жаропрочности

На скорость ползучести оказывают влияние размеры зерен сплава. Известно положительное влияние мелкозернистой структуры на

прочность при низких температурах. При высоких температурах, когда механизм ползучести в основном обусловлен диффузией, скорость ползучести снижается при увеличении размера зерна.

Границы зерен уменьшают сопротивление ползучести. Это вызвано тем, что границы зерен являются источниками дислокаций и облегчают движение дислокаций, диффузию вакансий и зернограничное скольжение. Зерна перемещаются относительно друг друга вдоль общих границ в узкой пограничной области. Заметное смещение зерен при ползучести приводит к образованию и росту клиновидных трешин и пустот на границах. При увеличении длины трещины концентрация напряжений у ее вершины растет, что способствует интенсификации роста трещины и в результате интеркристаллитному разрушению.

Крупнозернистость характерна для жаропрочных сплавов. В идеале их структура вообще не должна иметь границ зерен и должна состоять из одного монокристалла. Такая структура монокристалла получена для изготовления турбинных лопаток ответственного назначения.

Жаропрочность сплавов цветных металлов и сталей. Эффективность использования самолетов и ракет предусматривает максимальное снижение их массы. Хотя легкие сплавы на основе алюминия, магния и титана имеют худшую жаропрочность по сравнению со сталями, их применяют в летательных аппаратах для работы в условиях средних температур (табл. 7.7).

При рабочих температурах ниже $400 \ldots 450^{\circ} \mathrm{C}$ нет необходимости использовать жаропрочные материалы. В этих условиях могут успешно работать обычные конструкционные стали.

Различают следующие виды жаропрочных конструкционных сталей.

1. Перлитные стали. Стали перлитного класса используют для изготовления крепежа, труб, паропроводов, пароперегревателей и коллекторов энергетических установок, длительно работающих при температуре $500 \ldots 550^{\circ} \mathrm{C}$. Перлитные стали содержат относительно малые количества углерода и обычно дегированы хромом, молибденом и ванадием (марки 12XM, 12XIMФ). Стали этого класса используют в закаленном или нормализованном и высокоотпущенном состоянии.
2. Мартенситные стали. Стали мартенситного класса используют для изготовления деталей энергетического оборудования (лопатки, диафрагмы, турбинные диски, роторы), длительно работающих при температуре $600 \ldots 620^{\circ} \mathrm{C}$. Стали более значительно легированы хромом, а также вольфрамом, молибденом, ванадием (марки 15X11МФ, 15X12ВНМФ). Высокая жаропрочность этих сталей достигается при закалке от температуры $1000 \ldots 1050{ }^{\circ} \mathrm{C}$ в масле на мартенсит с последующим отпуском на сорбит или троостит. Клапаны выхлопа двигателей внутреннего сгорания небольшой и сред-

Табл и ца 7.7. Жаропрочность сплавов на основе алюминия, магния, титана

Сплав	Содержание легирующего элемента, \%	Температура, ${ }^{\circ} \mathrm{C}$		$\begin{aligned} & \sigma_{10}, \\ & \mathrm{M} \Pi \mathrm{a} \end{aligned}$
		применения, рекомендуемая	$\begin{aligned} & \text { испы- } \\ & \text { тания } \end{aligned}$	
На основе алюминия: Д20	6,3 Cu; $0,6 \mathrm{Mn} ; 0,15$	250.. 300	300	80
САП-1	$6 \ldots 9 \mathrm{Al}_{2} \mathrm{O}_{3}$	300... 500	500	45
АЛ33	$\begin{aligned} & 5,8 \mathrm{Cu} ; 0,8 \mathrm{Mn} ; 1 \mathrm{Ni} ; \\ & 0,2 \mathrm{Zr} ; 0,2 \mathrm{Ce} \end{aligned}$	250... 300	300	95
На основе магния: MA12	2,5 ... $3 \mathrm{Nd} ; 0,5 \mathrm{Zr}$	150... 200	200	
MA19	$1,6 \ldots 2,3 \mathrm{Nd} ; 0,6 \mathrm{Zn}$	250... 300	300	50
На основе титана:				
BT8	6,5 Al; $3,3 \mathrm{Mo} ; 0,3 \mathrm{Si}$	450... 500	500	500
BT9	6,5 Al; 3,3 Mo; 0,25 Si;	$500 \ldots 550$	550	400
	$1,6 \mathrm{Zr}$	550... 600	600	200
BT18	7,5 Al; $11 \mathrm{Zr} ; 0,7 \mathrm{Mo}$; $1 \mathrm{Nb} ; 0,3 \mathrm{Si}$			

ней мощности изготавливают из сильхромов - хромокремнистых сталей мартенситного класса типа 40Х9С2, 40X10С2М. Клапаны более моцных двигателей изготавливают из аустенитных сталей.
3. Аустенитные стали. Из этих сталей изготавливают роторы, диски, лопатки газовых турбин, клапаны дизелей, работаюшие при температуре $600 \ldots 700^{\circ} \mathrm{C}$. Хромоникелевые аустенитные стали для увеличения жаропрочности дополнительно легируют вольфрамом, молибденом, ванадием, ниобием, бором и другими элементами. К жаропрочным сталям аустенитного класса относятся стали 09X14H16Б, 09X14H19B2БP, 45X14H14B2M. Термическая обработка этих сталей состоит из закалки и старения при температуре выше эксплуатационной. При старении происходит выделение из аустенита мелкодисперсных избыточных фаз, что дополнительно увеличивает сопротивление стали ползучести.

В табл. 7.8 приведены основные свойства некоторых жаропрочных сталей, производимых в России (ГОСТ 5632-72).

Суперсплавы. Более высокие рабочие температуры ($1000 \ldots$ $1100^{\circ} \mathrm{C}$ и выше) выдерживают так называемые суперсплавы, выплавляемые на основе элементов VIII группы Периодической системы, - никелевые, кобальтовые, железоникелевые сплавы. Их применяют при изготовлении газотурбинных двигателей для аэро-

Группа сталей	Марка сталей	Средняя доля основных легирующих элементов, \%	Teмперагура, ${ }^{\circ} \mathrm{C}$		Жаропрочные свойства		
			максимальная рабочая	начала интенсивного окисления	$\sigma_{\mathrm{b}}, \mathrm{M}$ Па	$\sigma_{0,2}$, МПа	Температура испытания, ${ }^{\circ} \mathrm{C}$
Перлитные	12X1MФ	$\begin{aligned} & 0,12 \mathrm{C} ; 0,1 \mathrm{Cr} ; \\ & 0,3 \mathrm{Mo} ; 0,2 \mathrm{~V} \end{aligned}$	570... 585	600	140	84	560
	25X2M19	$\begin{aligned} & 0,25 \mathrm{C} ; 2,3 \mathrm{Cr} ; \\ & 1 \mathrm{Mo} ; 0,4 \mathrm{~V} \end{aligned}$	$520 \ldots 550$	600	$160 \ldots 220$	70	550
Мартенситные	15X5M	$\begin{aligned} & \text { До 0,15 C; 5,2 Cr; } \\ & 0,5 \mathrm{Mo} \end{aligned}$	600	650	100	40	540
Аустенитные	12X18H10T	$\begin{aligned} & \text { До } 0,12 \mathrm{C} ; 18 \mathrm{Cr} \text {; } \\ & 10 \mathrm{Ni} ; 0,5 \mathrm{Ti} \end{aligned}$	600	850	80... 100	$30 . .40$	660
	10X11H20T3P	$\begin{array}{\|l} \text { До 0,10 C; } 11 \mathrm{Cr} ; \\ 20 \mathrm{Ni} ; 2,6 \mathrm{Ti} ; 0,02 \mathrm{~B} \end{array}$	700	850	400	-	700

космических и промышленных энергоустановок. Для работы при еще более высоких температурах применяют тугоплавкие металлы и керамические материалы.

Началом истории суперсплавов можно считать 1929 г., когда Р.Э. Бедворд и Н.Б. Пиллинг дополнительно легировали небольшими добавками титана и алюминия разработанный ранее жаростойкий хромоникелевый сплав с ГЦК решеткой. Введение этих элементов обеспечило существенный прирост сопротивлению ползучести.

Интересно, что появление суперсплавов случайно совпало по времени с началом разработки реактивного двигателя. В конце 1930-х гт. в Германии и Англии были созданы первые образцы самолетов с турбинными двигателями. Появление новых конструкций обусловило необходимость разработки новых сплавов с высокой жаропрочностью. В течение длительного времени тяговые реактивные двигатели создавались исключительно для военных целей. В дальнейшем появилась необходимость создания газовых турбин для электростанций, газопроводньх насосов и других приводньх устройств.

В $1950-60$ гг. во всех странах началась интенсивная разработка жаропрочных суперсплавов, а позднее и до настоящего времени совершенствование технологии и непрерывное расширение их производства.

Требования к материалам газовых турбин. В отличие от паровых газовые турбины имеют небольшие размеры и массу, сравнительно высокую мощность и обеспечивают возможность быстрого запуска. Увеличение температуры газа на входе в газовую турбину повышает ее эффективность.

Газотурбинньй двигатель засасывает воздух из атмосферы и сжимает его в несколько раз. В сжатый воздух впрыскивается топливо, и полученная смесь сгорает. Часть образовавшегося высокотемпературного потока, имеющего высокое давление, используется для вращения турбины, которая приводит во вращение компрессор. Остальной газовый поток используется для совершения полезной работы: для создания реактивной струи в турбореактивных двигателях или вращения приводного вала в турбовинтовых двигателях.

В любом их указанных типов двигателей имеются три основных узла: компрессор, камера сгорания и турбина (рис. 7.14).

Камера сгорания. Часть сжатого воздуха, входящего в камеру сгорания, смешивается с топливом, и полученная смесь сгорает в камере сгорания, образуя газы с температурой выше $1650^{\circ} \mathrm{C}$. Остальной поток сжатого воздуха проходит вокруг камеры сгорания и через щели в стенках, охлаждая ее, смешивается затем с продуктами сгорания с тем, чтобы снизить температуру последних перед входом в турбину до $1300^{\circ} \mathrm{C}$ (в некоторых современньх установках до $1500^{\circ} \mathrm{C}$). Материалы камеры сгорания и переходных га-

Рис. 7.14. Схема газотурбинного двигателя и профили давления (I) и температуры (II):
1-ротор компрессора; 2 - камера сгорания; 3 - сопловые лопатки; 4 - ротор турбины

зопроводов должны обладать достаточной прочностью при рабочих температурах ($1100^{\circ} \mathrm{C}$ и выше). Ocновным требованием является стойкость к окислению, термической усталости и короблению. Кроме того, материал должен иметь хорошую свариваемость и деформируемость, необходимые при изготовлении камер. Желательно также, чтобы материал обладал низким коэффициентом термического расширения и достаточной износостойкостью.

Турбина. Горячие газы направляются с помощью неподвижных направляющих сопловых лопаток на рабочие лопатки турбины, приводя таким образом ротор во вращение. Сопловые лопатки являются неподвижными деталями и не подвергаются высоким механическим нагрузкам. Их рабочая температура достигает $1100^{\circ} \mathrm{C}$, так как горячие газы, входящие в турбинную секцию, попадают сначала непосредственно на сопловые лопатки первой ступени. Основным требованием к материалам этих деталей является сопротивление ползучести при очень высоких температурах, сопротивление термической усталости, стойкость в ус, ловиях газовой коррозии и эрозии.

Рабочие лопатки, в особенности замки, которыми лопатки крепятся к диску, испытывают высокие механические нагрузки при температуре $650 \ldots 980^{\circ} \mathrm{C}$. Материал рабочих лопаток работает в контакте с содержащими кислород продуктами сгорания топлива. Поэтому важным требованием к материалу, в особенности для изготовления промышленньх турбин, является стойкость к коррозии, вызываемой горячими газами. Для повышения стойкости к окислению обычно применяют защитные покрытия.

Необходимость частого пуска и остановок двигателей приводит к возникновению малоцикловой усталости. Ускоренный нагрев авиационных двигателей, особенно боевых самолетов, способствует высоким температурным градиентам и термическим напряжениям и, как следствие, термической усталости. Термомеханическая усталость - основная причина разрушения рабочих лопаток.

На рис. 7.15 показана структура хромоникелевой аустенитной стали 18 Cr 8 Ni вблизи вершины магистральной усталостной трещины, образовавшейся при рабочей температуре $650^{\circ} \mathrm{C}$. На всем пространстве шлифа перед трещиной видны межзеренные микро-

трещины, появившиеся в результате высокотемпературной усталости.

Эффективной мерой борьбы с термомеханической усталостью является изготовление рабочих лопаток турбин авиационных двигателей методом направленной кристаллизации и в монокристаллическом состоянии. Кроме этих основных требований материал рабочих лопаток должен иметь высокую вязкость и пластичность, а также хорошие литейные свойства.

Рабочая температура турбинных дисков ниже температуры лопаток и

Рис. 7.15. Микроструктура стали 18 Cr 8 Ni вблизи вершины трещины (температура $650^{\circ} \mathrm{C}$) составляет примерно $700^{\circ} \mathrm{C}$. Однако на диск, к которому крепятся рабочие лопатки, действуют высокие радиальные центробежные растягивающие напряжения. Поэтому материал дисков должен иметь высокую прочность в сочетании с высокой вязкостью разрушения и сопротивлением усталости.

Пикелевые и кобальтовые суперсплавы. Химический состав и основные свойства некоторых суперсплавов на никелевой основе, производимьх в России, приведен в табл. 7.9. Сплавы выплавлены с применением вакуумно-дугового переплава.

При температуре $950^{\circ} \mathrm{C}$ сплав ХН55ВМКЮ сохраняет прочность $\sigma_{\mathrm{B}}=550 \mathrm{M} П \mathrm{a}, \sigma_{0,2}=400 \mathrm{M}$ Ма, длительную прочность на базе 100 ч $\sigma_{100}^{950}>140$ МПа и на базе 1000 ч $\sigma_{1000}^{950}>65 \mathrm{MПа} .\mathrm{Этот} \mathrm{сплав} \mathrm{приме-}$ няют для изготовления лопаток газовых турбин и других деталей, работающих длительно под нагрузкой при температуре до $950^{\circ} \mathrm{C}$.

Суперсплавы на никелевой основе в качестве особожаропрочных материалов имеют наибольшее распространение.

Деформируемые сплавы можно подвергать горячей и холодной обработке давлением; напротив, сплавы для точного литья, как правило, не деформируются.

Рабочие температуры никелевых сплавов выше, чем у других систем легирования, и в двигателях с высокими техническими характеристиками их доля превышает 50%. Суперсплавы имеют сложный химический состав, насчитывающий до $10-12$ компонентов.

Железо в сплавах присутствует обычно в виде примесей, хотя имеются марки, содержащие до 30% и более железа. Легирование хромом ($15 \ldots 20 \%$) обеспечивает стойкость к высокотемпературной коррозии. Молибден и вольфрам, находящиеся либо в твердом растворе, либо в карбидах, повышают жаропрочность сплава. Алюминий и титан с никелем образуют γ^{\prime}-фазу $\mathrm{Ni}_{3}(\mathrm{Al}, \mathrm{Ti})$, являющуюся основным упрочнителем. Кобальт вводится в никелевые сплавы для понижения энергии дефектов упаковки и интенсифи-

Та $б$ ли ца 7.9. Состав и свойства никелевых суперсплавов после закалки и старения

Марка сплава	Содержание, \%	Плотность при $20^{\circ} \mathrm{C}$, r/cm ${ }^{3}$	$\sigma_{\text {s. }}$, МПа, при температуре, ${ }^{\circ} \mathrm{C}$			$\sigma_{0,2}$, МПа, при температуре, ${ }^{\circ} \mathrm{C}$			$\begin{gathered} \delta_{s}, \%, \\ \text { при } \\ \text { темпера- } \\ \text { туре, }{ }^{\circ} \mathrm{C} \end{gathered}$		Длительная прочность на базе 1000 ч, МПа, при температуре, ${ }^{\circ} \mathrm{C}$		
			20	700	800	20	700	850	20	700	700	800	
ХН77TЮР (ЭИ437Б)	Менее $0,07 \mathrm{C}$; 20 Cr ; 2,6 Ti; $0,8 \mathrm{Al}$; менее $0,01 \mathrm{~B}$; ост. Ni	8,2	950	800	370	620	550	300	15	12	300	100	До 750
XH55BMTKЮ	Менее $0,12 \mathrm{C}$; $10,5 \mathrm{Cr} ; 5 \mathrm{Mo}$; 5,5 W; 14 Co ; $4 \mathrm{Al} ; 1,6 \mathrm{Ti}$; $0,5 \mathrm{~V}$; ост. Ni	8,4	1000	900	700	750	700	500	6	12	600	320	До 850
ХH55BMKЮ	Менее 0,1 C; 9,5 Cr; 7,2 Mo; 6,7 W; 5,7 Al; 12 Co ; менее $0,02 \mathrm{~B}$; ост. Ni	8,45	1100	1080	1000	750	750	700	9	5	-	310	До 950

цирует дисперсионное твердение, обусловленное выделением γ^{\prime}-фазы.

В кобальтовые сплавы для стабилизации ГЦК структуры вводят никель. Кобальтовые сплавы имеют более высокую концентрацию углерода, так как их основное упрочнение осуществляется за счет образования карбидов. В кобальтовых литейных сплавах первичные карбиды $\mathrm{Me}_{23} \mathrm{C}_{6}$ и МеС образуют выделения. После диффузионного отжига при температуре примерно $1200^{\circ} \mathrm{C}$ и последующей выдержке при температуре $750 \ldots 800^{\circ} \mathrm{C}$ формируется структура с мелкодисперсными вторичными карбидами.

В никелевых сплавах после закалки или диффузионного отжига и последующего старения происходит дисперсионное твердение с образованием интерметаллида γ^{\prime}-фазы. Температура нагрева под закалку и температура диффузионного отжига примерно равны и составляют обычно $1100 \ldots 1300^{\circ} \mathrm{C}$. Выдержка при высоких температурах приводит к растворению интерметаллидных фаз с образованием однородного твердого раствора с низкой твердостью и получением необходимого размера зерна. Закалка обычных сталей в США называется hardening и производится с целью получения максимальной твердости. Закалку же жаропрочных сплавов называют solution treating, что переводится как обработка на твердый раствор. Одно- или двухступенчатое старение проводят при температуре $700 \ldots 950^{\circ} \mathrm{C}$. В случае литейных суперсплавов термическая обработка необязательна или может состоять из одной нормализации.

Выделяюшаяся при старении из твердого раствора интерметаллидная γ^{\prime}-фаза обладает уникальными свойствами и вносит определяюший вклад в упрочнение. Как и твердый раствор, γ^{\prime} фаза имеет ГЦК структуру и выделяется когерентно. Прочность γ^{\prime}-фазы увеличивается с ростом температуры, а ее пластичность не дает ей стать источником разрушения. Сопротивление ползучести никелевых сплавов зависит от морфологии выделившихся интерметаллидов и их объемной доли. Чем мельче выделения и меньше расстояние между ними, тем выше сопротивление ползучести. Доля выделений больше, чем в жаропрочных аустенитных сталях.

Никелевые сплавы, объемная доля γ^{\prime}-фазы в которых превышает 50%, уже нельзя подвергать горячей деформации обычными способами; изделия из них получают методом точного литья.

Определяющей для длительной прочности никелевых и кобальтовых сплавов является стабильность структуры. Структурные изменения обусловлены процессами старения и сводятся к выделению карбидов, трансформации γ^{\prime}-фазы или образованию друтих интерметаллидньх фаз.

Тугоплавкие металаь. Металлы с температурой плавления вышее $2200^{\circ} \mathrm{C}$, т.е. выше температуры плавления железа, никеля, ко-

бальта и их сплавов, называют тугоплавкими. К тугоплавким металлам, нашедшим применение в технике, относят металлы, имеюшие следуюшие температуры плавления, ${ }^{\circ} \mathrm{C}$: ниобий -2468 ; молибден -2610 ; тантал -2996 ; вольфрам -3410 .

Все перечисленные металлы имеют кристаллическую ОЦК решетку и не претерпевают фазовых превращений. Менее плотноупакованная по сравнению с ГЦК решеткой структура, несмотря на высокую температуру плавления, характеризуется сравнительно низким сопротивлением ползучести.

Другим недостатком всех тугоплавких металлов является их низкая жаростойкость и необходимость использования различных покрытий для защиты от окисления при высоких температурах. Для молибденовых и вольфрамовых сплавов применяют термодиффузионные силицидные покрытия.

Кроме того, сплавы на основе молибдена и вольфрама недостаточно технологичны - они плохо деформируются и свариваются. Сплавы на основе тантала и ниобия не имеют этих недостатков. Применение танталовых сплавов сдерживается высокой стоимостью и дефицитностью металла. В качестве конструкционных материалов в перспективе могут найти применение сплавы на основе ниобия с дополнительным упрочнением твердого раствора вольфрамом и дисперсным упрочнением карбидами типа МеС.

Основная область применения сплавов тугоплавких металлов элементы конструкций высокотемпературных газоохлаждаемых реакторов и термоядерных реакторов, в перспективе - в космических аппаратах с ядерными источниками энергии, в электрических термопарных и других устройствах. Хорошо известна значимость вольфрама как материала для нитей накаливания лампा и тантала как материала для конденсаторов.

Вместе с тем необходимо учитывать, что возможности суперсплавов приближаются к пределу. Поэтому в будущем тугоплавкие металлы могут рассматриваться как перспективные материалы для воздушно-реактивных установок при условии, что новые достижения в области металлургических процессов и технологии обработки смогут придать этим материалам необходимые эксплуатационные качества.

Сплав ниобия с цирконием (1 мас. \%) характеризуется хорошей технологичностью и малым сечением захвата тепловых нейтронов. Его широко применяют в ядерных системах, которые содержат жидкие металлы и работают при температуре $980 \ldots 1200^{\circ} \mathrm{C}$.

Сплав вольфрама с 3% рения благодаря высокому электрическому сопротивлению используется в импульсных лампахвспышках.

Молибденовый сплав, легированный малыми добавками титана ($0,5 \%$) и циркония ($0,1 \%$), используют для изготовления литейных стержней и вставок при литье под давлением стали, алюми-

ния, цинка и меди. Применяют его и как инструментальный материал при изотермической штамповке крупньдх турбинных дисков.

В некоторых специальных конструкциях используют так называемые псевдосплавы, состоящие из взаимно нерастворимых компонентов с разной температурой плавления. Предварительно спеченный из порошка вольфрама пористый каркас пропитывают при температуре $1200 \ldots 1250^{\circ} \mathrm{C}$ жидкой металлической составляющей композиции - медью или серебром. Для повышения сопротивления окислению проводят хромирование пористых псевдосплавов.

Свойства псевдосплавов $\mathrm{W}-\mathrm{Cu}$ и $\mathrm{W}-\mathrm{Ag}$ можно изменять в широких пределах, варьируя состав композиций. Псевдосплавы имеют лучшую тепло- и электропроводность, чем чистый вольфрам. Теплопроводность чистого вольфрама при температуре $1000^{\circ} \mathrm{C}$ составляет $120 \mathrm{Bt} /(\mathrm{m} \cdot \mathrm{K}$), а псевдосплава $\mathrm{W}-20 \%$ (об.) $\mathrm{Cu}-$ $135 \mathrm{BT} /(\mathrm{m} \cdot \mathrm{K})$.

Испарение меди при температуре выпше $2000^{\circ} \mathrm{C}$ мало изменяет различие эксплуатационных свойств чистого вольфрама и псевдосплава. Затраты теплоты на испарение меди и пограничный слой, обогащенный медными парами, существенно снижают тепловой поток и эрозионное воздействие продуктов сгорания топлива на материал.

Псевдосплавы W-Cu и W-Ag применяют в ракетной технике и электротехнике. Из них изготавливают сопловые вкладыши ракетных двигателей, работающих на твердом топливе, и другие детали, эксплуатируемые в условиях воздействия мощных тепловых потоков. Плавление и испарение сравнительно легкоплавкой меди сопровождается значительным поглощением теплоты, предупреждающим перегрев тугоплавкого вольфрамового каркаса. Пока в порах содержится жидкий металл, температура псевдосплава не может подняться выше его температуры кипения независимо от величины теплового потока, действующего на материал.

Из псевдосплавов $\mathrm{W}-\mathrm{Cu}$ и $\mathrm{W}-\mathrm{Ni}-\mathrm{Cu}$ изготавливают контакты для высоковольтньх выключателей, работающих в неокислительной среде или масле, электроды контактных сварочньхх машин для сварки тугоплавких и цветных металлов, газоохлаждаемые сопла и межэлектродные вставки мощных сварочных, плазмохимических и металлургических плазмотронов. Пористые сопла для сварочных плазмотронов из псевдосплавов $\mathrm{W}-\mathrm{Cu}$ с пористостью 50%, содержацих 10% (об.) меди, при токе 200 А в течение 10 мин работы почти не теряют массу, тогда как масса сопел из одного пористого вольфрама уменьшается на $2,2 \%$. Повышенная стойкость пористых псевдосплавов связана с образованием на рабочих поверхностях пленки оксида меди, защищающей вольфрам.

Из псевдосплавов W-Ag изготавливают электрические конгакты для сварочных машин, световых выключателей, авиационного оборудования, стартеров, вибраторов, преобразователей тока. Для ра-

боты в вакууме можно использовать самосмазываюшиеся подшипники, спеченные из вольфрамового порошка и пропитанные серебром, золотом, оловом, сплавом Вуда.

7.3. Хладостойкие стали

Обцие сведения. Явление хладноломкости, т.е. хрупкого разрушения, связанного с действием низких температур, впервые стало предметом широкого обсуждения в связи с бурным строительством железных дорог в конце XIX в. Было отмечено, что рельсы, изготовленные из литого металла, внезапно разрушались при понижении температуры. Уже тогда была признана актуальной проблема хладноломкости металлов, необходимость изучения ее природы и выработки мероприятий по ее устранению.

После введения в инженерную практику такого производительного технологического процесса, как сварка, возросло число крупных аварий сварных железнодорожных мостов, морских судов, резервуаров для хранения нефти, магистральных газопроводов. При этом аварии чаще проходили в высоких широтах в зимнее время года при совместном действии низкой температуры и ветра. Анализ разрушений показал, что почти в половине случаев разрушение начиналось в дефектных местах сварных швов. Особую актуальность проблема хладноломкости приобрела в связи с освоением арктических и антарктических районов. Эффективность работы оборудования и транспорта в зимнее время в этих районах резко падает. Анализ работы автотранспортных организаций северных районов показал, что срок службы автомобилей обычного типа по сравнению с зоной умеренного климата сокращается в 2 раза, а аварии и поломки, связанные с климатическими условиями, выводят из строя до 25 \% парка машин. Число поломок горных экскаваторов в Сибири в зимние месяцы возрастает в $5-7$ раз. При этом особенно опасен период пуска машин в работу после остановки.

Для последних лет характерно бурное развитие холодильного машиностроения, производства кондиционеров и криогенной техники.

Стимулом для развития криогенной техники явилось осуществление космических и ядерных программ. Криогеника имеет огромные перспективы в различных хозяйственных и научных отраслях. Важнейшим фактором дальнейшего развития техники низких температур является создание материалов, пригодных для работы в этих условиях.

Конструирование и выпуск хладостойкой и криогенной техники должны быть основаны на глубоком знании поведения материалов при низких температурах, надежных методах оценки работо-

способности и долговечности материалов, научно обоснованных рекомендациях по выбору материалов.

Особенностью низкотемпературной службы является ужесточение требований к материалу по пластичности и вязкости. Обычно минимальная рабочая температура определяется температурой вяз-ко-хрупкого перехода, при которой вязкость падает до неприемлемо малых значений. Сложность количественной оценки влияния различных конструкторско-технологических факторов, размеров деталей, уровня остаточных напряжений, вида напряженного состояния и условий нагружения на надежность машин и конструкций затрудняет создание нормативных рекомендаций по применению материалов для работы в конкретных условиях.

По хладостойкости металлические материалы, используемые при низких температурах, условно могут быть разбиты на четыре основные группы.

К первой группе относятся металлы и сплавы, характеристики механических свойств которых позволяют использовать их при температурах до $-60^{\circ} \mathrm{C}$, т.е. до низких климатических температур, для изготовления изделий так называемого северного исполнения, качественные углеродистые и низколегированные стали ферритного и перлитного классов с ОЦК решеткой.

Ко второй группе относятся сплавы, сохраняющие вязкость и пластичность при охлаждении до $170 \mathrm{~K}\left(-103^{\circ} \mathrm{C}\right)$ - стали с содержанием углерода $0,2 \ldots 0,3 \%$, дополнительно легированные никелем, хромом, титаном, молибденом, например низкоуглеродистые ферритные стали с $2 \ldots 5 \%$ никеля, используемые при температуре $210 \ldots 150 \mathrm{~K}\left(-63 \ldots-123^{\circ} \mathrm{C}\right)$.

К третьей группе относятся сплавы, способные без ухудшения свойств выдерживать температуру до $77 \mathrm{~K}\left(-196^{\circ} \mathrm{C}\right.$ - температура кипения жидкого азота), - стали типа $12 \mathrm{X} 18 \mathrm{H10T}$, 0Н9А, большинство сплавов на основе алюминия, титана, меди, не обнаруживающих склонности к хрупкому разрушению. Для ненагруженных конструкций с целью экономии никеля применяют стали Cr Mn и Cr-N - Mn типа 10Х14Г14Н4Т (ЭИ711), 03X13АГ19 (ЧС36), 07Х21Г7АН5 (ЭП222).

К четвертой группе относятся сплавы, работающие при температуре ниже 77 K , - материалы, используемые в космической технике, производстве и потреблении водорода, экспериментальной физике. Для работы при таких температурах притодны лишь высоколегированные коррозионно-стойкие стали типа 03X20Н16АГ6, 10 X 11 H 23 T 3 MP (ЭП33), некоторые бронзы, никелевые, алюминиевые сплавы, легированные магнием, и сплавы титана.

Стали являются основным конструкционным материалом для изготовления механизмов, машин и конструкций, работающих при низких температурах. Стали для этих условий должны обеспечивать необходимую прочность в сочетании с высокой вязкостью и

пластичностью, обладать малой чувствительностью к концентраторам напряжений и низкой склонностью к хрупкому разрушению.

Выбор хладостойкой стали оптимального состава - это всегда поиск компромисса между системой противоречивых требований: высокой прочностью и необходимой вязкостью и пластичностью.

С понижением температуры прочностные характеристики стали растут, а вязкость и пластичность уменьшаются. Поэтому при выборе стали для работы в этих условиях определяюшими показателями являются прочность при максимальной температуре эксплуатации - обычно комнатной, вязкость и пластичность - при минимальной температуре. Механические свойства и работоспособность сталей, применяемых для хладостойких конструкций, а также в холодильном и криогенном машиностроении, зависят от многих факторов. К ним прежде всего относятся тип кристаллической решетки, размер зерна и состояние его границ, содержание легирующих элементов и примесей, форма и размеры неметаллческих включений. Повышенное содержание водорода увеличивает хрупкость стали. Сварка способствует росту зерна и дополнительному наводороживанию, что увеличивает хладноломкость сварных соединений. Кроме того, нагрев при сварке может способствовать фазовым превращениям и выделениям примесей по границам зерен, что также повышает хрупкость стали.

Определенную сложность представляет выбор необходимого уровня пластичности и вязкости. Нормы по проектированию указывают рекомендуемый температурный диапазон применения каждого вида материала, используемого для хладостойких конструкций, сосудов давления, трубопроводов и другого холодильного и криогенного оборудования. Минимальная рабочая температура определяется температурой вязко-хрупхого перехода, при которой вязкость резко падает.

В настоящее время отсутствует систематизация данных о пригодности того или иного материала для работы при низких температурах. Это объясняется сложностью количественной интерпретации влияния различных конструкторско-технологических факторов (размеры деталей, уровень остаточных напряжений, условия нагружения, вид напряженного состояния и др.) на надежность машин и конструкций, эксплуатируемых при низких температуpax.

Пластичность и вязкость в конструкторские расчеты не входят и являются качественными показателями. Пластичность характеризует способность металла подвергаться остаточной деформации и перераспределять напряжения в зонах их концентрации; а вязкость - способность поглощать работу внешних сил при разрушении. В обычном машиностроении условно принято считать пластичность удовлетворительной, если $\delta \geq 15 \%$. Вместе с тем, хотя при температуре $20 . .77 \mathrm{~K}$ хромоникелевые аустенитные стали име-

ют $\delta \geq 40 \%$, а аустенитные дисперсионно-твердеющие стали всего лишь $\delta \geq 10 \%$, стали обоих типов достаточно надежны при эксплуатации.

Широко принятым критерием работоспособности является ударная вязкость надрезанных образцов. В разных странах принят разный приемлемый уровень вязкости. За рубежом сталь обычно допускают к эксплуатации, если ее ударная вязкость KCV , определенная на образцах $10 \times 10 \times 55$ мм с надрезом радиусом 0,25 мм (образец Шарпи), составлиет не менее 20 Дж/см². В России чаще применяют образец с надрезом радиусом $1 \mathrm{mм}$, устанавливая допустимое значение $\mathrm{KCV} \geq 30$ Дж/см ${ }^{2}$ ($\mathrm{KCU} \geq 40$ Дж/см ${ }^{2}$).

Хладостойкость сталей климатического холода. Легирующие элементы оказывают влияние на размеры зерен, состояние их границ, количество, форму и распределение фаз в стали.

Механические свойства и хладноломкость стали определяются прежде всего тремя механизмами упрочнения: измельчением зерна; упрочнением феррита атомами легирующих элементов и примесей, образуюшими твердые растворы внедрения и замещения; упрочнением выделениями частиц второй фазы различной степени дисперсности.

Углерод, хотя и способствует эффективному упрочнению, резко снижает вязкость и пластичность стали, способ́твуя повышению хладноломкости. Принято считать, что увеличение в стали содержания углерода на каждые $0,1 \%$ повышает порог хладноломкости на $20^{\circ} \mathrm{C}$ (рис. 7.16).

Снижение содержания углерода предотвращает образование при сварке в зоне термического влияния хрупких закалочньх мартенситных структур. В свариваемых хладостойких сталях содержание углерода должно быть ниже $0,2 \%$ и в структуре должно быть мало перлита (малоперлитные стали).

Введение в углеродистую сталь марганца до 2% и кремния до $0,8 \%$ упрочняет ферритную матрицу благодаря образованию твердого раствора замещения. Легирование марганцем измельчает зерно и увеличивает вязкость феррита, что повышает величину работы распространения трещины при низких температурах.

Легирование стали малыми добавками титана, ниобия и ванадия позволяет получать мелкодисперсные выделения второй фазы типа VC, $\mathrm{TiC}, \mathrm{Nb}(\mathrm{C}, \mathrm{N})$, $\mathrm{V}(\mathrm{C}, \mathrm{N})$, эффективно упрочняющие матрицу. Эти же элементы способствуют измельчению

Рис. 7.16. Влияние содержания углерода на хладноломкость стали:

$$
t_{\text {ясп }} \text { - rемпература испытаний }
$$

зерна и снижают склонность стали к его росту. На границах зерен образуются дисперсные частицы карбидов и карбонитридов ниобия, титана и ванадия, тормозящие рост зерен при нагревании. Увеличение содержания этих элементов более $0,15 \%$ повышает прочность, но одновременно повышает склонность стали к хрупкому разрушению.

Для повышения хладостойкости и свариваемости строительных сталей применяют малоперлитные стали с низким содержанием углерода, микролегированные сильными карбидообразующими элементами. Кроме того, используют стали, легированные азотом в сочетании с различными сильными нитридообразуюцими элементами, в качестве которых чаще всего применяют ванадий, алюминий, ниобий и титан. Выделение азота из твердого раствора в виде нитридов уменьшает его охрупчивающее действие, что увеличивает прочность стали и, способствуя измельчению зерна, не ухудшает ее хладостойкости.

К сталям этой группы относятся стали марок 09 Г2, 09Г2С, 09Г2СД, 16Г2АФ, 14Г2АФ, 14Г2САФ и др. Из-за дефицитности никеля его применение в сталях этого типа ограничено. Стали типа $14 Г 2 А \Phi, 16 Г 2 А \Phi$ и их варианты 14Г2САФ, 16Г2САФ широко используют в нормализованном состоянии для изготовления газопроводных труб диаметром $1020 \ldots 1420$ мм. Их прочность $\sigma_{\text {в }}=$ $=560 \ldots 600 \mathrm{M}$ Ма, а ударная вязкость KCU при температуре $-60^{\circ} \mathrm{C}$ $(213 \mathrm{~K})$ в случае снижения содержания серы и фосфора до $0,01 \%$ составляет примерно 60 Дж/см².

Механические свойства при температуре $20^{\circ} \mathrm{C}(293 \mathrm{~K})$, а также значения ударной вязкости листового проката толщиной $10 \ldots 25 \mathrm{mм}$ из двух марок стали этой группы приведены в табл. 7.10.

Хром несколько повышает прочность стали и при содержании до 1% увеличивает ее вязкость. Увеличение содержания хрома свыше $1,5 \%$ приводит к повышению порога хладноломкости.

Из всех легирующих элементов никель в наибольшей степени понижает хладноломкость стали. Никель и железо полностью ра-

Табли ца 7.10. Механнческие свойства низколегнровадных свариваемых сталей марок 09Г2С, 14Г2САФ

Марка стали	Термическая обработка	$\begin{gathered} \sigma_{\mathrm{B}}, \\ \mathbf{M}{ }^{\prime} \end{gathered}$	$\begin{aligned} & \sigma_{0,2}, \\ & \text { мПа } \end{aligned}$	\%, \%	KCU, Дж/см², при температуре, ${ }^{\circ} \mathrm{C}$		
					20	-40	-70
09Г2C	Состояние поставки	500	350	21	60	40	30
14Г2САФ	Нормализация при температуре $930^{\circ} \mathrm{C}$	640	490	25	100	80	60
	Закалка - отпуск	590	410	32	200	140	120

створимы друг в друге, имеют близкое строение кристаллических решеток. Никель не является карбидообразуюшим элементом, он находится в твердом растворе в феррите или аустените. Никель упрочняет феррит и одновременно увеличивает его вязкость. Никель увеличивает прокаливаемость стали, измельчает зерно, а также снижает концентрацию примесей на дислокациях и уменьшает блокирование дислокаций примесными атомами внедрения.

На рис. 7.17 приведена зависимость критической температуры хрупкости от содержания никеля в стали. Введение 1% никеля снижает порог хладноломкости примерно на 20 K .

Введение молибдена до $0,5 \%$ сушественно снижает порог хладноломкости. Молибден оказывает сдерживающее влияние на диффузионную подвижность фосфора и уменьшает отпускную хрупкость. Действие никеля на хладноломкость особенно эффективно в сочетании с молибденом.

Резко отрицательное действие на хладноломкость оказывают фосфор, сера, растворенные газы: кислород, азот, водород.

С увеличением содержания серы растет количество сульфидных включений, играющих роль концентраторов напряжений. Так, увеличение содержания серы в литой стали 25 Л от 0,02 до $0,05 \%$ более чем в 2 раза снижает ударную вязкость при температуре $-40^{\circ} \mathrm{C}(233 \mathrm{~K})$. Повышение содержания серы на $0,01 \%$ увеличивает порог хладноломкости примерно на 15 K .

Снижение содержания серы позволяет повысить ударную вязкость листов в направлении, перпендикулярном прокатке (рис. 7.18). Благодаря этому снижается анизотропия вязкости. При содержании серы менее $0,003 \%$ в структуре с трудом (лишь металлографически) распознаются включения сульфидов марганща вытянутой формы.

Рис. 7.17. Влияние содержания никеля на критическую температуру хрупкости низкоуглеродистой стали

Рис. 7.18. Влияние содержания серы на работу удара поперечных образцов Шарпи из микролегированной мелкозернистой стали

Охрупчивающее влияние фосфора сказывается в обогащении им межзеренных границ благодаря сильной ликвации и образованию концентраторов напряжений - фосфидной эвтектики. При увеличении содержания углерода охрупчивающее влияние фосфора возрастает. Повышение содержания фосфора на $0,01 \%$ для литой стали 35Л увеличивает критическую температуру хрупкости примерно на 20 K . Вредное влияние фосфора может быть существенно подавлено за счет легирования молибденом.

Глубокая десульфурация и дефосфорация являются необходимыми условиями обеспечения высокой сопротивляемости хрупкому разрушению.

Отрицательное влияние вредных примесей уменьшается при введении редкоземельных металлов, а также кальция и циркония. Добавки редкоземельных металлов оказывают положительное действие на хладостойкость и снижают отпускную хрупкость конструкционных сталей. При этом редкоземельные и щелочноземельные металлы не входят в твердый раствор и не загрязняют границ зерен, а полностью переходят в неметаллические включения, связывая вредные примеси.

Контролируемая прокатка, являюшаяся разновидностью TMO, позволяет повысить вязкость металла. При контролируемой прокатке строго регламентируют степень обжатия на последних стадиях деформации, проводимых при более низкой температуре. Эффект контролируемой прокатки возрастает при микролегировании стали ванадием и ниобием.

Сталь 09ХГ2НФБ в результате контролируемой прокатки с последуюшим регулируемым охлаждением в процессе прокатки на стане имеет преимущественно бейнитную структуру с небольшим количеством мелкозернистого феррита, упрочненного дисперсными частицами карбонитридных фаз ванадия и ниобия. При $\sigma_{0,2} \geq 700$ МПа и $\sigma_{\mathrm{B}} \geq 900 \mathrm{M}$ Ма $\delta_{5}=20,5 \%$; при $-60^{\circ} \mathrm{C}$ ударная вязкость $\mathrm{KCU}=104$ Дж/см², а критическая температура хрупкости $t_{50}=-100^{\circ} \mathrm{C}$. Сталь хорошо сваривается и может быть использована в сварных конструкциях ответственного назначения в строительстве и машиностроении.

Для холодной штамповки автомобильного листа и магистральных трубопроводов может быть использован новый класс сталей двухфазные ферритно-мартенситные стали, полученные при охлаждении из межкритического интервала температур.

В ряде стран применяют к этим, по сути композиционным, материалам термин «стали с дуальной структурой». Такие стали представляют собой преимущественно низколегированные малоуглеродистые композиции с микродобавками титана, ванадия или ниобия, в которых упрочняющая фаза (мартенсит или мартенсит-но-бейнитная смесь) присутствует в ферритной матрице в количестве, как правило, менее 30%. Стали характеризуются низкими

значениями предела текучести ($\sigma_{0,2} / \sigma_{\mathrm{a}}=0,4-0,5$), высокими скоростями деформационного упрочнения и малой величиной эффекта Баушингера. Высокая скорость деформационного упрочнения способствует увеличению поглощаемой энергии при распространении трещины, т.е. повышению вязкости стали. Благодаря хорошей штампуемости и свариваемости их применяют для холодной листовой и объемной штамповки автомобильных деталей.

Для железнодорожных мостов северного исполнения применяют сталь 12Г2МФТ взамен стали 10ХСНД. Прокат из стали 12Г2МФТ толщиной до 40 мм характеризуется не только более высокой прочностью, но и более высокими характеристиками вязкости разрушения в широком температурном диапазоне.

Особую сложность представляет повышение хладостойкости литых сталей. Литая сталь отличается от деформированной наличием дефектов в виде раковин и трещин. Литые стали имеют крулное первичное зерно, и его измельчение представляет сложную задачу. Термическая обработка по обычным режимам полностью не устраняет структурные особенности литого металла. Для уменьшения химической неоднородности стали перед окончательной термической обработкой целесообразно проводить высокотемпературную гомогенизацию с последующим охлаждением на воздухе. Однако проведение таких операций не всегда возможно. Массивные литые детали в ряде случаев сложно подвергать даже улучшению, их термическая обработка обычно ограничивается нормализацией.

На границах первичных зерен могут образовываться межкристаллитные пленки оксидов, сульфидов и нитридов, по которым хрупкие трещины распространяются легче, чем по основному металлу. В процессе обработки давлением пленочные выделения разрушаются, превращаясь в компактные частицы, в меньшей степени охрупчивающие металл.

Хладостойкость литых сталей может быть повьшена при условиу:
создания равномерной мелкозернистой структуры, предотвращающей образование пиков локальных напряжений;

уменьшения количества и размеров неметаллических включений и перлитной составляющей, а также их глобуляризации;

уменьшения количества вредных примесей, способных образовывать сегрегации на структурных неоднородностях.

Наиболее перспективным способом измельчения зерна в литых сталях, как и в деформированных, является микролегирование такими карбидообразующими элементами, как ванадий, титан, ниобий, цирконий. Эти элементы образуют в стали либо дисперсные карбиды, либо карбонитриды. При этом вид карбида или карбонитрида будет зависеть от количества карбидообразующего элемента, содержания углерода и азота в стали. Важным моментом является также растворимость карбидов и карбонитридов в аустените. Растворимость карбидов значительно больше, чем нитридов.

Для литых сталей наиболее целесообразно легирование ванадием. При температуре нормализации карбонитриды ванадия, в отличие от $\mathrm{Nb}(\mathrm{C}, \mathrm{N})$ и $\mathrm{Ti}(\mathrm{C}, \mathrm{N})$, полностью растворяются в аустените, обеспечивая ках измельчение зерна, тах и дисперсионное твердение.

Наиболее эффективное воздействие карбонитридов на свойства стали достигается при сочетании двух механизмов упрочнения. Во-первых, в раствор при температуре аустенитизации должно переходить достаточное для последующего упрочнения количество карбонитридообразующего элемента. Во-вторых, нерастворенным должно оставаться некоторое количество фазы, необходимое для создания эффективных барьеров, тормозящих рост зерен при нагреве.

В связи с этим для получения мелкозернистой стали наиболее эффективно легирование двумя карбо- или нитридообразующими элементами, у которых температура перехода соответствующих фаз в твердый раствор различна. Такими элементами в литых сталях могут быть ванадий и алюминий. При обычной температуре нормализации литых сталей (примерно $950^{\circ} \mathrm{C}$) карбонитриды ванадия растворяются в аустените с последующим дисперсионным твердением. Нитрид алюминия растворяется в аустените при значительно более высокой температуре, чем карбонитрид ванадия, что эффективнее сдерживает рост зерна.

При совместном использовании ванадия и алюминия карбонитриды или карбиды ванадия обеспечивают упрочнение по механизму дисперсионного твердения, а нитриды алюминия способствуют измельчению аустенитного зерна и препятствуют его росту при нагреве.

Дополнительное введение вместе с ванадием и алюминием титана может дать положительный эффект в результате образования нитридов алюминия при более низких температурах и предотвращения выделения пленочных нитридов алюминия.

Для повышения хладостойкости стали важно не только снижение абсолютного содержания вредных примесей, но и уменышение их отрицательного влияния. Эффективным технологическим приемом, позволяющим существенно повысить хладостойкость литых сталей, является обработка их комплексными лигатурами, содержащими щелочноземельные металлы. Однако десульфирующая и модифицирующая способность подобных лигатур в значительной мере определяется степенью раскисления стали. Это объясняется тем, что щелочноземельные металлы обладают высоким сродством как к кислороду, так и к сере, и в случае низкого содержания алюминия в стали в основном расходуются на раскисление. С увеличением концентрации алюминия содержание несвязанного кислорода в стали уменьшается и, следовательно, вероятность взаимодействия щелочноземельных металлов с серой возрастает.

При концентрации остаточного алюминия в стали менее $0,03 \%$ наблюдается снижение ударной вязкости, связанное с наличием в структуре металла пленок сульфидных эвтектик, располагающихся по границам зерен. В этом случае обработка стали лигатурой, содержащей щелочноземельные металлы, малоэффективна в связи с тем, что ее основная часть расходуется на раскисление, а загрязненность стали пленочными сульфидами практически не изменяется (рис. 7.19).

При концентрации алюминия более $0,03 \%$ щелочноземельные

Рис. 7.19. Влияние содержания алюминия на ударную вязкость стали 12ХГФЛ
1,2 - соответственно без обработки и с обработкой щелочноземельными металлами металлы активно участвуют в формировании оксисульфидньх глобулярных включений. При этом распределение неметаллических включений в объеме металла приобретает более равномерный характер, а общий индекс загрязненности стали снижается на $25 \ldots 30 \%$. Существенно уменышаются размеры включений (их характерный размер в стали, не обработанной и обработанной лигатурой, $3,75 \ldots 8,75$ и $1,25 \ldots 6,25$ мкм соответственно).

Комплексные сульфидные включения, содержащие сульфид кальция, хорошо ассимилируются продуктами раскисления. В связи с этим в стали, раскисленной алюминием и щелочноземельными металлами, выделяющаяся оксидная фаза оказывается в сульфидной оболочке. В этом случае оксидные сегрегации оксида алюминия $\mathrm{Al}_{2} \mathrm{O}_{3}$ остроугольной формы превращаются в глобулярные, равномерно распределенные в объеме металла частицы, что существенно уменьшает их отрицательное влияние как концентраторов напряжений.

Стали криогенной техники. Сфера применения криогенной техники непрерывно расширяется. Криогенная техника применяется как в традиционных отраслях промышленности (металлургия, химия), так и в сравнительно новых (ракетостроение, энергетика, управление термоядерными процессами, освоение космоса, физика высоких энергий). В последние десятилетия появились такие специальные отрасли знания, как криобиология, криомедицина, криоэнергетика и др.

Дальнейшее развитие криогенной техники обусловлено созданием материалов, пригодньх для работы при низких температурах. В настоящее время и в ближайшем будушем сталь остается основным материалом для изготовления механизмов, машин и конструкций, работающих в этих условиях. Стали для криогенной тех-

ники должны обеспечивать необходимую прочность в сочетании с высокой вязкостью и пластичностью, обладать малой чувствительностью к концентрации напряжений и низкой склонностью к хрупкому разрушению.

Учитывая технологию изготовления изделий, работающих при низких температурах, такие стали должны обладать хорошей свариваемостью. Важной характеристикой сталей является их высокая коррозионная стойкость.

Стабилвные аустенитные стали. Широкое распространение в технике низких температур получили хромоникелевые аустенитные стали, содержащие $17 \ldots 25 \%$ хрома и $8 \ldots 25 \%$ никеля. Благодаря сохранению высокой пластичности и вязкости в широком температурном диапазоне, коррозионной стойкости в сочетании с хорошими технологическими свойствами они в настоящее время являются наиболее распространенными конструкиионными материалами криогенной техники.

Хромоникелевые аустенитные стали применяют для изготовления сварных элементов аппаратов, емкостей, трубопроводов (обечайки, днища, патрубки, фланцы), деталей арматуры (штоки, клапаны, седла) и т.д. Рекомендуемая температура эксплуатации сварных соединений $4 \ldots 870 \mathrm{~K}$ без ограничения давления.

К недостаткам сталей этой групы относятся низкая прочность при комнатной температуре, особенно по пределу текучести (примерно 250 МПа), а также сравнительно высокая стоимость, обусловленная высоким содержанием дорогостоящего никеля.

В табл. 7.11 приведены средние значения механических свойств аустенитных сталей, обычно используемьх в криогенной технике.

В зависимости от содержания основных легирующих элементов различают два типа хромоникелевых аустенитных сталей:

- метастабильные стали, претерпевающие заметное мартенситное превращение при охлаждении и деформации, содержацие $17 \ldots 20 \%$ хрома и $8 \ldots 12 \%$ никеля;
- стабильные стали, содержащие $17 \ldots 25 \%$ хрома и $14 \ldots 25 \%$ никеля. В них мартенситное превращение подавлено и аустенитная структура сохраняется вплотъ до самых низких температур.

Высокая стоимость никеля привела к созданию сталей (марки $03 \mathrm{X} 13 \mathrm{~A} Г 19,10 \mathrm{X} 14 \Gamma 14 \mathrm{H} 4 \mathrm{~T}$), в которых никель полностью или частично заменен марганцем, также являюшимся стабилизатором аустенита. В их состав дополнительно вводят азот, способствующий получению аустенитной структуры и дополнительному упрочнению (03X20H16AГ6, 07X13H4AГ20).

Азот, образуя твердый раствор внедрения, существенно меняет параметры кристаллической решетки аустенита и тем самым влияет на характеристики прочности.

Растворимость азота в γ-железе при температуре $830^{\circ} \mathrm{C}$ составляет всего $0,027 \%$. Присутствие хрома и особенно марганца спо-

Таблица 7．11．Средние значения механических свойств аустенитных сталей для криогенной техники

Система легирования	Марка стали	$T, \mathrm{~K}$	$\begin{gathered} \sigma_{\mathrm{e}},{ }_{\mathrm{M}}^{\mathrm{Ia}} \end{gathered}$	$\begin{aligned} & \sigma_{0,0}^{\prime} \\ & \mathrm{M} П \mathbf{a} \end{aligned}$	¢，\％	$\begin{gathered} \mathrm{KCV}, \\ \text { Д※ } / \mathrm{CM}^{2} \end{gathered}$
$\mathrm{Cr}-\mathrm{Ni}$	12X18H10T	293	660	280	65	360
		77	1520	450	36	300
		20	1550	510	37	280
$\mathrm{Cr}-\mathrm{Mn}$	03X13A「19	293	890	380	63	200
		77	1300	730	31	125
		20	1330	900	12	100
$\mathrm{Cr}-\mathrm{Ni}-\mathrm{Mn}$	10X14「14H4T	293	820	270	62	280
		77	1350	430	40	280
		20	1410	450	31	220
$\mathrm{Cr}-\mathrm{N}-\mathrm{Mn}$	03X20H16A「6	293	780	410	52	160
		77	1550	900	48	100
		20	1930	1360	31	90
$\mathrm{Cr}-\mathrm{Ni}-\mathrm{Mn}$	07X13H4AГ20	293	760	370	69	150
		77	1290	680	50	110
		20	1700	1120	18	80

собствует увеличению растворимости азота в стали．Эффективность влияния азота как элемента внедрения，блокирующего движение дислокаций и повышающего предел текучести，с понижением тем－ пературы возрастает．Повышая стабильность аустенита，азот пре－ пятствует образованию δ－феррита при высоких температурах．

Введение азота в хромоникельмарганцевые стали позволяет бо－ лее чем в 1,5 раза поднять уровень предела текучести при комнат－ ной температуре．

С понижением температуры эффективность влияния азота как элемента внедрения，блокирующего движение дислокаций，на величину предела текучести еще более возрастает．Хром，никель и марганец как элементы замещения оказывают меньшее влияние на прочностные свойства，их роль определяется необходимостью обеспечения заданной аустенитной структуры．

К недостаткам азота как легирующего элемента относятся его склонность к ликвации при кристаллизации стального слитка и некоторое осложнение процессов сварки．

Присутствие азота в стали требует определенного ограничения погонной энергии во избежание выпадения карбонитридов по гра－ ницам зерен，что может приводить к снижению птастичности и вязкости сварного шва и повышению чувствительности к концен－ траторам напряжений．

В свариваемых сталях с азотом необходимо более строго ограничивать концентрацию углерода. Содержание углерода должно приближаться к пределу его растворимости в аустените, составляя не более $0,03 \ldots 0,04 \%$. Получение низкой концентрации углерода в стали создает определенные трудности при выплавке.

Высокопрочные мартенситно-стареюоие стали. Отличительной особенностью сталей этой групыы является получение при закалке практически безуглеродистого легированного мартенсита и его последующее старение при температуре $500^{\circ} \mathrm{C}$, сопровождающееся выделением интерметаллидных фаз. Это обеспечивает сочетание высоких прочностных свойств с достаточной пластичностью и вязкостью. Опасность хрупких разрушений при низких температурах в отличие от друтих высокопрочных сталей уменьшается благодаря присутствию никеля и низкому содержанию углерода (не более $0,03 \%$). Высокая концентрация легирующих элементов предотвращает образование немартенситных продуктов превращения аустенита независимо от скорости охлаждения при закалке.

Для изготовления деталей криогенной техники в России применяют мартенситно-стареющие стали следующего состава, $\%$:
$03 \mathrm{X9K} 14 \mathrm{H} 6 \mathrm{M} 3 Д$ (ЭП921): менее $0,03 \mathrm{C} ; 8,5 \ldots 9,5 \mathrm{Cr} ; 6 \ldots 7 \mathrm{Ni}$; $13 . . .14 \mathrm{Co} ; 3$... $4 \mathrm{Mo} ; 1 \ldots 1,5 \mathrm{Cu}$;

03 X 14 K 14 H 4 M 3 T (ЭП767): менее $0,03 \mathrm{C} ; 13,5 \ldots 15 \mathrm{Cr}, 3,8 \ldots 4,8 \mathrm{Ni}$; $13 . .14,5 \mathrm{Co} ; 2,3 \ldots 3 \mathrm{Mo} ; 0,15 \ldots 0,2 \mathrm{Ti} ; 0,1 \ldots 0,15 \mathrm{~V}$.

Сталь ЭП921 имеет более однородную мартенситную структуру, а сталь ЭП767 является сталью переходного класса и содержит до 30% остаточного аустенита.

Введение кобальта несколько снижает критическую точку мартенситного превращения. Влияние кобальта на механические свойства мартенситно-стареющих сталей обусловлено его участием в процессе старения за счет образования сложных соединений $\mathrm{Co}-\mathrm{Ni}-\mathrm{Mo}-\mathrm{Ti}$, когерентно связанных с металлической матрицей. Кобальт, как и никель, уменьшает растворимость молибдена в α-железе и способствует упрочнению при старении (задерживает процесс разупрочнения, уменьшая скорость коагуляции высокодисперсных фаз).

Механические свойства мартенситно-стареющих сталей при низких температурах приведены на рис. 7.20.

Сталь ЭП921 сочетает высокую прочность и твердость с удовлетворительными пластичностью и вязкостью при низких температурах. Некоторое снижение содержания хрома позволяет вводить элементы, способствующие улучшению комплекса свойств при низких температурах. В сталь введен никель (до 7%), а для повышения коррозионной стойкости сталь дополнительно легирована медью.

Сталь ЭП921 удовлетворительно деформируется в горячем состоянии. Рекомендуемый режим термической обработки следую-

Рис. 7.20. Влияние температуры на механические свойства мартенситностареюших сталей:

$$
a-\text { сталь } 03 \mathrm{X} 9 \mathrm{~K} 14 \mathrm{H} 6 \mathrm{M} 3 Д \text { (ЭП921); } 6 \text { - сталь 03X14K14H4M3T (ЭП767) }
$$

щий: первая закалка от температуры $860^{\circ} \mathrm{C}$ в воде; вторая закалка от температуры $730^{\circ} \mathrm{C}$ в воде; старение при температуре $520^{\circ} \mathrm{C}$ в течение 3 ч; охлаждение в воде. В закаленном состоянии сталь удовлетворительно обрабатывается резанием и сваривается с присадкой проволоки Св-03X12H9M2C.

Сталь ЭП921 применяют для изготовления высоконагруженных деталей, в том числе таких деталей уплотнительных узлов арматуры, как седла клапанов, а также элементов турбодетандеров (валики, подпятники, лопатки), где требуется сочетание высокой твердости и эрозионной стойкости.

Высокий уровень свойств стали ЭП767 определяется условиями формирования ее структуры.

Оптимальное сочетание прочности, пластичности и вязкости достигается при термической обработке, состоящей из закалки от температуры $1050^{\circ} \mathrm{C}$, обработки холодом и старения при температуре $520^{\circ} \mathrm{C}$ в течение 6 ч. В результате такой термической обработки механические свойства стали при комнатной температуре составляют (не менее): $\sigma_{\mathrm{B}}=1450 \mathrm{M}$ Ма; $\sigma_{0,2}=1350 \mathrm{M} П а ; \delta=15 \% ; \mathrm{KCV}=$ $=70$ Дж $/ \mathrm{cm}^{2}$. Высокий уровень вязкости $\mathrm{KCV}>50$ Дж $/ \mathrm{cm}^{2}$ при температуре 77 K сохраняется благодаря присутствию в структуре $20 \ldots 30 \%$ остаточного аустенита.

Уже на начальных этапах старения наблюдается интенсивное упрочнение, что связано с процессами перераспределения легирующих элементов и природой упрочнения стареющего мартенсита. Повышение температуры старения увеличивает диффузионную подвижность атомов и количество дисперсных частиц новой фазы.

Старение при температуре $520^{\circ} \mathrm{C}$ в течение 6 ч приводит к наиболее эффективному упрочнению. При этом ударная вязкость сохраняет высокие значения при температуре 77 K.

Стаљ ЭП767 обладает удовлетворительной свариваемостью. Сварку выполняют проволокой того же состава. Термообработанные сварные соединения при температуре 293 K имеют временное сопротивление не менее 1300 МПа при хорошей ударной вязкости. При 77 K вязкость металла шва снижается, но составляет не менее 30 Дж/см².

Сталь ЭП767 широко используют в ракетно-космической технике для изготовления тонколистовых конструкций сложной конфигурации и деталей арматуры, работающих при температуре до 77 К (золотники, втулки, штоки, опоры, стаканы, клапаны, тарелки и др.).

Сталь и ее сварные соединения коррозионно-стойки в атмосферных условиях при повышенной температуре и относительной влажности 96... 98%

Железоникелевые сплавы. Для изготовления некоторых узлов криогенных установок, размеры которых не должны меняться с изменением температуры, используют высоколегированные инвары сплавы с никелем. Сплав с 36% никеля имеет ТКЛР при температуре $50 \ldots 100$ К в $10-20$ раз меньше, чем для никелевых и хромоникелевых сталей, а также алюминиевых сплавов.

Из инваров изготавливают жесткозакрепленные трубопроводы сложной пространственной формы, работающие при температуре до 20 K (например, трубопроводы жидкостных ракетных двигателей), некоторые элементы арматуры, которые по условиям работы должны иметь минимальные изменения размеров при изменении температуры. Малое значение ТКЛР материала позволяет уменьшить напряжения в трубопроводах и предотвратить возможность их разрушения. Отпадает необходимость установки сильфонных узлов для компенсации деформаций, что упрощает конструкцию и делает ее более надежной.

Инвары ферромагнитны, имеют кристаллическую ГЦК решетку, не упрочняются термической обработкой и слабо упрочняются при пластической деформации. Инвар имеет низкую теплопроводность, почти вдвое меньшую, чем у аустенитных сталей, что особенно важно при использовании его в узлах, где необходимо уменьшить притоки теплоты.

Прочностные свойства инвара невысоки: $\sigma_{0,2}=240 \mathrm{M}$ Ма; $\sigma_{\text {в }}=$ $=420 \mathrm{M}$ Ма. При охлаждении до 20 K предел текучести возрастает в 3 раза, а временное сопротивление - в 2 раза. Модуль упругости сплава ниже, чем для стали: при $293 \mathrm{~K} E=145$ ГПа. По циклической прочности инвар близок к коррозионно-стойкой стали 12X18H10T. Ударная вязкость инвара уменьшается с понижением температуры, однако сплав сохраняет ее высокие значения и разрушается вязко вплоть до 4 K .

По сравнению с хромоникелевыми аустенитными сталями инвар имеет пониженную коррозионную стойкость. Никель, хотя и в меньшей степени, чем железо, склонен к коррозии, в том числе в атмосферных условиях. Скорость коррозии инвара в $5-6$ раз меньше, чем для углеродистых сталей.

Железоникелевые сплавы удовлетворительно штампуются, куются, прокатываются, обрабатываются резанием. Для дополнительного снижения ТКЛР проводят термическую обработку инваров, состоящую из закалки от температуры $840^{\circ} \mathrm{C}$ в воде, отпуска при температуре $315^{\circ} \mathrm{C}$ и старения в течение $50 \ldots 100$ ч при температуре $100^{\circ} \mathrm{C}$. Железоникелевые сплавы удовлетворительно свариваются. Обычно применяют дуговую сварку в среде аргона. В качестве присадочного материала используют проволоку близкого состава. Сварные соединения не требуют термической обработки, их прочность близка к прочности основного металла.

7.4. Стали и сплавы с особыми физическими свойствами

Магнитные стали и сплавы. В зависимости от знака и степени магнитной восприимчивости материалов различают диамагнетики, парамагнетики и ферромагнетики.

Диамаенетики обладают отрицательной магнитной восприимчивостью, намагничиваются противоположно приложенному магнитному полю и таким образом ослабляют его. К диамагнетикам относятся полупроводники (Si, Ge), диэлектрики (полимеры), такие металлы, как бериллий, медь, серебро, свинец.

Парамагнетики характеризуются слабой намагниченностью под действием внешнего поля. K парамагнетикам относятся калий, натрий, алюминий и такие переходные металлы, как молибден, вольфрам, титан.

Ферромагнетики обладают высокой магнитной восприимчивостью. Из всех металлов только четыре: железо, кобальт, никель и гадолиний - обладают высокими ферромагнитными свойствами.

Площадь внутри гистерезисной петли ферромагнетика характеризует энергетические потери на гистерезис или перемагничивание.

Для ферромагнитных материалов основными характеристиками являются остаточная индукция B_{r}, коэрцитивная сила H_{c} и магнитная проницаемость $\mu=B / H$, где B - магнитная индукция; H - напряженность магнитного поля. Остаточной индукцией, измеряемой в теслах ($1 \mathrm{~T}_{\pi}=10^{4}$ Гс (гаусс)), называют магнитную индукцию, остающуюся в образце после его намагничивания и снятия магнитного поля. Коэрцитивной силой, измеряемой в амперах на метр (A / m), называют напряженность магнитного поля об-

Рис. 7.21. Зависимость магнитной индукции B от напряженности магнитного поля H :
a - магнитотвердые материалы; б - магнитомягкие материалы; 1 - первичная кривая намагничивания; 2 - гистерезисная кривая намагничивания; B_{r} - остаточная индукция; H_{c} - коэрцитивная сила

ратного знака, которая должна быть приложена к образцу для его размагничивания. Магнитная проницаемость μ, измеряемая в генри на метр ($\left.1 \Gamma \mathrm{H} / \mathrm{m}=10^{7} /(4 \pi) ~ Г с / Э\right)$, характеризует интенсивность намагничивания и определяется как тангенс угла наклона к первичной кривой намагничивания $B=f(H)$.

В зависимости от формы гистерезисной кривой и значений основньх магнитньх характеристик раличают магнитотвердые и магнитомягкие сплавы. Магнитотвердые сплавы (рис. 7.21, a) характеризуются широкой петлей гистерезиса, высоким значением коэрцитивной силы $H_{\text {с }}$ и применяются для изготовления постоянных магнитов. Магнитомягкие сплавы работают в условиях циклически изменяющихся магнитных полей и непрерывного перемагничивания. Магнитомягкие сплавы имеют узкую петлю гистерезиса, малье значения коэрцитивной силы H_{c} и характеризуются неболышими потерями на гистерезис (рис. 7.21, б). Из них изготавливают сердечники трансформаторов, электродвигателей и генераторов, детали слаботочной техники, т.е. такие изделия, которые подвергаются многократному переменному намагничиванию.

Магннтотвердые материалы. Такие материалы должны обладать высокими значениями коэрцитивной силы и остаточной индукции, сохраняя высокий уровень этих свойств в течение длительного времени.

Для постоянных магнитов применяют высокоуглеродистые стали со структурой мартенсита, содержащие примерно 1% углерода, дополнительно легированные хромом (3\%) (EX3), а также одновременно хромом и кобальтом (EX5K5, EX9K15M2). Напри-

мер, сталь ЕХ6К6 содержит 1% углерода, 6% хрома и 6% кобальта. Легирующие элементы повышают магнитные характеристики, одновременно улучшая механическую и температурную стабильность постоянных магнитов. Эти стали подвергают нормализации, закалке и низкому отпуску.

Важнейшим легирующим элементом магнитных сплавов, способствующим максимальным значениям коэрцитивной силы, отсутствию размагничивания под действием вибрации и высоких температур, является кобальт.

Высокие магнитные свойства имеют сплавы $\mathrm{Fe}-\mathrm{Ni}-\mathrm{Co}$ (ГОСТ 17809-72), иначе называемые сплавами типа альнико или ЮНДК (табл. 7.12).

Маркируют эти сплавы теми же буквами, что и стали. Недостатками сплавов типа альнико являются их высокая твердость, хрупкость и плохая обрабатываемость. Поэтому магниты из них изготавливают литыми и обрабатывают шлифованием. Термическая обработка состоит из закалки от температуры $1250 \ldots 1280^{\circ} \mathrm{C}$ с определенной для каждого сплава скоростью охлаждения и отпуска при температуре $580 \ldots 600^{\circ} \mathrm{C}$. Магнитные свойства можно улучшить, если охлаждение после закалки проводить в сильном магнитном поле.

Дяя изготовления небольших и точных по размерам магнитов из сплавов типа альнико применяют методы порошковой металлургии. По составу спеченные сплавы близки к литым, легче обрабатываются, но по магнитным свойствам несколько им уступают.

Магнитомягкие материалы. Основными требованиями к магнитомягким материалам являются низкие значения коэрцитивной силы и высокая магнитная проницаемость, а также малые потери при перемагничивании и на вихревые токи. Для удовлетворения этих требований металл должен обладать гомогенной структурой, быть чистым от примесей и включений и иметь крупнозернистое строение, свободное от внутренних напряжений, вызываемых наклепом.

В качестве магнитомягкого материала применяют технически чистое железо, в котором все примеси, особенно утлерод, являются вредными. Содержание углерода не должно превышать $0,025 \%$. Для устранения наклепа и получения крупного зерна листовой металл подвергают высокотемпературному отжигу в безокислительной атмосфере. Технически чистое железо применяют для изготовления реле, сердечников, электромагнитов постоянного тока. Низкое удельное электрическое сопротивление увеличивает потери при перемагничивании. Поэтому его применение ограничивается устройствами с постоянным магнитным полем.

Более высокое электрическое сопротивление имеют электротехнические низкоуглеродистые стали, дополнительно легированные $0,8 \ldots 4,8 \%$ кремния. Кремний образует с α-железом легиро-

Сплав	Содержание, \%					Магнитные свойства		
	Ni	Al	Co	Cu	Другие элементы		$H_{c}, \mathrm{KA} / \mathrm{M}$	B_{r} T \boldsymbol{T}
						не менее		
ЮНДК31T3БА	12...13,5	6,8...7,2	30,5 .. 31,5	3...3,5	$\begin{gathered} 3 \ldots 3,5 \mathrm{Ti} ; \\ 0,9 \ldots 1,1 \mathrm{Nb} \end{gathered}$	32	92	1,15
ЮНДК40T8АА	14... 14,5	7,2...7,7	39 ... 40,6	$3 . . .4$	$\begin{gathered} 7 \ldots 8 \mathrm{Ti} ; \\ 0,1 \ldots 0,2 \mathrm{Si} \end{gathered}$	32	145	0,9
ЮНДК35T5БА	14... 14,5	6,8...7,2	34,5...35,5	3,3...3,7	$\begin{gathered} 0,8 \ldots 1,1 \mathrm{Nb} \\ 4,7 \ldots 4,5 \mathrm{Ti} \end{gathered}$	36	110	1,02
ЮНДК35T5AA	14...14,5		34... 35	2,5 ... 3	$\begin{gathered} 5 \ldots 5,5 \mathrm{Ti} ; \\ 0,1 \ldots 0,2 \mathrm{Si} \end{gathered}$	40	115	1,05

Примечание. Буквы БА означают, что сплавы имеют столбчатую структуру, буквы АА ~ монокристаллическую структуру.

ванный твердый раствор. Введение кремния снижает потери на вихревые токи, повышает магнитную проницаемость и снижает потери на гистерезис. Однако при содержании кремния примерно 4% происходит охрупчивание стали, что затрудняет получение тонколистового металла.

Листовую электротехническую сталь после прокатки подвергают высокотемпературному отжигу в вакууме или в атмосфере сухого водорода при температуре $1100 \ldots 1200^{\circ} \mathrm{C}$. Для уменьшения тепловьхх потерь сердечники из кремнистой стали изготавливают из тонких (менее $1 \mathrm{mм}$) листов с прослойками из изоляционных материалов.

Основными деталями таких электрических мащин, как электродвигатели, генераторы, трансформаторы, дроссели и т.д., являются магнитопроводы, составленные из тонких листов трансформаторной стали (transformer steel). После технологических операций (шгтамповка, резка и т.д.), необходимых для изготовления деталей магнитопроводов, во избежание наклепа и для укрупнения зерна проводят отжиг при температуре $1100 \ldots 1200^{\circ} \mathrm{C}$ в атмосфере водорода.

Для работы в слабых магнитных полях, например в телекоммуникационных системах, применяют пермаллои, представляющие собой сплавы Fe - Ni с определенным содержанием никеля (примерно 79%). Иногда их дополнительно легируют молибденом и хромом, улучшающими способность сплавов к пластической деформации и их магнитную проницаемость. Высоконикелевые пермаллои $79 \mathrm{HM}, 81 \mathrm{HMA}$ характеризуются очень высокой магнитной проницаемостью в слабьх полях, в десятки раз превышающей магнитную проницаемость чистого железа. Пермаллои получают вакуумным переплавом, прокатывают на ленты и листы магнитопроводов, с последующим отжигом при температуре $1100 \ldots 1300^{\circ} \mathrm{C}$ в вакууме или водороде.

Для работы в слабых полях (радио, телефон) разработан заменитель дорогих пермаллоев - сплав альсифер, содержащий 5,4\% алюминия, $9,6 \%$ кремния, остальное железо. Из-за хрупкости альсифера изделия из него изготавливают в виде тонкостенных отливок или методом порошковой металлургии.

Электротехнические стали и сплавы. Стали и сплавы этого типа (ГОСТ 21427-75) используют либо для преобразования электрической энергии в тепловую, либо, наоборот, в качестве материалов, имеющих минимальное электрическое сопротивление. Первая группа электротехнических сплавов имеет высокое электрическое сопротивление и используется для изготовления электронагревательньх элементов и реостатов.

Сплавы с высоким электрическим сопротивлением представляют собой твердые растворы высокой концентрации, у которых электрическое сопротивление меняется по криволинейному зако-

Рис. 7.22. Электрические свойства сплавов $\mathrm{Cu}-\mathrm{Ni}$:
α - температурный коэффициент электрического сопротивления; ρ электрическое сопротивление

ну (рис. 7.22), намного превышает электрическое сопротивление чистых компонентов, но не должно существенно меняться при изменении температуры.

В качестве реостатных сплавов применяют сплавы на основе меди с добавками никеля, марганца и цинка. Медноникелевые сплавы с содержанием никеля $40 \ldots 50 \%$ (константан МНМц40-1,5, копель МНМц45-0,5) имеют максимальное электрическое сопротивление, которое почти не меняется с температурой. Их максимальная рабочая температура во избежание окалинообразования не должна быть выше $500^{\circ} \mathrm{C}$. Окалиностойкость определяет срок службы нагревательных элементов печей и приборов, имеющих значительно более высокую температуру. Для нагревателей применяют ферритные стали, легированные хромом и алюминием (хромали), а также сплавы на основе хрома и никеля, например нихром Х20Н80, содержащий примерно 20% хрома и 80% никеля. Его допустимая рабочая температура составляет не менее $1150^{\circ} \mathrm{C}$. Молибденовые нагреватели, хотя и имеют более высокую температуру эксплуатации (до $1500^{\circ} \mathrm{C}$), из-за низкой жаростойкости могут работать только в вакууме или в среде инертных газов.

Для изготовления термопар необходима проволока не только с высокой жаростойкостью, но и с прямолинейной зависимостью электродвижуцей силы от температуры. В качестве материала для электродов термопар применяют проволоку из платины (первый электрод) и сплава платины с 10% родия (второй). Такие термопары можно использовать для измерения высоких температур вплоть до температуры жидкой стали. Для измерения более низких температур (до $1000^{\circ} \mathrm{C}$) применяют сплавы никеля с 2% алюминия (алюмель) и никеля с 10% хрома (хромель).

В качестве проводниковых материалов применяют не сплавы, а чистые металлы: медь, алюминий, реже серебро. Проводниковые металлы должны содержать минимальное количество примесей, так как легирование повышает электрическое сопротивление. Особую группу проводниковых материалов составляют сверхпроводники.

Сверхпроводимость и сверхпроводящие материалы. С понижением температуры наблюдается монотонное падение электриче-

ского сопротивления. Вблизи абсолютного нуля у многих металлов и сплавов происходит резкое падение электрического сопротивления, и они становятся сверхпроводниками (рис. 7.23)

Сверхпроводимость - способность материалов не оказывать сопротивления электрическому току при температуре ниже характерной для них критической температуры $T_{\text {кр }}$.

Впервые сверхпроводимость обнаружил в 1911 г. голландский ученый Гейке Камерлинг-Оннес, который наблюдал

Рис. 7.23. Влияние температуры на электрическое сопротивление сверхпроводящих материалов скачкообразное исчезновение сопротивления ртути до неизмеримо малой величины при температуре 4,2 K.

K настоящему времени сверхпроводимость обнаружена у большинства чистых металлов, причем сверхпроводящее состояние легче всего возникает в металлах с низкой обычной проводимостью. Открыто и изучено около трех тысяч сверхпроводящих сплавов и интерметаллических соединений, и их число непрерывно растет. Чистые металлы принято относить к сверхпроводникам первого рода, а сплавы и соединения - к сверхпроводникам второго рода.

Напряженность магнитного поля в объеме сверхпроводников при температуре ниже критической равна нулю. Металл становится диамагнетиком - материалом, приобретающим во внешнем магнитном поле магнитный момент, направленный против намагничивающего поля. Поэтому при переходе материала в сверхпроводящее состояние внешнее магнитное поле «выталкивается» из его объема и остается лишь в тонком поверхностном слое толщиной примерно 10^{-5} мм. Это явление называется эффектом Мейснера.

Сверхпроводящее состояние может быть разрушено как при нагреве материала до температуры выше критической, так и в результате воздействия сильных внешних магнитных полей с напряженностью $H_{\text {кр }}$, превышающей критическое значение. Критическое магнитное поле подобно критической температуре является основной характеристикой сверхпроводящего материала. При превышении T_{kp} или H_{kp} происходит скачкообразное восстановление электрического сопротивления, и магнитное поле проникает в металл.

Одним из главных достоинств сверхпроводников является возможность достижения высоких плотностей тока. Чем выше плотность тока, тем компактнее приборы, меньше расход дорогостоящих сверхпроводящих материалов и меньше масса, которую необходимо охлаждать. Высокая плотность тока позволяет снизить капитальные и эксплуатационные расходы установок на сверхпроводниках.

Из всех чистых металлов, способных переходить в сверхпроводяшее состояние, наивысшую критическую температуру перехода имеет ниобий ($T_{\mathrm{kp}}=9,2 \mathrm{~K}$). Однако для ниобия характерны низкие значения критического магнитного поля (0,24 Тл), что недостаточно для его широкого применения. Хорошим сочетанием критических параметров T_{xp} и B_{xp} отличаются сплавы и интерметаллические соединения ниобия с цирконием, титаном, оловом и германием.

К наиболее распространенным сверхпроводящим материалам относится сплав ниобия (основа) с $46,5 \%$ титана (по массе). Этот сплав отличается высокой технологичностью, из него обычными методами плавки, обработки давлением и термической обработки можно изготавливать проволоку, кабели, шины. Интерметаллиды, хотя и обладают более высокими критическими параметрами, имеют высокую хрупкость, что затрудняет изготовление из них длинномерных проводов традиционными методами металлургической технологии.

При изготовлении сверхпроводяшего кабеля в бруске меди просверливают множество отверстий и в них вводят тонкие стержни из сплава Nb - Ti. Брусок протягивают в тонкую проволоку, вновь разрезают ее на куски, которые снова вводят в новые бруски. Повторяя многократно эту операцию, получают кабель с большим числом сверхпроводящих жил, из которого делают катушки для электромагнитов (рис. 7.24).

Если в какой-либо жиле сверхпроводимость случайно нарушится, высокая электро- и теплопроводность медной матрицы дает возможность осуществить термическую стабилизацию сверхпроводника в докритическом режиме.

Простота изготовления, благоприятное сочетание электрических и механических свойств и сравнительно низкая стоимость позволяют рекомендовать сверхпроводники на основе твердого раствора Nb - Ті в качестве основных материалов до $B_{\mathrm{xp}}=8$ Тл при $T_{\mathrm{xp}}=4,2 \mathrm{~K}$. В более сильных полях, когда плотность тока существенно падает, целесообразно использовать интерметаллидные соединения типа $\mathrm{Nb}_{3} \mathrm{Sn}$.

В конце 1980-х гт. была открыта высокотемпературная сверхпроводимость в керамических материалах.

В 1986 г. швейцарские физики Дж. Беднорц и К. Мюллер впервые получили сверхпроводящие керамические оксидные образцы системы $\mathrm{La}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$

с температурой перехода в сверхпроводящее состояние $T_{\mathrm{xp}}=35 \mathrm{~K}$. За это открытие, положившее начало исследованию высокотемпературной сверхпроводимости, в 1987 г. они были удостоены Нобелевской премии по физике. Позднее на иттриевых керамиках системы $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ в Китае, США, Японии и России была достигнута температура сверхпроводящего перехода $T_{\text {кр }} \approx 90 \mathrm{~K}$, дающая возможность использовать дешевый и доступный жидкий азот в качестве хладагента.

Наиболее важными областями применения сверхпроводников являются создание сильных магнитных полей, получение и передача электроэнергии.

Соленоид из сверхпроводящего материала может работать без подвода энергии извне сколь угодно долго, поскольку единожды возбужденный в нем ток не затухает. Поддержание соленоида в сверхпроводяшем состоянии не требует больших энергетических затрат. При нулевом сопротивлении легко решается проблема теплоотвода. Кроме того, сверхпроводящие магниты намного компактнее обычньх. Каждый килограмм массы сверхпроводящего магнита создает магнитное поле, эквивалентное по силе полю двадцатитонного электромагнита с железным сердечником.

Сверхпроводящие магниты используют для исследований в области физики высоких энергий, создания мощных магнитных кольцевых ускорителей частиц и систем управления движением пучков частиц на выходе из ускорителя.

Проблемы термоядерной энергетики не могут быть решены без применения мощных сверхпроводящих магнитов. Для осуществления управляемого термоядерного синтеза ядер гелия из ядер дейтерия и трития необходимо удерживать в реакционном пространстве горячую тритий-дейтериевую плазму, нагретую до температуры $10^{8} \ldots 10^{9} \mathrm{C}$. Только сверхпроводящие магниты способны создать поля такой мощности. Наиболее перспективными термоядерными реакторами являются установки типа «Токамак», интенсивно разрабатываемые исследователями в разных странах, в том числе России, США, Японии.

В перспективе передачу энергии большой мощности целесообразно осуществлять с помощью сверхпроводящих кабельных подземных линий. Расчеты показали, что по сверхпроводящему кабелю толциной в руку можно пропускать всю пиковую мощность, вырабатываемую электростанциями США. Из технико-экономического анализа следует, что при передаче энергии большой мощности (порядка 3... 4 ГВ • А) благодаря малой удельной материалоемкости и меньшей ширине трассы сверхпроводящий кабель будет в $2-3$ раза дешевле обычного. При этом он характеризуется большей пропускной способностью и меньшими потерями.

Принципиально конструкции сверхпроводящих кабелей постоянного и переменного тока не отличаются друг от друга (рис. 7.25).

Рис. 7.25. Схема сечения сверхпроводяших кабелей трехфазного тока с коаксильными парами проводников (a) и постоянного тока с концентрически расположенными проводниками (б):
1 - вакуумированное пространство; 2 - каналы для жидкого азота; 3 - термостатирующая изоляция; 4-каналы для жидкого гелия; 5 - сверхпроводник;

6 - электрическая изоляция

Сверхпроводящие кабели имеют поперечное сечение в виде ряда многослойных труб с вакуумной изоляцией между ними. Внутренние трубы покрыты слоем сверхпроводящего материала толщиной 0,3 мм и заполнены жидким гелием. В качестве сверхпроводника может быть использован сглав ниобия с титаном или цирконием. Кабели подобной конструкции прошли производственные испытания в России, США и Японии.

Сверхпроводимость позволяет также решить проблему запаса электроэнергии впрок с выдачей ее при пиковых нагрузках. Индуктивный накопитель энергии представляет собой тороидальный криостат диаметром несколько метров, по виткам обмотки которого практически без потерь циркулирует ток.

Обычный железнодорожный поезд, движушийся по стальным рельсам, имеет принципиальный предел скорости 350 км/ч. При его превышении нарушается надежное сцепление колес с рельсами, резко возрастает сила аэродинамического сопротивления, появляется токосъемный баръер, препятствующий нормальному функционированию системы подвески контактного провода вследствие слишком больших вибраций.

Использование эффекта сверхпроводимости позволяет создать поезд без колес с магнитной подвеской и тягой - поезд на магнитной подушке (рис. 7.26). В днище вагонов поезда установлены сверхпроводящие электромагниты 4, охлаждаемые жидким гелием 5. При движении поезда в алюминиевых полосах-рельсах 1 наводятся токи, в свою очередь создающие магнитные поля. Согласно правилу Ленца магнитное поле индуцированного тока противоположно по направлению внешнему магнитному полю, и между магнитом и алюминиевой полосой возникают силы отталкивания, приподнимающие вагон над эстакадой. Применение сверх-

проводящих магнитов позволяет поднять вагон над дорогой на высоту более 100 мм. Тяга создается с помощью линейного бесконтактного электродвигателя. Линейный двигатель 3 можно представить как модификацию обычного вращающегося двигателя, который разрезали вдоль образующей, развернули и уложили на плоскости. На полотно дороги между алюминиевыми полосами проложен третий активный рельс, который играет роль статора, а сверхпроводящая катушка вагона - ротора. Вдоль пути движется тянущая поезд магнитная волна, скорость которой пропорциональна частоте переменного тока в рельсе.

Рис. 7.26. Эскиз магнитоплана:
1 - рельсы; 2 - колеса; 3 - линейный двигатель; 4 - электромагниты; 5 жидкий гелий Колеса в поезде на магнитной подушке используются, как в самолете, только для разгона и торможения. По аналогии такие поезда называют магнитопланами.

В Японии проложена скоростная магистраль между Токио и Осакой протяженностью 500 KM , по которой курсируют сверхпроводниковые поезда со скоростью $500 \mathrm{~km} /$ ч.

Силавы с малым температурным коэффициентом линейного расширения. Для ряда отраслей машиностроения и приборостроения необходимо применение материалов со строго регламентированными значениями в определенных температурных интервалах эксплуатации таких физических свойств, как ТКЛР α и температурный коэффициент модуля нормальной упругости β (ТКМУ). Эти коэффициенты определяют характер изменения размеров детали и модуля упругости сплава при нагреве. Коэффициент α сплава определяют с помощью дилатометра по относительному удлинению образца в заданном температурном интервале.

Области применения сплавов с заданным ТКЛР приведены в табл. 7.13.

Согласно правилу Курнакова в том случае, если компоненты образуют твердый раствор, ТКЛР α возрастает с повышением температуры (рис. 7.27). Однако сплавы $\mathrm{Fe}-\mathrm{Ni}$ не подчиняются общим закономерностям. В области концентраций никеля от 30 до 45% для них характерны аномалии, связанные с инварным эффектом (рис. 7.28). Самое низкое значение ТКЛР в диапазоне температур $-100 \ldots+100^{\circ} \mathrm{C}$ имеет сплав, содержащий 36% никеля. Этот сплав был открыт Шарлем Эдуардом Гийомом в 1897 г. и назван

Таблица 7.13. Области применения сплавов с заданным температурным коэффицнентом линейного распиррення α

Интервал значений $\alpha, 10^{-6} \mathrm{~K}^{-1}$	Область применения сплавов
$0 \ldots 20$	Измерительные приборы, геодезические измери- тельные ленты, регуляторы расширения, компен- сационные элементы, компоненты термобимметал- лов, криогенная техника
$50 \ldots 80$	Регуляторы расширения, компоненты термобиме- таллов, спаи с тугоплавким стеклом, металлокера- мические соединения, материал сердцевины про- волоки с медной оболочкой
$80 \ldots 110$	Спаи с низкоплавким стеклом
$180 \ldots 210$	Регуляторы расширения, компоненты термобиме- таллов

инваром (от лат. invariabilis - неизменный) из-за минимальньх значений коэффициента теплового расширения.

Для обеспечения стабильности ТКЛР и ТКМУ для каждого конкретного случая необходимо применение сплавов строго определенного химического состава. Такие сплавы обычно называют прецизионными сплавами (от фр. précision - точность), т.е. отличающимися высокой точностью химического состава.

Основным представителем сплавов с минимальньм значением ТКЛР является сплав 36 H . Благодаря высокому уровню механичес-

Рис. 7.27. Кривая расширения сплавов при повышении температуры:
Δt - приращение длины; α - температурный коэффициент линейного расширения

Рис. 7.28. Температурный коэффициент линейного расширения сплавов $\mathrm{Fe}-\mathrm{Ni}$

ких свойств и технологичности инвар используется в качестве конструкционного материала для деталей, от которых требуется постоянство размеров при меняющихся температурных условиях эксплуатации. Из инвара изготавливают жесткозакрепленные трубопроводы сложной пространственной формы, перекачивающие сжиженные газы в криогенных установках. Малая величина ТКЛР позволяет уменьшить напряжения в трубопроводах и предотвратить возможность их разрушения. Отпадает необходимость установки сильфонных узлов для компенсации деформации, что упрощает конструкцию и делает ее более надежной.

В табл. 7.14 приведены составы и свойства сплавов с регламентированными значениями ТКЛР α, нашедших наибольшее применение (ГОСТ 10994-74). Значения ТКЛР приведены в состоянии после отжига при температуре $900^{\circ} \mathrm{C}$ с последующим медленным охлаждением.

Коэффициент линейного расширения сплавов зависит от предварительной обработки. Минимальное значение коэффициента α инвара достигается после закалки от температуры $830^{\circ} \mathrm{C}$, в результате которой примеси переходят в твердый раствор, и отпуска при температуре $315^{\circ} \mathrm{C}$. Холодная деформация также способствует снижению ТКЛР. В результате комбинации обеих обработок α становится почти равным нулю.

Замена части никеля равным количеством кобальта и легирование малыми добавками меди позволяет дополнительно снизить ТКЛР инвара. Такой сплав называют суперинваром.

В электровакуумных газоразрядных и полупроводниковых приборах широко используют спаи металлов с такими диэлектриками, как стекло и керамика. Для обеспечения герметичности и вакуумной плотности спаев необходимо соответствие ТКЛР материалов соединяемой пары в эксплуатационном интервале темпера-

Табли ца 7.14. Состав и свонства сплавов $\mathrm{Fe}-\mathrm{Ni}$ с регламентированнылм значениями α

Сплав	Марка сплава	Содержание, \%			Тепловые свойства	
		Ni	Co	Cu	Интервал температyp, ${ }^{\circ} \mathrm{C}$	$\alpha, 10^{-6} \mathrm{~K}^{-1}$
Инвар	36H	35... 37	-	-	20... 80	1,5
Суперинвар	32HKД	31,5... 33	3,3 ...4,2	0,6...0,8	20... 100	1
Ковар	29HK	28,5 ... 29,5	17... 18	-	20... 400	4,5..5,2
Платинит	47НД	$46 . . .48$	-	4,5...5,5	20... 400	9,2... 10

Рис. 7.29. Температурные зависимости относительного изменения длины легкоплавкого (1) и тугоплавкого (2) стекла и сплавов $\mathrm{Fe}-\mathrm{Ni}$

тур. Во избежание напряжений и трешин значение ТКЛР сплава должно быть максимально приближено к ТКЛР диэлектрика и строго регламентировано. Для определения пригодности спаев металлов со стеклом используют чувствительный метод - измерение в поляризованном свете упругих напряжений, имеющихся в спае.

Состав сплавов для пайки и сварки со стеклом подбирают таким образом, чтобы ТКЛР стекла и металла были близки по значению во всем интервале температур вплоть до размягчения стекла. Ковар применяют для соединения с термостойкими стеклами, а платинит - с обычными легкоплавкими стеклами, применяемыми в электровакуумной промышленности. На рис. 7.29 приведен характер линейного расширения двух разных сортов стекла и соответствующих им сплавов.

Металлыы с памятью формы. Долгое время неупругую деформацию считали полностью необратимой. В начале 1960-х тг. был открыт обширный класс металлических материалов, у которых элементарный акт неупругой деформации осуществляется за счет структурного превращения. Такие материалы обладают обратимостью неупругой деформации. Явление самопроизвольного восстановления формы - эффект памяти формы (ЭПФ) - может наблюдаться как в изотермических условиях, так и при температурных изменениях. При теплосменах такие металлические материалы могут многократно обратимо деформироваться.

Способность к восстановлению деформации не может быть подавлена даже при высоком силовом воздействии. Уровень реактивных напряжений некоторых материалов с ЭПФ может составлять $1000 \ldots 1300$ МПа. Металлы, обладающие ЭПФ, относятся к числу наиболее ярких представителей материалов со специальными свойствами. Повышенный интерес к этому металлургическому феномену обусловлен уникальным сочетанием высоких обычных механических характеристик, сопротивления усталости, коррозионной стойкости и необычных свойств, таких как термомеханическая память, реактивное напряжение, основанных на термоупругом мартенситном превращении. Особенностью сплавов с ЭПФ является ярко выраженная зависимость большинства свойств от структуры. Значения физико-механических характеристик ме-

няются в несколько раз при обратимом фазовом переходе аустенит - мартенсит для разных сплавов в интервале температур $-150 \ldots+150^{\circ} \mathrm{C}$.

Из большого числа сплавов с ЭПФ наиболее перспективными для практического применения являются сплавы $\mathrm{Ti}-\mathrm{Ni}$ эквиатомного состава (примерно $50: 50 \%$ (ат.)), обычно называемые никелидом титана или нитинолом. Реже используют более дешевые сплавы на основе меди $\mathrm{Cu}-\mathrm{Al}-\mathrm{Ni}$ и $\mathrm{Cu}-\mathrm{Al}-\mathrm{Zn}$.

Механизм эффекта памлти формы. Эффект памяти формы состоит в том, что образец, имеюший определенную форму в аустенитном состоянии при повышенной температуре, деформируют при более низкой температуре мартенситного превращения. После перегрева, сопровождающегося протеканием обратного превращения, исходная характерная форма восстанавливается. Эффект памяти формы проявляется в сплавах, характеризующихся термоупругим мартенситным превращением, когерентностью решеток исходной аустенитной и мартенситной фаз, сравнительно небольшой величиной гистерезиса превращения. В этих условиях при деформации образуются когерентные с исходной структурой двойниковые мартенситные кристаллы, а при отогреве и обратном преврашении эти мартенситные кристаллы исчезают и плавно переходят в решетку исходной фазы. Обратимое движение когерентных межфазных границ при обратном превращении приводит к восстановлению первоначальной формы.

Характеристические температуры превращений двойных сплавов $\mathrm{Ti}-\mathrm{Ni}$ с ЭПФ разного состава, полученные из разных источников, приведены в табл. 7.15. Из табл. 7.15 следует, что даже малые отклонения состава сплавов $\mathrm{Ti}-\mathrm{Ni}$ от стехиометрического приводят к значительному изменению характеристических температур как по величине, так и по знаку.

Таким образом, варьируя соотношение титана и никеля, можно существенно менять температуры фазовых переходов и влиять

Таблица 7.15. Характеристические температуры, ${ }^{\circ} \mathbf{C}$, сплавов $\mathbf{T i}-\mathbf{N i}$

Сплав	M_{s}	M_{k}	A_{r}	A_{x}
$\mathrm{Ti}_{52,8} \mathrm{Ni}_{47,2}$	90	60	100	135
$\mathrm{Ti}_{50} \mathrm{Ni}_{50}$	50	20	55	75
$\mathrm{Ti}_{49,5} \mathrm{Ni}_{50,5}$	25	5	35	60
$\mathrm{Ti}_{49,25} \mathrm{Ni}_{50,75}$	0	-20	10	30
$\mathrm{Ti}_{49} \mathrm{Ni}_{51}$	-55	-90	-50	-25

Примечание. Цифровые индексы указывают процентное содержание элемента в сплаве; $M_{\mathrm{H}}, M_{\mathrm{k}}, A_{\mathrm{H}}, A_{\mathrm{K}}$ - температура соответственно начала и конца мартенситного и аустенитного превращения.

на ширину гистерезиса фазовой диаграммы. В разньх сплавах с ЭПФ интервал температур фазовых переходов $4,2 \ldots 1300 \mathrm{~K}$.

Никелид титана подвергают обработке давлением при температуре $700 \ldots 90{ }^{\circ} \mathrm{C}$. Нагрев до более высоких температур опасен из-за сильного окисления и образования хрупкого газонасыщенного поверхностного слоя.

Особенно важную роль играет технологическая операция термофиксации. Сложность этой операции обусловлена проявлением эффекта памяти после придания заготовке из никелида титана требуемой формы. Заготовку деформируют при комнатной температуре. Для сохранения формы и размеров производят жесткое фиксирование по всем степеням свободы (заневоливание) с последующим нагревом в вакууме до температуры $650 . . .700^{\circ} \mathrm{C}$, т.е. до аустенитного состояния. В результате такой операции достигается стабильное состояние структуры и формы, которые объект «запоминает».

Из сглавов никелида титана производят листы толщиной до 10 мм, проволоку, прессованные прутки диаметром до 110 мм и трубы с наружным диаметром до 50 мм.

Применение спиавов с эффектом памяти формы. Сплавы с ЭПФ часто относят к так называемым интеллектуальным материалам, позволяющим создавать принципиально новые конструкции и технологии в разных отраслях машиностроения, авиакосмической и ракетной техники, приборостроения, энергетики, медицины и др. Рассмотрим некоторые объекты применения сплавов с ЭПФ.

Освоение ближнего и дальнего

Рис. 7.30. Схема космического аппарата с самотрансформирующимися элементами:
1 - антенна; 2 - солнечная батарея; 3 - излучатель энергии; 4механический стабилизатор

космоса связано с созданием орбитальных станций и крупным космическим строительством. Необходимо сооружение таких громоздких объектов, как солнечнье батареи и космические антенны. На рис. 7.30 приведена схема космического аппарата с антеннами саморазворачивающейся конструкции. Антенны состоят из листа и стержня из сплава $\mathrm{Ti}-\mathrm{Ni}$, которые свернуты в виде спирали и помещены в углубление в искусственном спутнике. После запуска спутника и выведения его на орбиту антенна нагревается с помощью специального нагревателя или за счет солнечного излучения, в результате чего она выходит в космическое пространство.

Для размешения различных технических объектов, жилых и про-

изводственных модулей необходимо строительство в условиях открытого космического пространства больших платформ. Доставка в открытый космос громоздких агрегатов технически возможна только по частям с последуюшими монтажными работами.

Используемые в массовом производстве способы соединения деталей (сварка, пайка, склеивание, клепка и др.) непригодны в космических условиях. Особые требования предъявляются к обеспечению исключительно высокой техники безопасности.

С учетом этих особенностей в России была создана уникальная технология соединения элементов в открытом космосе с использованием муфты из сплава ТН-1. Эта технология была успешно использована при сборке конструкции фермы из алюминиевых сплавов общей длиной 14,5 м и поперечным сечением в виде квадрата со стороной $0,5 \mathrm{~m}$. Ферма состояла из отдельных трубчатых деталей диаметром 28 мм, которые соединялись между собой с помощью муфты из металла с памятью формы (рис. 7.31).

Муфту с помошью дорна деформировали при низкой температуре таким образом, чтобы ее внутренний диаметр был больше наружного диаметра соединяемых элементов. После нагрева выпе температуры обратного мартенситного превращения внутренний диаметр муфты восстанавливался до того диаметра, который муфта имела перед расширением. При этом генерировались значительные обжимающие реактивные усилия, соединяемые элементы пластически деформировались, что обеспечивало их прочное соединение. Сборка фермы и установка ее на астрофизическом модуле «Квант» орбитального комплекса «Мир» была произведена в 1991 г. всего за четыре выхода в открытый космос и заняла в общей сложности около суток.

Такие же принципы строительства могут быть использованы для монтажа на болыших глубинах крупногабаритных морских подводных конструкций.

Муфты для термомеханического соединения труб применяют во многих конструкциях (рис. 7.32). Их используют для соединения трубопроводов гидросистем реактивного истребителя F -14, при-

Рис. 7.31. Соединение трубчатых деталей с помощью муфты из металла с эффектом памяти формы:
a - до сборки; 6 - после нагрева; 1 - деталь; 2 - муфта

Рис. 7.32. Соединение труб с использованием эффекта памяти формы:
1 - введение труб после расширения муфты

чем каких-либо аварий, связанных с утечкой масла, не отмечено. Достоинством муфт, изготовленных из сплавов с ЭПФ, помимо их высокой надежности является отсутствие высокотемпературного нагрева (в отличие от сварки). Поэтому свойства материалов вблизи соединения не ухудшаются. Муфты такого типа применяют для трубопроводов атомных подводных лодок, надводных кораблей, ремонта трубопроводов для перекачки нефти со дна моря, причем для этих целей используют муфты большого диаметра - примерно 150 мм В некоторых случаях для изготовления муфт применяют также сплав $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Al}$.

Для неподвижного соединения деталей обычно применяют заклепки и болты. Однако, если невозможно осуществлять какиелибо действия на противоположной стороне скрепляемых деталей (например, в герметичной пустотелой конструкции), выполнение операций крепления вызывает трудности. Стопоры из сплава с ЭПФ позволяют в этих случаях осуществить крепление с использованием пространственного восстановления формы.

Стопоры изготавливают из сплава с ЭПФ, причем в исходном состоянии стопор имеет раскрытый торец (рис. 7.33, a). Перед осуществлением операции крепления стопор погружают в сухой лед или жидкий азот, где в достаточной степени он охлаждается, после чего выпрямляются торцы (рис. $7.33, \sigma$). Стопор вводят в неподвижное отверстие для крепления (рис. 7.33, в), при повышении температуры до комнатной происходит восстановление формы, торцы стопора расходятся (рис. 7.33, г), и операция крепления завершается.

Материалы с ЭПФ могут быть использованы не только для монтажа, но и для ремонта трубопроводов, находящихся в аварийном состоянии (рис. 7.34). На участок трубы с трещиной надвигают разъем-

Рис. 7.33. Принцип действия стопора с эффектом памяти формы:

$$
a-z \text { - последовательность крепления }
$$

ную вставку, которую обжимают свертывающимися в кольцо спиральными лентами или проволокой из материала с ЭПФ.

Использование сплавов с ЭПФ в медицине представляет особый интерес. Их применение открывает широкие возможности создания новых эффективных методов лечения.

Специальные эксперименты, проведенные на животных, показали, что сплавы на основе $\mathrm{Ti}-\mathrm{Ni}$

Рис. 7.34. Схема устройства для ремонта трубы с трещиной:
1, 4 - элементы из материала с эффектом памяти формы; 2 - труба; 3разъемная вставка; I, II, III - последовательность сборки имеют биологическую совместимость на уровне и даже выше обычно применяемых коррозионностойких сталей и кобальтхромовых сплавов и могут быть использованы в качестве функциональных материалов в биологических организмах. Использование сплавов с ЭПФ для лечения показало их хорошую совместимость с тканями и отсутствие реакций отторжения биологическими структурами человеческого организма.

Различные искривления позвоночника, как врожденные, так и обусловленные привычкой или болезненным состоянием, привоцят к сильной деформации при ходьбе, что не только вызывает сильную боль, но и оказывает вредное влияние на внутренние органы. При ортопедической хирургической операции коррекцию позвоночника обычно осушествляют с помощью стержня Харинтона, изготавливаемого из коррозионно-стойкой стали. Недостатком этого метода является уменьшение во времени первоначального корректирующего усилия. Через 20 мин после установки корректирующая сила уменьшается на 20%, а через $10-15$ дней - до 30% первоначальной. Дополнительная корректировка силы требует повторных болезненных операций и не всегда достигает цели. Если для стержня Харинтона применить сплав с ЭПФ, установить стержень можно единожды, необходимость в повторной операции отпадает. Если после операции стержень Харинтона нагреть до температуры, несколько превышающей температуру тела, можно создать необходимую корректирующую силу. Эффективны для этой цели сплавы на основе Ti - Ni с добавками меди, железа и молибдена, проявляющие после восстановления формы высокую эластичность в интервале температур $35 \ldots 41^{\circ} \mathrm{C}$. Корректирующие устройства с такими сплавами создают постоянное по величине напряжение воздействия на позвоночник в течение всего периода лечения независимо от смещения точек опоры устройства.

Методы медицинской помощи в случае костных переломов заключаются в том, чтобы с помощью пластинок из коррозионностойкой стали или сплавов $\mathrm{Co}-\mathrm{Cr}$ зафиксировать зону перелома

в таком состоянии, когда на кость действует сила сжатия. Если для соединительной пластинки применить сплав с ЭПФ, становится возможной прочная фиксация зоны перелома путем внешнего нагрева пластинки до температуры несколько выше температуры тела после операции, при этом отпадает необходимость осуществлять продольное сжатие кости во время операции.

Аморфные и нанокристаллические сплавы. Условия образования аморфной структуры. Использование специальных методов позволяет достигать скорости охлаждения более $10^{5} \mathrm{~K} / \mathrm{c}$ и при затвердевании получать металл в стеклообразном аморфном состоянии.

Если полученный аморфный сплав впоследствии нагреть и выдерживать изотермически в течение определенного времени, он начнет кристаллизоваться. Условия перехода в кристаллическое состояние меняются в широких пределах для разных аморфных систем.

Структура аморфных сплавов подобна структуре замороженной жидкости. Затвердевание происходит настолько быстро, что атомы вещества оказываются замороженными в тех положениях, которые они занимали, будучи в жидком состоянии. Аморфная структура характеризуется отсутствием дальнего порядка в расположении атомов, благодаря чему в ней нет кристаллической анизотропии, отсутствуют границы блоков, зерен и другие дефекты структуры, типичные для поликристаллических сплавов.

Следствием такой аморфной структуры являются необычные магнитные, механические, электрические свойства и коррозионная стойкость аморфньх металлических сплавов. Наряду с высокой магнитной мягкостью (такой, что уровень электромагнитных потерь в аморфных сплавах с высокой магнитной индукцией оказывается существенно ниже, чем во всех известных кристаллических сплавах) эти материалы проявляют исключительно высокие механическую твердость и прочность при растяжении, в ряде случаев имеют близкий к нулю коэффициент теплового расширения, а их удельное электрическое сопротивление в 3-4 раза выше его значения для железа и его сплавов. Некоторые из аморфных сплавов характеризуются высокой коррозионной стойкостью.

Затвердевание с образованием аморфной структуры принципиально возможно для всех металлов и сплавов. Для практического применения обычно используют сплавы переходных металлов (Fe , $\mathrm{Co}, \mathrm{Mn}, \mathrm{Cr}, \mathrm{Ni}$ и др.), в которые для образования аморфной структуры добавляют аморфообразующие элементы - аморфизаторы ($\mathrm{B}, \mathrm{C}, \mathrm{Si}, \mathrm{P}, \mathrm{S}$). Такие аморфные сплавы обычно содержат 80% (aт.) одного или нескольких переходных металлов и 20% (ат.) неметаллов, близких по своим свойствам к металлам, добавляемых для образования и стабилизации аморфной структуры. Состав аморфньх сплавов близок по формуле $\mathrm{Me}_{80} \mathrm{X}_{20}$, где Me - один

или несколько переходных металлов; X - один или несколько аморфизаторов. Известны аморфные сплавы, состав которых отвечает приведенным формулам: $\mathrm{Fe}_{70} \mathrm{Cr}_{10} \mathrm{P}_{15} \mathrm{~B}_{5}, \mathrm{Fe}_{40} \mathrm{Ni}_{40} \mathrm{~S}_{14} \mathrm{~B}_{6}, \mathrm{Fe}_{80} \mathrm{P}_{13} \mathrm{~B}_{7}$ и др. Аморфизаторы понижают температуру плавления и обеспечивают достаточно быстрое охлаждение расплава ниже его температуры стеклования так, чтобы в результате образовалась аморфная фаза. На термическую стабильность аморфных сплавов оказывают наибольшее влияние кремний и бор, наибольшей прочностью обладают сплавы с бором и углеродом, а коррозионная стойкость зависит от концентрации хрома и фосфора.

В силу своей аморфной природы металлические стекла имеют свойства, присущие неметаллическим стеклам: при нагреве в них проходят структурная релаксация, «расстеклование» и кристаллизация. Поэтому для стабильной работы изделий из аморфньх сплавов необходимо, чтобы их температура не превышала некоторой заданной для каждого сплава ра́бочей температуры.

Нанокристаллические материалы появились позже аморфных в начале 1990-х гг. Объединение в одном разделе и совместное рассмотрение этих материалов является целесообразным, поскольку нанокристалическая структура во многих случаях формируется путем трансформации аморфного состояния.

Методы получения аморфньх металлов. Сверхвысокие скорости охлаждения жидкого металла для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже $10^{5} \mathrm{~K} / \mathrm{c}$. Известны методы катапультирования капли на холодную пластину, распыление струи газом или жидкостью, центрифугирование капли или струи, расплавление тонкой пленки поверхности металла лазером с быстрым отводом теплоты массой основного металла, сверхбыстрое охлаждение из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.

Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращающихся барабанов или прокатка расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.

На рис. 7.35 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие состоит том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны. Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодиль-

a

6

2

д

Рис. 7.35. Методы получения тонкой ленты закалкой из расплава:
a - центробежная закалка; 6 - закалка на диске; в - прокатка расплава; z центробежная закалка; ∂ - планетарная закалка на диске; 1 - расплав

ником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи.

Во всех установках для закалки из жидкого состояния металл быстро затвердевает, растекаясь тонким слоем по поверхности вращающегося холодильника.

Увеличение длительности контакта затвердевающего металла с диском может быть достигнуто с помощью специальных приспособлений: газовых струй, прижимающих ленту к диску, или движущегося с одинаковой скоростью с диском ремня из сплава меди с бериллием (рис. 7.36). Таким образом, максимальная толщина аморфной ленты зависит от критической скорости охлаждения сплава и возможностей установки для закалки.

Для получения тонкой аморфной проволоки используют разные методы вытягивания волокон из расплава.

Рис. 7.36. Устройства для увеличения времени контакта затвердевающей ленты с диском:
a - использование газовых струй; σ - применение прижимного ремня

Рис. 7.37. Методы получения тонкой проволоки закалкой из расплава: a - протягивание расплава через охлаждающую жидкость (экструзия расплава); 6 - вытягивание нити из вращаюшегося барабана; в - вытягивание расплава в стеклянном капилляре; 1 - расплав; 2 - охлаждающая жидкость; 3 - стекло;

4 - форсунка; 5 - устройство для наматывания проволоки
В первом методе (рис. $7.37, a$) расплавленный металл протягивается в трубке круглого сечения через водный раствор солей. Во втором методе (рис. 7.37, б) струя расплавленного металла падает в жидкость, удерживаемую центробежной силой на внутренней поверхности вращающегося барабана: затвердевшая нить сматывается затем из врашающейся жидкости. Возможно получение аморфной проволоки путем максимально быстрого вытягивания расплава в стеклянном капилляре (рис. 7.37, в).

Свойства и применение аморфных сплавов. Химический состав аморфных сплавов обозначают символами химических элементов с цифровыми индексами, которые указывают содержание данного элемента, \% (ат.), например $\mathrm{Fe}_{31} \mathrm{~B}_{13} \mathrm{Si}_{4} \mathrm{C}_{2}$.

Уникальный характер металлических стекол проявляется в фи-зико-механических и химических свойствах. Отсутствие свойственной кристаллам периодичности в структуре оказывается причиной высокой прочности, магнитомягкого поведения, крайне низких акустических потерь и высокого электрического сопротивления. Процессы усталостного разрушения и намагничивания в мегаллических стеклах и кристаллических металлах во многих отнощениях очень сходны. Химическая однородность обусловливает высокую коррозионную стойкость некоторых металлических стекол в кислых средах, а также растворах, содержащих ионы хлора. Почти неограниченная взаимная растворимость элементов в стеклообразном состоянии представляет большой интерес для изучения процессов электронного переноса при низких температурах.

Вследствие металлического характера связи многие свойства металлических стекол значительно отличаются от свойств неметаллических стекол. К ним относятся вязкий характер разрушения, высокие электро- и теплопроводность, оптические характеристики.

Плотность аморфных сплавов лишь на $1 . .2 \%$ меньше плотности соответствуюших кристаллических тел. Металлические стекла имеют плотноупакованную структуру, сильно отличаюшуюся от более рыхлой структуры неметаллических стекол с направленными связями

Аморфные металлы являются высокопрочными материалами Наряду с высокой прочностью они характеризуются хорошей пластичностью при сжатии (до 50%) и изгибе. При комнатной температуре аморфные сплавы подвергаются холодной прокатке в тонкую фольгу. Лента аморфного сплава $\mathrm{Ni}_{49} \mathrm{Fe}_{29} \mathrm{P}_{14} \mathrm{~B}_{6} \mathrm{Al}_{2}$ толщиной 25 мкм без образования микротрещин может быть согнута вокрут острия бритвенного лезвия. Однако при растяжении их относительное удлинение составляет не более $1 \ldots 2 \%$. Предел текучести аморфных сплавов $\mathrm{Fe}_{40} \mathrm{Ni}_{40} \mathrm{P}_{14} \mathrm{~B}_{6}, \mathrm{Fe}_{80} \mathrm{~B}_{20}, \mathrm{Fe}_{60} \mathrm{Cr}_{6} \mathrm{Mo}_{6} \mathrm{~B}_{28}$ составляет соответственно $2400 ; 3600 ; 4500$ МПа, в то время как предел текучести высокопрочных сталей обычно составляет не более 2500 МПа.

Сплавы на основе железа характеризуются высокой магнитной индукцией насыщения ($B_{S}=1,5 \ldots 1,6$ Тл) и низкими потерями на перемагничивание при обычных и повышенных частотах (табл. 7.16) Их применяют как материалы для сердечников высокочастотных трансформаторов различного назначения, дросселей, магнитных усилителей. Это обусловлено низкими суммарными потерями, которые в лучших аморфных сплавах данного класса оказываются на порядок ниже, чем у кремнистых электротехнических сталей.

Ленты из аморфньх кобальтовых сплавов применяют в сердечниках малогабаритных высокочастотных трансформаторов разичного назначения, в частности для источников вторичного питания и

Таблица 7.16. Магнитные свойства электротехнических аморфных сплавов

Сплав	B_{s}, Tc	$H_{\text {c }}, \mathrm{A} / \mathrm{M}$	Удельные потери, $\mathrm{BT} / \mathrm{kT}$	
$\begin{aligned} & \mathrm{Fe}_{\mathrm{Se}_{8} \mathrm{Si}_{8} \mathrm{~B}_{10}}^{(\mathrm{Amomet})} \\ & \text { (} \end{aligned}$	1,6	2,4	$P_{1,6 / 60}=0,24$	1,55
$\begin{aligned} & \begin{array}{l} \mathrm{Fe}_{81} \mathrm{~B}_{11} \mathrm{Si}_{2} \mathrm{C}_{2} \\ (\mathrm{Amomet}) \end{array} \end{aligned}$	1,6	0,6	$P_{1,3 / 30}=0,06$	1,25
$\begin{aligned} & \mathrm{Fe}_{{ }_{y} \mathrm{~B}_{1} \mathrm{Si}_{4} \mathrm{C}_{10} \mathrm{~S}_{1}}^{\text {Metglas } 2605 \mathrm{C}} \end{aligned}$	1,6	4,8	$P_{1,26 / 60}=0,26$	1,25

Примечанис. B_{S} - магнитная индукция насыщения; H_{c} - коэрцитивная сила; ρ - удельное электрическое сопротивление.

магнитных усилителей. Их используют в детекторах утечки тока, системах телекоммуникаций и в качестве датчиков (в том числе типа феррозондовых), для магнитных экранов и температурно-чувствительных датчиков, а также высокочувствительных магнитных преобразователей

Многие металлические стекла на основе железа, кобальта и никеля переходят в кристаллическое состояние при температуре 700 K (приблизительно $0,5 T_{\text {пл }}$) в течение нескольких минут. Длительная эксплуатация этих материалов возможна лишь при температуре, ниже указанной приблизительно на 300 K .

Таким образом, аморфные сплавы являются высокопрочным материалом с высокими упругопластическими характеристиками, имеющими очень малое деформационное упрочнение.

Аморфные сплавы используют для армирования трубок высокого давления, изготовления металлокорда шин и др. В перспективе возможно применение аморфных сплавов для изготовления маховиков. Такие маховики могут использоваться для аккумулирования энергии и покрытия пиковых нагрузок на электростанциях, для улучшения рабочих характеристик автомобилей и т.д.

Высокая прочность в сочетании с коррозионной стойкостью позволяют использовать аморфные сплавы для изготовления кабелей, работающих в контакте с морской водой, а также изделий, условия эксплуатации которых связаны с воздействием агрессивных сред. Из аморфной ленты изготавливают предметы бытового назначения: бритвенные лезвия, рулетки и др.

Аморфные высокоуглеродистые стали, содержащие хром, молибден, вольфрам, обладают высоким сопротивлением разрушению и термической стабильностью: например, $\mathrm{Fe}_{54} \mathrm{Cr}_{16} \mathrm{Mo}_{12} \mathrm{C}_{18}$ имеет предел прочности при растяжении 3800 МПа и температуру кристаллизации 880 K . При этом аморфные высокоуглеродистые сплавы имеют высокие коррозионные характеристики и не чувствительны к охрупчиванию при старении. Такие сплавы целесообразно использовать в высокопрочных композитах.

Поскольку стекла представляют собой сильно переохлажденную жидкость, их кристаллизация при нагреве обычно происходит с сильным зародьшеобразованием, что позволяет получать однородный чрезвычайно мелкозернистый металл. Такая кристаллическая фаза не может быть получена обычными методами обработки. Это открывает возможность получения специальньх припоев в виде тонкой ленты, которая легко изгибается, ее можно резать и подвергать штамповке для получения оптимальной конфигурации. Весьма важным для пайки является то, что лента гомогенна по составу и обеспечивает надежный контакт во всех точках изделий, подвергаемых пайке. Припои имеют высокую коррозионную стойкость, их используют в авиационной и космической технике.

Рис. 7.38. Влияние содержания хрома на скорость коррозии аморфного сплава $\mathrm{Fe}_{(80-x)} \mathrm{Cr}_{x} \mathrm{P}_{13} \mathrm{O}_{7}$ (1) и кристаллического $\mathrm{Fe}-\mathrm{Cr}$ (2)
в 1 н. растворе NaCl при $30^{\circ} \mathrm{C}$

Аморфные сплавы на основе железа и никеля, содержащие хром, обладают необычайно высоким сопротивлением коррозии в самых различных коррозионноагрессивных средах.

На рис. 7.38 представлены скорости коррозии кристаллических образцов хромистых сталей и аморфных сплавов $\mathrm{Fe}_{80-x} \mathrm{Cr}_{x} \mathrm{P}_{13} \mathrm{C}_{7}$, определенные по потере массы образцов, выдержанных в концентрированном растворе хлорида натрия NaCl . Коррозионная стойкость сплавов с содержанием хрома выше 8% (ат.) на несколько порядков превышает стойкость классических коррозионно-стойких сталей.

Аморфные сплавы практически не подвержены питтинговой коррозии, даже в случае анодной поляризации в соляной кислоте.

Аморфные металлы часто называют материалами будущего, что обусловлено уникальностью их свойств, не встречающихся у обычных кристаллических металлов (табл. 7.17).

Нанокристаллические спиавы. Такие сплавы представляют собой сплавы со смешанной аморфно-кристаллической структурой, которая может состоять из кристаллитов твердого раствора кремния в α-железе размером $10 \ldots 20$ нм (нанокристаллы) и аморфной фазы, образующей тонкую (в несколько атомных слоев) оболочку вокруг этих кристаллитов.

Для нанокристаллических сплавов характерно сочетание высоких значений магнитной индукции $B_{S}>1,2$ Тл с гистерезисными магнитными свойствами на уровне магнитомягких кристаллических и аморфных сглавов.

Нанокристаллы твердого раствора α-железа содержат примерно $18 \ldots 20 \%$ (ат.) кремния, причем твердый раствор находится в частично упорядоченном состоянии.

После оптимальной с точки зрения магнитных свойств термической обработки (отжиг при температуре $530 \ldots 550^{\circ} \mathrm{C}$ в течение 1 ч) объемная доля аморфной фазы составляет $20 \ldots 40 \%$ и обогащена ниобием, медью и бором по сравнению с составом исходного аморфного сплава.

По сравнению с другими нанокристаллическими сплавами у сплава состава $\mathrm{Fe}_{73,5} \mathrm{Cu}_{1} \mathrm{Nb}_{3} \mathrm{Si}_{13,5} \mathrm{~B}_{9}$ самые лучшие магнитные свойства, он производится и используется в промышленньхх масшта-

Таблица 7.17. Сеойствя и основнне области применения аморфннх металлнческих материалов

Сплав	Свойства	Применение
$\mathrm{Fe}_{75} \mathrm{Si}_{10} \mathrm{~B}_{15}$	Высокая прочность, высокая вязкость	Проволока, армирую- щие материалы, пру- жины, режущий инст- румент
$\mathrm{Fe}_{45} \mathrm{Cr}_{25} \mathrm{Mo}_{10} \mathrm{P}_{13} \mathrm{C}_{7}$	Высокая коррозион- ная стойкость	Электродные материа- лы, фильтры для ра- боты в растворах кис- лот, морской воде, сточных водах
$\mathrm{Fe}_{81} \mathrm{~B}_{13} \mathrm{Si}_{4} \mathrm{C}_{2}$	Высокая магнитная индукция насыщения, низкие потери маг- нитных свойств	Сердечники трансфор- маторов, преобразо- ватели, дроссели
$\mathrm{Fe}_{5} \mathrm{Co}_{70} \mathrm{Si}_{10} \mathrm{~B}_{15}$	Высокая магнитная проницаемость, низ- кая коэрцитивная сила	Магнитные головки и экраны, магнитометы, сигнальные устройста
$\mathrm{Fe}_{83} \mathrm{~B}_{17}$	Постоянство модулей упругости и темпера- турноо коэфффициен- та линейного расши- рения	Инварные и элинвар- ные материалы

бах. Отечественной промышленностью выпускается сплав 5БДСР примерно такого же химического состава.

Нанокристиллические сплавы применяют в сердечниках силовых и измерительных трансформаторов тока промышленной и повышенной частоты ($50 \ldots 100 \mathrm{k}$ Гц), импульсных высокочастотных трансформаторов, роторов электродвигателей, датчиках, переключателях и других устройствах, основными требованиями к которым являются большая индукция насыщения, малые потери на перемагничивание, высокие значения проницаемости.

Нанокристаллические материалы обладают высокой коррозионной стойкостью. Опыты показали, что обычные углеродистые стали в наноструктурном состоянии обладают более высокими антикоррозионными свойствами, чем специальные коррозионностойкие стали. Наноструктурный нитинол демонстрирует исключительную сверхупругость и ЭПФ. Свойства магнитотвердых и магнитомягких материалов значительно превышают характеристики аналогов в обычной кристаллической форме.

Особый интерес представляют механические свойства объемных наноструктурных материалов. Формирование наноструктур в

соответствии с уравнением Холла - Петча приводит к высокопрочному состоянию. Уменьшение размера зерна металла с 10 мкм до 10 нм дает повышение прочности примерно в 30 раз.

Контрольные вопросы

1. Что такое коррозия?
2. Как оценивают коррозионную стойкость материалов?
3. Какие стали относят к коррозионно-стойким?
4. Какие легирующие элементы способствуют повышению коррозионной стойкости стали?
5. Какие элементы обязательно должны входить в состав свариваемых коррозионно-стойких сталей?
6. Почему нежелателен прямой контакт коррозионно-стойких сталей с другими металлами в процессе эксплуатации?
7. Каковы основные способы борьбы с коррозией?
8. Какие стали относят к жаропрочным?
9. Какие элементы способствуют повышению жаростойкости сталей?
10. Какие металлы относят к тугоплавким?
11. Что такое хладостойкость?
12. Какой тип кристаллической решетки обеспечивает наибольшую хладостойкость?
13. Какую структуру имеют аморфные сплавы?
14. Какие материалы относят к нанокристаллическим?

ГЛАВА 8

ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ

8.1. Магний и его сплавы

Основные свойства магния. Магний - металл светло-серого цвета, II группы Периодической системы элементов Д. И. Менделеева. Среди промышленных металлов магний обладает наименьшей плотностью (1,74 г/см ${ }^{3}$), имеет невысокую температуру плавления ($651^{\circ} \mathrm{C}$). Магний кристаллизуется в ГПУ решетке и не претерпевает полиморфных превращений. В литом состоянии магний имеет низкие значения прочности ($\sigma_{\mathrm{B}} \approx 100 \mathrm{MПа}$) и пластичности ($\delta \approx 7 \%$), в деформированном и отожженном состоянии $\sigma_{\mathrm{B}} \approx$ $\approx 180 \mathrm{M}$ Па, $\delta \approx 15 \%$. Чистый магний характеризуется высокой химической активностью и легко окисляется. Оксидная пленка MgO имеет значительно бо́льшую плотность (3,2 г $/ \mathrm{cm}^{3}$), чем чистый магний, и склонна к растрескиванию. При нагреве оксидная пленка теряет свои защитные свойства, скорость окисления магния быстро возрастает, а при температуре $623^{\circ} \mathrm{C}$ магний воспламеняется на воздухе.

Из-за низких механических свойств технический магний как конструкционный материал не применяется. Его используют в пиротехнике и химической промышленности для синтеза органических препаратов, а также в металлургии в качестве раскислителя, восстановителя и модификатора.

Классификация и характеристика магниевых сплавов. Свойства магния значительно улучшаются при легировании. Сплавы магния характеризуются низкой плотностью, высокой удельной прочностью, способностью хорошо поглощать вибрации. Прочность сплавов σ_{B} при соответствующем легировании и термической обработке может достигать 350 ... 400 МПа. Достоинством магниевых сплавов является их хорошая обрабатываемость резанием и свариваемость, к недостаткам относятся меньшая коррозионная стойкость, чем у алюминиевых сплавов, трудности при выплавке и литье и необходимость нагрева при обработке давлением.

Основными упрочняющими легирующими элементами в магниевых сплавах являются алюминий и цинк. Марганец слабо влияет на прочностные свойства. Его вводят главным образом для повышения коррозионной стойкости и измельчения зерна. Цирконий и церий уменьшают размер зерен, а также оказывают эффективное модифицирующее действие на их структуру. Влияние легирующих элементов на механические свойства прессованных прут-

ков магния показано на рис. 8.1. Растворимость легирующих элементов, как и в алюминиевых сплавах, падает с уменышением температуры, что позволяет применять к магниевым сплавам термическую обработку, состоящую из закалки с последующим старением.

Термическая обработка магниевых и алюминиевых сплавов имеет много общего. Это объясняется близкими температурами плавления и отсутствием полиморфных превращений. Особенностью магниевых сплавов является пониженная скорость диффузии большинства компонентов в магниевом твердом растворе. Низкие скорости диффузионных процессов способствуют развитию дендритной ликвации, требуют больших выдержек при нагреве, облегчают фиксацию твердых растворов при закалке и затрудняют распад пересыщенных растворов при старении.

Для повышения прочностных свойств магниевые сплавы подвергают закалке и старению. Из-за низкой скорости диффузии закалку обычно проводят на воздухе, применяют искусственное старение при сравнительно высоких температурах ($200 \ldots 250^{\circ} \mathrm{C}$) и длительных выдержках ($16 \ldots 24$ ч).

Магниевые сплавы обладают высокой пластичностью в горячем состоянии и хорошо деформируются при нагреве. Для деформированных сплавов диффузионный отжиг обычно совмещают с нагревом для обработки давлением. Магниевые сплавы хорошо обрабатываются резанием, легко шлифуются и полируются, удовлетворительно свариваются контактной роликовой и дуговой сваркой, которую рекомендуется проводить в защитной атмосфере.

Недостатками магниевых сплавов являются плохие литейные свойства и склонностъ к газонасыщению, окислению и воспламенению при литье. Для предотвращения дефектов при выплавке используют специальные флюсы, для уменьшения пористости применяют небольшие добавки кальция ($0,2 \%$), а для снижения окисляемости - добавки бериллия ($0,02 \ldots 0,05 \%$).

Рис. 8.1. Влиянис легирующих элементов на механические свойства магния при температуре $20^{\circ} \mathrm{C}$ (прессованные прутки)

Различают деформируемые и литейные магниевые сплавы. Деформируемые сплавы маркируют буквами МА, литейные - буквами МЛ, далее следует номер сплава. Состав и свойства некоторых магниевых сплавов, производимых в России, приведены в табл. 8.1.

Примененне магниевых сплавов. Благодаря малой плотности и высокой удельной прочности магниевые сплавы широко применяют в авиастроении. Из них изготавливают корпуса приборов, насосов, фонари и двери кабин. Фюзеляжи вертолетов фирмы Сикорского (США) почти полностью изготовлены из магниевых сплавов.

В ракетной технике магниевые сплавы применяют при изготовлении корпусов ракет, обтекателей, стабилизаторов, топливных баков. Теплоемкость магния примерно в 2,5 раза больше, чем у стали. Поглотив одинаковое количество теплоты, он нагреется в 2,5 раза меньше. В кратковременном полете магниевые сплавы не успевают перегреться, несмотря на низкую температуру плавления. В кратковременно работающих ракетах типа «воздух - воздух» и управляемых снарядах магниевые сплавы составляют основную массу конструкции. Применение магниевых сплавов позволило снизить массу ракет на $20 . . .30 \%$.

Из литейных магнитных сплавов изготавливают кронштейны, элементы крепления, элероны, детали хвостового оперения, из деформируемых - обшивки корпусов, стрингеры, лонжероны, опорные конструкции тормозов, волноводов и другие детали.

Магниевые сплавы находят применение в транспортном машиностроении для изготовления картеров двигателей и коробок передач автомобилей.

C 1967 г. фирма Fiat применяет для своих автомобилей диски колес из магниевых сплавов, отливаемых под давлением. Такие диски в последнее время используют многие автомобилестроительные фирмы разных стран.

Магниевые сплавы применяют в конструкциях переносных ручных и механизированных инструментов и машин (сверлильные и шлифовальные машины, пилы для лесной промышленности, газонные косилки, пневматические инструменты и др.).

Их используют в электротехнике и радиотехнике (корпуса приборов, электродвигателей), в текстильной промышленности (бобины, шпульки, катушки и др.) и других отраслях.

В связи с малой устойчивостью против коррозии изделия из магниевых сплавов подвергают оксидированию. На оксидированную поверхность дополнительно наносят лакокрасочные покрытия.

Важной областью применения магния является ядерная энергетика. Благодаря способности поглощать тепловые нейтроны, отсутствию взаимодействия с ураном и хорошей теплопроводности магниевые сплавы используют для изготовления оболочек тепловыделяющих элементов в атомных реакторах.

Марка сплава	Содержание, \%				Режим термической обработки	$\begin{gathered} \sigma_{\mathrm{p}}, \\ \mathrm{M} \text { Па } \end{gathered}$	$\begin{aligned} & \sigma_{002}, \\ & M \sqcap a \end{aligned}$	\%,\%
	Al	Mn	Zn	Другие элементы				
Деформируемые сплавы (ГОСТ 14957-76)								
MA1	-	1,3 .. 2,5	-	-	Отжиг	200	130	8
MA2	3... 4	0,15 ... 0,5	0,2 $\ldots 0,8$	-	То же	270	170	10
MA5	7,8... 9,2	0,15 ...0,5	0,2 .. 0, 8	-	Закалка + старение	320	220	14
MA14	-	-	$5 \ldots 6$	$0,3 \ldots 0,9 \mathrm{Zr}$	То же	350	300	9
MA18	0,5 ... 1	0,1 ...0,4	2...2,5	$10 \ldots 11,5 \mathrm{Li} ; 0,15 \ldots 0,35 \mathrm{Ce}$	Отжиг	170	130	30
MA19	-	~	5,5 ... 7	$\begin{gathered} 0,5 \ldots 1 \mathrm{Zr} ; 0,2 \ldots .1 \mathrm{Cd} ; \\ 1,4 \ldots 2 \mathrm{Nd} \end{gathered}$	Закалка + старение	380	330	5
MA20	-	-	1... 1,5	$0,05 \ldots 0,12 \mathrm{Zr} ; 0,12 \ldots 0,25 \mathrm{Ce}$	Отжиг	250	160	20
ВДМ-1	-	-	1,2 .. 2	2,5 ... $3,5 \mathrm{Th}$	То же	300	250	5
Литейные сплавы (ГОСТ 2856-79)								
МЛ5	7,5 ... 9	0,15 ...0,5	0,2 ...0,8	-	Отжиг	160	85	3
					Закалка + старение	255	120	6
Mת8	-	-	5,5 ...6,6	0,7 ... 1, 1 Zr; 0,1 .. $0,8 \mathrm{Cd}$	Закалка + старение	255	155	5
МЛ10	-	-	0,1...0,7	0,4 $\ldots 1 \mathrm{Zr}, 2,2 \ldots 2,8 \mathrm{Nd}$	To же	230	140	3
МЛ19	-	-	0,1 ... 0,6	$\begin{gathered} 0,4 \ldots 1 \mathrm{Zr} ; 1,6 \ldots 2,3 \mathrm{Nd} ; \\ 1,4 \ldots 2,2 \mathrm{Y} \end{gathered}$	"	220	120	3

Высокий электроотрицательный потенциал магниевых сплавов позволяет применять их для протекторной защиты от морской коррозии судов и сооружений, эксплуатируюшихся в морской воде, и для защиты от подземной коррозии находящихся в грунте газо-, нефтепроводов и т.п.

8.2. Алюминий и его сплавы

Основные свойства алюминня. Алюминий и алюминиевые сплавы - первые конструкционные металлы, которые были использованы в самолетостроении. Свое значение в самолетостроении алюминий сохранил и в наше время, занимая первое место среди металлов: до $3 / 4$ массы современных самолетов изготавливают из алюминия. Практически нет ни одной отрасли машиностроения, в которой бы не использовали алюминиевые сплавы. Их применяют в строительных конструкциях, судостроении, железнодорожном и автомобильном транспорте, летательных аппаратах, нефтяном и химическом машиностроении, электротехнике и т.д. Алюминиевые сплавы находят широкое применение для криогенного оборудования, используемого в космосе. Из них изготавливают баки для жидкого кислорода и водорода диаметром 6,5 м и более, баллоны для сжатого гелия.

Из всех легких металлов алюминий характеризуется наибольшим объемом производства, занимаюшим в мировой промышленности второе место после производства стали.

До конца 1880-х гг. алюминий почти не производился и был немногим дешевле золота. Сохранилось описание банкета, данного Наполеоном III, на котором только гости королевской крови были удостоены чести есть алюминиевыми ложками и вилками. Остальныс пользовались обычными золотыми и серебряньми приборами.

В 1886 г. американский студент Чарльз Холл и молодой французский инженер Поль Эру разработали современный способ производства алюминия электролизом криолитно-глиноземного расплава. После этого производство алюминия стало расширяться, а цена его начала резко падать.

Алюминий кристаллизуется в ГЦК решетке, не имеет полиморфных превращений, обладает малой плотностью (2,7 г/см ${ }^{3}$), низкой температурой плавления ($660^{\circ} \mathrm{C}$), высокой электро- и теплопроводностью, низкой прочностью ($\sigma_{\mathrm{y}}=100 \mathrm{MПа}$), высокой пластичностью ($\delta=35 \%$) и высокой коррозионной стойкостью. Хорошая коррозионная стойкость алюминия обусловлена образованием на его поверхности тонкой, но плотной пленки оксида $\mathrm{Al}_{2} \mathrm{O}_{3}$, предохраняющей металл от дальнейшего окисления. Удельный объем оксида и металла близки между собой, поэтому оксид-

ная пленка обладает хорошим сцеплением с металлом и малопроницаема для всех газов. Благодаря защитному действию пленки алюминий имеет высокую коррозионную стойкость в атмосфере и в среде многих органических кислот. В едких щелочах алюминий быстро растворяется. Чем меньше примесей содержит алюминий, тем выше его коррозионная стойкость.

Алюминий высокой чистоты, применяемый для лабораторных целей, содержит $99,99 \%$ алюминия, для технических целей - $99,5 \%$. Алюминий хорошо деформируется и сваривается, но плохо обрабатывается резанием. Прокаткой из него можно получать тонкую фольгу, применяемую в качестве упаковочного материала.

Классификация алюминиевых сплавов. Из-за низкой прочности технический алюминий применяют для изготовления малонагруженных элементов конструкций. Широкое применение в качестве конструкционных материалов имеют сплавы на основе алюминия.

Все алюминиевые сплавы можно подразделить на три группы:

- деформируемые, предназначенные для получения поковок, штамповок, проката, труб;
- литейные;
- получаемые методом порошковой металлургии (спеченные алюминиевые порошки (САП) и сплавы (САС)).

Основными легирующими элементами в деформируемых алюминиевых сплавах являются медь, цинк, магний и марганец. В условиях равновесия сплавы представляют собой равновесный твердый раствор с выделениями интерметаллидных фаз типа CuAl_{2} (θ-фаза), $\mathrm{Al}_{2} \mathrm{CuMg}$ (S-фаза), $\mathrm{Al}_{6} \mathrm{CuMg}_{4}$ (Т-фаза) и др.

Постоянными примесями в алюминии являются железо и кремний, которые практически нерастворимы в алюминии. При одновременном их присутствии появляется новая фаза тройного химического соединения $\mathrm{Al}-\mathrm{Fe}-\mathrm{Si}$. Это соединение выделяется по границам зерен и снижает пластичность алюминия. Предельное содержание примесей железа и кремния в деформируемых алюминиевых сплавах должно составлять не более $0,5 \%$.

Сплавы повышенной чистоты имеют характеристики трещиностойкости на 30% выше, чем обычные сплавы. Число циклов до разрушения при малоцикловой усталости возрастает от 100 до 140 килоциклов, а скорость роста усталостной трещины уменьшается с 7 до 2,7 мм/кцикл.

Алюминиевые сплавы маркируют буквами или условными номерами. Часто за условным номером дают обозначения, характеризуюшие состояние сплава: M - мягкий (огожженный); T - термически обработанный (закалка и старение); H - нагартованный и др.

Схема типовой диаграммы алюминий - легирующий элемент приведена на рис. 8.2. В соответствии с диаграммой состояния алюминиевые сплавы по технологическим свойствам подразделяют на

деформируемые и литейные сплавы. Точка K соответствует предельной растворимости легирующего элемента в алюминии при эвтектической температуре.

Сплавы левее точки $К$ имеют при нагреве однофазную структуру твердого раствора α, высокую пластичность и низкую прочность. Поэтому сплавы этого типа легко обрабатываются давлением и относятся к категории деформируемых сплавов. В свою очередь, деформируемые сплавы бывают двух типов: I - не упрочняемые термической обработкой и II - упрочняемые термической обработкой.

В деформируемьх алюминиевых сплавах, не упрочняемых термической обработкой, содержание легируюших элементов меньше предела насыщения твердого раствора при комнатной температуре. В тер-

Рис. 8.2. Типовая диаграмма состояния сплавов алюминий легирующий элемент:
ж - жидкий раствор; Д - деформируемые сплавы; Л - литейные сплавы; I - сплавы, не упрочняемые термической обработкой; Il сплавы, упрочняемые термической обработкой мически упрочняемых алюминиевых сплавах содержание легирующих элементов превышает их равновесную концентрацию.

Сплавы, по содержанию легирующего элемента находящиеся правее точки K, имеют структуру, состоящую из твердого раствора α и эвтектики, плохо деформируются, но благодаря наличию эвтектики обладают хорошими литейными свойствами: жидкотекучестью и высокой концентрацией литейной пористости. Наилучшая жидкотекучесть наблюдается у сплавов, кристаллизующихся при постоянной температуре (эвтектические сплавы).

Характер литейных пор зависит от ширины температурного интервала кристаллизации, хотя общий объем пор остается постоянным или плавно меняется. Чем меньше интервал кристаллизации, тем концентрированнее усадочная раковина, выводимая в прибыльную часть, и, соответственно, плотнее металл самой отливки. Однако при чрезмерно большом количестве эвтектической составляющей ухудшаются механические свойства сплава.

Состав и свойства некоторых алюминиевых сплавов, производимых в России, приведены в табл. 8.2.

Деформируемые алюминневые сплавы. Деформируемые сплавы, не упрочняемые термической обработкой, имеют сравнительно низкую прочность, но более высокую пластичность и коррозионную стойкость. Их применяют в отожженном состоянии или упрочняют с помощью холодной пластической деформации. К таким

Таблица 8.2. Химнческий состав и механические свойства алноминиевых сплавов

AMı	0,1	0,2	1...1,6	-	Отжиг	130	50	20
AMr2	0,1	1,8... 2,6	0,2 ..0,6	-	То же	190	100	23
AMr5	0,1	5,8...6,8	0,5 .. 0,8	0,02... $0,1 \mathrm{Ti} ; 0,002 \ldots 0,005 \mathrm{Be}$	"	340	170	20

Д1	3,8..4,8	0,4 ...0,8	0,4...0,8	-	Закалка + старение	400	240	20
Д16	3,8...4,9	1,2..1,8	0,3...0,9	-	То же	440	330	18
B95	1,4... 2	1,8... 2,8	0,2...0,6	0,01...0,25 Cr; $5 \ldots . .7 \mathrm{Zn}$	"	540	470	10
B96	2...2,6	2,3... 3	0,3...0,8	$8 . .9 \mathrm{Zn}$	"	750	720	7
AK6	1,8...2,6	0,4 ...0,8	0,4...0,8	0,7...1,2 Si	"	400	300	12
ВАД23	4,8...5,8	Не более 0,05	0,4...0,8	$0,9 \ldots 1,4 \mathrm{Li} ; 0,1 \ldots 0,25 \mathrm{Cd}$	"	450	280	20
01420	-	$5 . .6$	-	1,9 ... 2, 3 Li; 0,09 ...0,15 Zr	*	420	270	5

AK12 (AЛ2)	-	-	-	$10 \ldots 13 \mathrm{Si}$	Литье в землю	180	80	6
					Литье в кокиль	220	90	5
АК9 (АЛ4)	-	0,17...0,3	0,2...0,5	$8 . . .10,5 \mathrm{Si}$	Литье в землю (закалка + старение)	260	200	4
AM5 (АЛ19)	4,5...5,3	-	0,6... 1	$0,15 \ldots 0,35 \mathrm{Ti}$	То же	360	250	3

сплавам относятся сплавы типа AML (система $\mathrm{Al}-\mathrm{Mn}$) и типа AMr (система $\mathrm{Al}-\mathrm{Mg}$), которые хорошо обрабатываются давлением и свариваются. Из них обычно изготавливают изделия, получаемые глубокой вытяжкой из листового материала. Благодаря меньшей плотности и достаточной прочности чаще применяют алю-миниево-магниевые сплавы.

Широкое распространение получили деформируемые сплавы, упрочняемые термической обработкой. Примером деформируемых термоупрочняемых алюминиевых сплавов являются сплавы алюминия с медью. Из диаграм-

Рис. 8.3. Левый участок диаграммы состояния сплавов $\mathrm{Al}-\mathrm{Cu}$:
Ж - жидкий раствор; Э - эвтектика; - - - - температура закалки сплавов мы состояния $\mathrm{Al}-\mathrm{Cu}$ (рис. 8.3) видно, что максимальная растворимость меди в твердом алюминии составляет $5,7 \%$ при температуре $548^{\circ} \mathrm{C}$. При понижении температуры растворимость падает, составляя $0,2 \%$ при $20^{\circ} \mathrm{C}$. Наличие линии переменной растворимости $A B$ показывает возможность упрочнения сплава путем закалки и старения. В литом состоянии микроструктура сплавов состоит из твердого раствора α и вторичной фазы интерметаллидов CuAl_{2}.

При нагреве под закалку до температуры, соответствующей линии $a b c$, происходит растворение избыточных интерметаллидных фаз. Быстрое охлаждение фиксирует пересыщенный твердый раствор в сплавах, содержащих до $5,7 \%$ меди. В закаленных сплавах с содержанием меди более $5,7 \%$ в структуре помимо пересыщенного твердого раствора, отвечающего составу точки B, будут присутствовать нерастворенные при нагреве кристаллы CuAl_{2}. Закалка должна проводиться со скоростью, предотвращающей распад пересыщенного твердого раствора. Закалку обычно проводят в воде. Сразу после закалки сплавы имеют невысокую прочность и облацают способностью пластической деформации. Закаленные детали можно подвергать технологическим деформирующим операциям: гибке, отбортовке, расклепке заклепок.

Для дальнейшего упрочнения сплавы подвергают естественному в течение нескольких суток или искусственному старению при температуре примерно $150^{\circ} \mathrm{C}$ в течение $10 \ldots 24$ ч. Более эффективно естественное старение. В этом случае сплавы имеют более высокую пластичность и менее чувствительны к концентраторам напряжений. На рис. 8.4 представлена микроструктура разных состояний дуралюмина Д16.

Рис. 8.4. Микроструктура дуралюмина Д16, увеличение в 300 раз:
a - литой сплав (α-раствор, $\mathrm{CuAl}_{2}, \mathrm{~S}$-фаза $\mathrm{Al}_{2} \mathrm{MgCL}$); 6 - деформируемый сплав после закалки (пересыщенный α-раствор); в - сплав после закалки и старения

В начальный период старения образуются зоны повышенной концентрации меди, так называемые зоны Гинье - Престона. В этот период атомы меди еще не выделяются из раствора. В зонах повышенной концентрации меди кристаллическая решетка искажена, в кристалле возникают большие напряжения, что увеличивает твердость и прочность металла. При дальнейшем развитии старения зоны Гинье - Престона увеличиваются, а затем происходит выделение мельчайших частиц интерметаллидов, которые впоследствии коагулируют. Процесс образования зон Гинье - Престона и достижение стадии так называемого предвыделения приводит к максимальному упрочнению.

Наиболее распространенными деформируемыми алюминиевыми сплавами являются дуралюмины, которые содержат $2,5 \ldots 5 \%$ меди, $0,4 \ldots 1,8 \%$ магния, $0,4 \ldots 0,9 \%$ марганца. Медь и магний вводят в сплав для его упрочнения, марганец усиливает упрочняющий эффект и повышает его коррозионную стойкость. Наибольшее упрочнение достигается после старения.

Достоинством дуралюминов является высокая удельная прочность, благодаря чему они относятся к числу широко применяемых материалов в самолетостроении, для изготовления лопастей воздушных винтов, шпангоутов, тяг управления и др. Дуралюмины используют во многих отраслях техники (для кузовов грузовых автомобилей, строительных конструкций, в пищевой и холодильной промьпшленности для изготовления емкостей, тестомесильных аппаратов, сепараторов, поплавковых камер, арматуры, трубопроводов и т.д.).

Дуралюмины имеют пониженную коррозионную стойкость. Для повышения коррозионной стойкости листы дуралюмина плакируют - покрывают слоем чистого алюминия и производят совместную прокатку листов. Алюминий, толщина слоя которого составляет $2 \ldots 5 \%$, сваривается с основным металлом и защищает его от коррозии.

Для повышения коррозионной стойкости деталей из дуралюминов их также подвергают анодной поляризации в 10%-ном растворе серной кислоты. Выделяющийся кислород способствует образованию на поверхности дуралюминовой детали оксидной пленки, предохраняющей ее от окисления.

Деформируемые алюминиевые сплавы на основе $\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-$ Cu (типа В95, В96) имеют наиболее высокую прочность среди всех алюминиевых сплавов ($\sigma_{\text {в }}=500 \ldots 750$ МПа), но невысокую пластичность ($\delta=7 \ldots 10 \%$). Эффект старения в этих сплавах наиболее высок и достигается за счет выделения дисперсных фаз M $\left(\mathrm{MgZn}_{2}\right)$ и $\mathrm{T}(\mathrm{AlZnMg})$. При высоком содержании цинка медь не участвует в старении, сохраняется в пересыщенном твердом растворе, повышая относительное удлинение и коррозионную стойкость. Сплавы этой системы легирования используют в самолетостроении для тяжелонагруженных деталей.

Снижение полетной массы машин является важнейшей задачей конструкторов, работающих в области самолето- и ракетостроения. Для легирования алюминия применяют литий - самый легкий среди металлов (плотность $0,5 г /$ см 3). В настояшее время разработаны сплавы системы $\mathrm{Al}-\mathrm{Cu}-\mathrm{Li}$ (ВАД23) и $\mathrm{Al}-\mathrm{Mg}-\mathrm{Li}$ (01420) и режимы их упрочнения при термической обработке. В сплавах этого типа при искусственном старении достигается большее упрочнение, чем при естественном старении. Сплавы имеют прочность, близкую к прочности дуралюминов ($\sigma_{\mathrm{B}} \approx 400 \mathrm{MПа)}$), но значительно меньшую плотность.

Упрочнение системы легирования $\mathrm{Al}-\mathrm{Cu}-\mathrm{Li}$ (ВАД23) достигается еще за счет выделения при старении дисперсной фазы $\mathrm{Al}_{2} \mathrm{CuLi}$. Эффект упрочнения усиливается при введении небольшого количества кадмия ($0,1 \ldots 0,25 \%$). Максимальный эффект после термической обработки получен на сплавах, содержащих $5 \ldots . .6 \%$ меди и $1,4 \%$ лития, близких по составу сплаву ВАД23. Сплав ВАД23 используют как конструкционный материал для изделий, в которых должны сочетаться низкая плотность с высокой прочностью, жесткостью и жаропрочностью. Сплав ВАД23 обладает высокой технологической пластичностью, особенно при горячей деформации. Из него могут быть получены все виды деформированных полуфабрикатов, включая фольгу.

Сплавы системы $\mathrm{Al}-\mathrm{Mg}$ - Li являются самыми легкими из всех известных алюминиевых сплавов (на 12% легче сплава Д16 и на 15% - сплава В95). Такое сушественное снижение массы обьясняется тем, что оба легирующих элемента легче алюминия. Выделением, влияющим на упрочнение системы $\mathrm{Al}-\mathrm{Mg}-\mathrm{Li}$ сплава 01420 при старении, является фаза $\delta\left(\mathrm{Al}_{3} \mathrm{Li}\right)$. Выделение фазы-упрочнителя не приводит к обеднению матрицы магнием. Сплав 01420 и его сварные соединения обладают высокими коррозионными свойствами, близкими к свойствам сплава АМгб системы $\mathrm{Al}-\mathrm{Mg}$.

Известно, что модуль упругости сплавов обычно изменяется приблизительно аддитивно в зависимости от модуля упругости компонентов и их содержания в сплаве. Сплавы $\mathrm{Al}-\mathrm{Mg}-\mathrm{Li}$ имеют аномально высокий модуль упругости: на 4% выше, чем у дуралюмина, хотя модуль утругости самого лития крайне низкии. Благодаря сочетанию низкой плотности, высокого модуля упругости, коррозионной стойкости и хорошей свариваемости применение сплавов системы $\mathrm{Al}-\mathrm{Mg}-\mathrm{Li}$ в аэрокосмической технике непрерывно расширяется

Для повышения сопротивления разрушению при малоцикловых нагрузках, являющегося важнейшей характеристикой надежности авиационных материалов, необходимо повышение дисперсности вторичных частиц алюминидов, выделяюшихся при старении.

Высокопрочные алюминиевые сплавы марок $Д 16$ ($\mathrm{Al}-\mathrm{Cu}-\mathrm{Mg}$) и $\mathrm{B} 95(\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-\mathrm{Cu})$ в течение многих десятилетий используются в авиастроении. Повышению их трещиностойкости способствовало снижение предельного содержания вредных примесей железа и кремния от 0,5 до 0,15 и $0,1 \%$ соответственно. Долговечность (число циклов до разрушения) возросла от 100 до 165 кциклов, а скорость роста трещины уменьшилась с 6 до 2,5 мм/кцикл. Однако дальнейшее повышение чистоты сплавов представляет сложности как по техническим, так и по экономическим соображениям.

Дальнейшее повышение ресурса высокопрочных алюминиевых сплавов может быть достигнуто совместным легированием малыми добавками скандия и циркония. Высокое сопротивление разрушению при испытании на малоцикловую усталость обусловлено образованием мелкодисперсных частиц $\mathrm{Al}_{3}\left(\mathrm{Sc}_{1-x}, \mathrm{Zr}_{x}\right)$ сферической формы, полностью когерентных матрице, со средним размером 15 нм среднее расстояние между частицами 300 нм. Наличие таких частиц препятствует распространению усталостных трещин.

В России разработан сплав с добавками скандия и циркония, не упрочняемый термической обработкой. Сллав 01570 содержит 6% магния, но в отличие от сплава АМг дополнительно легирован $0,15 \ldots 0,35 \%$ скандия и $0,05 \ldots 0,15 \%$ циркония. Скандий проявляет себя как сильный модификатор, способствующий получению плотных слитков с недендритной структурой. При последуюших нагревах твердый алюминиевый раствор распадается с образованием дисперсных частиц $\mathrm{Al}_{3} \mathrm{Sc}$ и $\mathrm{Al}_{3}\left(\mathrm{Sc}_{1-x}, \mathrm{Zr}_{x}\right.$), способствующих упрочнению и сопротивлению усталости. Если отожженные листы сптава АМіб имеют $\sigma_{\mathrm{R}}=340 \mathrm{M}$ Ма и $\sigma_{0,2}=180 \mathrm{M}$ Ма, прочность сплава 01570 составляет $\sigma_{\mathrm{B}} \geq 400 \mathrm{M}$ Па, $\sigma_{0,2} \geq 300 \mathrm{M}$ Ма при высокой пластичности $\delta=15 \ldots 20 \%$. Подобно всем неупрочняемым сплавам на основе $\mathrm{Al}-\mathrm{Mg}$ сплав 01570 обладает хорошей свариваемостью, причем скандий оказывает на структуру шва модифицирующее действие.

Табл и ца 8.3. Влияние скандия и циркония на механические свойства сплавов $\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-\mathrm{Cu}$

Содержание, \%		$\sigma_{k}, \mathrm{M} \mathrm{\Pi а}$	$\sigma_{0,2}, \mathrm{M} \mathrm{\Pi а}$	$\delta, \%$
Sc	Zr			10,5
0	0,07	480	500	10,3
0,03	0,07	540	5	

Механические свойства термоупрочняемых алюминиевых сплавов $\mathrm{Al}-\mathrm{Zn}-\mathrm{Mg}-\mathrm{Cu}$ одинакового состава при введении малых добавок скандия и циркония приведены в табл. 8.3.

Разработан термоупрочняемый сплав 01970, содержаший $5,2 \%$ цинка, 2% магния, $0,3 \%$ марганца, дополнительно легированный $0,2 \%$ скандия и $0,1 \%$ циркония. Его свойства после старения следуюшие: $\sigma_{\text {в }}=480 \ldots 520 \mathrm{M}$ Ма; $\sigma_{0,2}=420 \ldots 490 \mathrm{MПа;} \delta=11 \ldots 15 \%$ при увеличении сопротивления малоцикловой усталости в 22,5 раза по сравнению с обычными высокопрочными сплавами. Сплав имеет высокую коррозионную стойкость. Сварные соединения сплавов, легированные скандием, характеризуются самой высокой прочностью из всех известных алюминиевых сплавов и могут быть рекомендованы для наиболее ответственных конструкций. Применение сплавов со скандием сдерживается их сравнительно высокой стоимостью. Однако необходимость снижения массы и металлоемкости конструкций позволяет прогнозировать их широкое применение в будущем.

Для снижения массы летательных аппаратов в ряде случаев применяют специально разработанные технологические методы. При изготовлении корпусньх частей самолетов (фюзеляж, крылья) и управляемых ракет этого можно достичь использованием сотовых конструкций. Наружные оболочки делают из высокопрочных материалов, а в качестве наполнителя применяют клеевые сотовые конструкіции из обычных алюминиевых сплавов.

Разработан авиационный материал - пеноалюминий, получаемый в виде лент и листов толщиной до 100 мм. Его изготавливают присадкой в жидкий алюминий или его сплавы порошкообразных газообразующих вешеств, например гидридов титана и циркония. Гидриды вводят под давлением, но, как только начинается выделение водорода и вспенивание, давление сбрасывают. Во избежание спадания пены пеноалюминий охлаждают опрыскиванием водой. Плотностъ пеноалюминия $0,2 \ldots 0,6$ г/см ${ }^{3}$. Пеноалюминий можно обрабатывать резанием, клепать, прибивать гвоздями, паять.

Известен способ получения пористого алюминия заливкой сплава в емкость - форму, заполненную гранулами поваренной соли с последующим растворением соли в воде.

Литейные алюминиевые сплавы. Литейные сплавы должны обладать высокой жидкотекучестью, малой склонностью к образованию горячих трещин и пористости. Для обеспечения высокого уровня литейных свойств необходим минимальный эффективный интервал кристаллизации. Высокие литейные свойства имеют сплавы с эвтектической структурой. Наиболее распространенными литейными сплавами являются сплавы алюминия с высоким содержанием кремния (более 5%), называемые силуминами.

На рис. 8.5 приведена левая часть диаграммы состояния алюминий - кремний. Силумины имеют состав, близкий к эвтектическому, поэтому обладают высокими литейными свойствами. Широкое распространение получил силумин марки АК12 (АЛ2), содержащий $10 \ldots 13 \%$ кремния, обладающий высокой коррозионной стойкостью. Его структура состоит из твердого раствора α и эвтектики ($\alpha+\mathrm{Si}$) (рис. 8.6). Прочность силумина невелика: $\sigma_{\mathrm{B}}=180 \mathrm{M}$ а; $\sigma_{0,2}=80 \mathrm{MПа;} \delta=7 \%$.

При более высоких требованиях к прочностным свойствам применяют доэвтектические силумины с содержанием $4 \ldots 10 \%$ кремния и небольшими добавками цинка, меди, магния и марганца.

С целью получения беспористых высококачественных отливок на заводах авиационной металлургии используют разработанный академиком А.А. Бочваром метод кристаллизации под давлением.

Кроме силуминов применяют литейные сплавы, легированные медью и магнием, которые имеют несколько худшие литейные свойства, но более высокие механические характеристики, в том числе при повышении температуры. Такие сплавы можно подвергать термической обработке.

Для измельчения зерна и улучшения механических свойств литейные алюминиевые сплавы подвергают модифицированию. В ка-

Рис. 8.5. Диаграмма состояния сплавов системы $\mathrm{Al}-\mathrm{Si}$

Рис. 8.6. Эвтектика в силумине

Ж - жидкий раствор; Э - эвтектика

честве модификаторов применяют смеси солей фторида натрия NaF и хлорида натрия NaCl в количестве $2 \ldots 3 \%$ массы сплава. После модифицирования прочность силуминов увеличивается на 25%, а относительное удлинение - в 2 раза.

Маркировка алюминиевых сплавов. Для обозначения алюминиевых сплавов принята смешанная буквенная и буквенно-цифровая маркировка. В отличие от маркировки сталей и медных сплавов она несколько бессистемна. В сплавах АМц буквы Мц означают марганец, сплавы типа магналиев обозначают $\mathrm{AMr}(\mathrm{Al}-\mathrm{Mg}$). Буква Д обозначает спнлавы типа дуралюмина. Буквы АД в начале марки означают технический алюминий, буквы АК - алюминиевый ковочный сплав. Буква В в начале марки означает высокопрочный алюминиевый сплав.

Состояние полуфабрикатов из деформируемых сплавов обозначается буквенно-цифровой маркировкой: М - мягкий, отожженный; Т - закаленный и естественно состаренный; T1 - закаленный и искусственно состаренный; Н - нагартованный; П - полунагартованный; Н1 - усиленно нагартованный (нагартовка листов примерно на 20%; ; ТН - закаленный, естественно состаренный, нагартованный; Т1Н - закаленный, нагартованный и искусственно состаренный; T1H1 - закаленный, нагартованный на $15 \ldots 20 \%$ и искусственно состаренный.

Условные обозначения видов термической обработки литейньх сплавов: T1 - старение; T2 - отжиг; Т3 - закалка; Т4 - закалка и естественное старение; Т5 - закалка и неполное искусственное старение; Т6 - закалка и полное искусственное старение до максимальной твердости; Т7 - закалка и стабилизирующий отпуск; Т8 - закалка и смягчающий отпуск. На способ литья указывают буквы: 3 - в землю; О - в оболочковые формы; В - по выплавляемым моделям; К - в кокиль; Д - под давлением. Буква М означает, что сплав при литье подвергается модифицированию.

8.3. Титан и его сплавы

Основные свойства титана. Титан широко распространен в земной коре, где его содержится приблизительно $0,6 \%$, а по распространенности он занимает четвертое место после алюминия, железа и магния. Однако промышленный способ извлечения титана был разработан лишь в 1940-х гг. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Если в 1947 г. в мире производили менее 3 т титана, то в 1990-х гт. - примерно 100 тыс. т. Рост производства объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность $\sigma_{\mathrm{⿺}} /(\gamma g)$, где γ - плотность; g - ускорение свободного падения, коррозионная стойкость, тех-

нологичность при обработке давлением и свариваемость, хладостойкость, высокая стойкость против солнечной радиации, немагнитность и ряд других ценных физико-механических характеристик.

Титан - металл серебристо-белого цвета, имеющий малую плотность (4,5 г $/$ см 3). Температура плавления титана (1668 ± 4) ${ }^{\circ} \mathrm{C}$ в зависимости от степени его чистоты

Титан имеет две полиморфные модификации: α-титан с ГПУ решеткой с периодами $a=0,296 \mathrm{нм}, c=0,472$ нм и высокотемпературную модификацию β-титан с ОЦК решеткой с периодом $a=$ $=0,332$ нм при $900^{\circ} \mathrm{C}$. Температура полиморфного $\alpha \leftrightarrow \beta$ превращения составляет $882^{\circ} \mathrm{C}$.

Механические свойства титана существенно зависят от чистоты металла от примесей. Различают примеси внедрения (кислород, азот, углерод, водород) и примеси замещения (железо, кремний) Хотя примеси повышают прочность, одновременно они резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь $0,03 \%$ водорода, $0,2 \%$ азота или $0,7 \%$ кислорода титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Технически чистый титан марки ВТ1-1 содержит не более, \% (мас.): $0,3 \mathrm{Fe} ; 0,12 \mathrm{Si} ; 0,08 \mathrm{C} ; 0,15 \mathrm{O} ; 0,05 \mathrm{~N} ; 0,012 \mathrm{H}$. По прочности и пластичности BT1-1 не уступает ряду углеродистых и хромоникелевых коррозионно-стойких сталей: $\sigma_{\text {в }}=450 \ldots 600 \mathrm{MПа;} \sigma_{0,2}=$ $=380 \ldots 500 \mathrm{M}$ Ма; $\delta \geq 25 \% ; \psi \geq 50 \%$. При понижении температуры от комнатной до криогенных прочностные свойства технически чистого титана растут при сохранении высокого уровня пластичности.

Чистый титан с малым содержанием водорода (менее $0,002 \%$) не обладает хладноломкостью при прочности $\sigma_{\text {в }}=1300 \mathrm{MПа} \mathrm{и}$ сохраняет высокую пластичность даже при температуре жидкого гелия ($\delta=15 \ldots 20 \%$).

По удельной прочности в интервале температур $300 \ldots 600^{\circ} \mathrm{C}$ сплавы титана не имеют себе равных; при температуре ниже $300^{\circ} \mathrm{C}$ они уступают алюминиевым сплавам, а выше $600^{\circ} \mathrm{C}$ - сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости ($E=112$ ГПа), почти в 2 раза меньший, чем у железа и никеля, что затрудняет изготовление жестких конструкций. Для повышения жесткости приходится увеличивать толщину деталей и их массу.

Хотя титан относится к числу химически активных металлов, он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка оксида титана TiO_{2}, прочно связанная с основным металлом и исключающая его непосредственный контакт с электролитом. Оксидная пленка на титане возникает при окислении на воздухе, анодном окислении

и самопассивации его не только в сильноокислительных, но и в слабокислых и нейтральных растворах. Толщина оксидной пленки, образующейся на титане после длительного пребывания на воздухе, обычно достигает $5 \ldots 6$ нм.

Благодаря оксидной пленке титан и его сплавы не корродируют в атмосфере, пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий иэ титана и его сплавов имеет технологические особенности. Из-за высокой химической активности расплавленного титана его выплавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

Сплавы титана имеют несколько меньшую жаропрочность, чем специальные стали. Рабочая температура их использования не выше $500 \ldots 550^{\circ} \mathrm{C}$. При превышении этой температуры титан и его сплавы легко окисляются и интенсивно поглощают газы (рис. 8.7).

При технологических и эксплуатационных нагревах необходимо принимать меры для защиты титана от газонасыщения. Кроме газов вредной примесью для титана является углерод, образующий карбиды.

Титан пластичен и легко обрабатывается давлением при комнатной и повышенной температуре. Титан и его сплавы хорошо свариваются контактной и дуговой сваркой в защитной атмосфере, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и некоторыми другими элементами. Как и в сплавах на основе железа, легируюшие элементы оказывают большое влияние на полиморфные превращения титана.

Фазовые превращения в титановых сплавах. Такие элементы, как алюминий, азот, кислород, повышают температуру полиморфного преврашения $\alpha \leftrightarrow \beta$, расширяя область твердых растворов на основе α-титана, и, таким образом, являются α-стабилизаторами. Учитывая охрупчиваюшее действие азота и кислорода, практическое значение

Рис. 8.7. Окисление титана при разных температурах

для легирования титана имеет только алюминий. Алюминий является основным упрочняющим легирующим элементом, имеющим к тому же малую плотность. Поэтому он обычно присутствует в большинстве титановых сплавов.

Большинство легирующих элементов (Mo, V, Mn, Fe, Cr и др.) понижают температуру полиморфного $\alpha \leftrightarrow \beta$ превращения и расширяют область существования твердых растворов на основе β-титана, являясь β-стабилизаторами (рис. 8.8).

Упрочняющая термическая обработка, состоящая из закалки и старения; применима только для сплавов с $(\alpha+\beta)$-структурой. Сплавы с устойчивой α-структурой нельзя упрочнить термической обработкой.

Полиморфное превращение $\beta \rightarrow \alpha$ может происходить двумя путями. При медленном охлаждении и высокой подвижности атомов оно происходит по обычному диффузионному механизму, а при большом переохлаждении и быстром охлаждении - по бездиффузионному мартенситному механизму. При медленном охлаждении образуется полиэдрическая структура твердого раствора α, а при быстром - игольчатая мартенситная структура, обозначаемая α^{\prime} или при большей степени легированности - $\alpha^{\prime \prime}$. Кристаллическая структура α, α^{\prime} и $\alpha^{\prime \prime}$ практически одинакова (ГПУ решетка), одна-

Ti V, Zr, Nb, Mo, $\underset{\mathrm{Ta}, \mathrm{Re}}{\mathrm{Re}}$
6

$\mathrm{Ti} \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}$,
$\mathrm{Si}, \mathrm{Ag}, \mathrm{W}, \mathrm{Au}, \mathrm{Pb}$
B

Рис. 8.8. Диаграммы состояния систем титан легирующий элемент:
$a-\mathrm{Ti}-\alpha$-стабилизаторы; б - Ti-изоморфные β-стабилизаторы; в - Ti- эвтектоидообразующие β-стабилизаторы; г - Ti - нейтральные элементы

ко решетка пересыщенньх твердых растворов α^{\prime} и $\alpha^{\prime \prime}$ более искажена при высокой скорости охлаждения. При старении из α^{\prime}-фазы и $\alpha^{\prime \prime}$-фазы выделяются β-фаза или интерметаллидная фаза (TiCr_{2}).

Титановые сплавы подвергают термической обработке - рекристаллизационному отжигу, закалке и старению, а также ХТО.

Отжиг титановых сплавов проводят после холодной деформации. Температура их рекристаллизации составляет в среднем $500^{\circ} \mathrm{C}$, и отжиг при температуре $700 \ldots 800^{\circ} \mathrm{C}$ вполне достаточен для устранения наклепа.

Превращения при закалке и старении в титановых сплавах в принципе похожи на соответствующие превращения в стали. Однако из-за того, что α^{\prime}-мартенсит в титановых сплавах мало отличается по прочности от равновесной α-фазы, столь существенного упрочнения, как в сталях, в титановых сплавах не происходит. В результате фазовой перекристаллизации происходит измельчение зерна, что положительно сказывается на их пластических свойствах.

Титановые сплавы обладают низкими антифрикционными свойствами. Для повышения износостойкости их подвергают азотированию, которое проводят в среде газообразного азота при температуре примерно $900^{\circ} \mathrm{C}$, длительность процесса до 50 ч. Азотирование повышает поверхностную твердость, износостойкость и жаропрочность. Для уменьшения хрупкости азотированного слоя проводят вакуумный отжиг заготовок при температуре $800 \ldots 900^{\circ} \mathrm{C}$.

Для повышения жаростойкости титановые сплавы подвергают силицированию.

Промышленные титановые сплавы. Титановые сплавы по сравнению с техническим титаном имеют бо́льшую прочность, в том числе при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.

В табл. 8.4 приведена классификация основных промышленных титановых сплавов (ГОСТ 19807-74).

За основу классификации принято соотношение α - и β-фаз в структуре сгнава и особенности структурньх превращений, происходящих при их термической обработке. Отдельные группы титановых сплавов различаются по величине условного коэффициента стабилизации K_{β}, который показывает отношение содержания β-стабилизирующего легирующего элемента к его содержанию в сплаве критического состава. При содержании в сплаве нескольких β-стабилизирующих элементов их коэффициенты стабилизации суммируются.

На рис. 8.9 показан характер структур титановых сплавов в отожженном и закаленном состоянии.

Сплавы с α-структурой характеризуются невысокой прочностью при комнатной температуре и не упрочняются при термической обработке. Их недостатком является низкая технологическая пластичность, а достоинством - хорошая свариваемость и высокие механические свойства при низких температурах.

Таблица 8.4. Классификация титановых сплавов

Группа сплавов	Марка сплава	Средний химический состав, \% (мас.)
$\boldsymbol{\alpha}$-сплавы	BT1-00	Нелегированный титан
	BT1-0	То же
	BT5	Ti-5Al
	BT5-1	Ti-5Al-2,5Sn
Псевдо- α-сплавы ($K_{\beta}<0,25$)	OT4-0	Ti-0,8Al-0,8Mn
	OT4-1	Ti-1,5Al-1,0Mn
	OT4	Ti-3,5Al-1,5Mn
	BT20	Ti-6,0Al-2,0Mo-1V-1Zr
($\alpha+\beta$)-сплавы мартенситного класса ($K_{\beta}=0,3-0,9$)	BT6C	Ti-5Al-4,0V
	BT6	Ti-6Al-4,5V
	BT14	Ti-4,5Al-3Mo-1V
	BT16	Ti-2,5Al-5Mo-5V
	BT23	Ti-5,5Al-2Mo-4,5V-1Cr-0,7Fe
($\alpha+\beta$)-сплавы переходного класса ($K_{\beta}=1-1,4$)	BT22	Ti-5Al-5Mo-5V-1Fe-1Cr
	BT22И	Ti-2,5Al-8,5Mo-8,5V-1,2Fe-1,2Cr
	BT30	Ti-3Al-7Mo-11Cr
Псевдо- β-сплавы$\left(K_{\beta}=1,5-2,4\right)$	BT35	Ti-3Al-1,5Mo-15V-3Sn-3Cr
	BT32	Ti-2,5Al-8,5Mo-8,5V-1,2Fe-1,2Cr
	BT15	Ti-3Al-7Mo-11Cr
β-сплавы ($K_{\beta}=2,5-3$)	4201	Ti-33Mo

Примечание. K_{β} - коэффициент стабилизации.

Рис. 8.9. Структура титановых сплавов в отожженном и закаленном состоянии:
1 - переходный класс; 2 мартенситный класс

Псевдо- α-сплавы, сохраняя достоинства α-сплавов, благодаря присутствию небольшого количества β-фазы (до 5%) имеют более высокую технологическую пластичность и хорошо обрабатываются давлением.

Двухфазные ($\alpha+\beta$)-сплавы характеризуются наилучшим сочетанием механических и технологических свойств. По структуре после закалки различают мартенситный и переходный классы ($\alpha+\beta$)-сплавов. Сплавы мартенситного класса менее легированы и в равновесном состоянии содержат не более $25 \% \beta$-фазы. Увеличение количества β-фазы в сплавах переходного класса до 50% обеспечивает им самую высокую прочность этой группы сплавов как в отожженном, так и в закаленном состоянии.

Псевдо- β-сплавы после закалки имеют структуру метастабильной β-фазы. В этом состоянии они имеют хорошую пластичность и сравнительно низкую прочность, благодаря чему хорошо обрабатываются давлением. После старения их прочность возрастает в 1,5 раза и составляет $1300 \ldots 1800 \mathrm{M}$ Ма.

Однофазные β-сплавы отличаются высокой коррозионной стойкостью. Сплав 4201 может заменить тантал, сплавы на никелевой основе типа хастеллой, а также благородные металлы - платину, золото. Однако сплавы со стабильной β-структурой сравнительно редко применяют из-за необходимости их легирования большим количеством изоморфных элементов ($\mathrm{V}, \mathrm{Mo}, \mathrm{Nb}$), имеющих высокую стоимость, и из-за высокой плотности, снижаюшей удельную прочность изделий.

Механические свойства некоторых деформируемых титановых сплавов, производимых в России (ГОСТ 19807-74), приведены в табл. 8.5 .

Сплавы титана имеют хорошие литейные свойства - высокую жидкотекучесть, плотность отливок и малую склонность к образованию горячих трещин. Из-за склонности к поглощению газов их плавку и разливку ведут в вакууме или в среде нейтральных газов. Состав титановых сплавов для фасонного литья обычно соответствует составу деформируемых сплавов (ВТ5Л, ВТ14Л). Механические свойства литейных титановых сплавов ниже, чем у деформируемых.

Титановые сплавы склонны к повышенному налипанию на инструмент, что в сочетании с их низкой теплопроводостью затрудняет процесс механической обработки. При обработке резанием целесообразно применение инструмента с твердосплавными пластинами.

При проведении сварки титановых сплавов во избежание появления дефектов в швах, основными из которых являются поры и холодные трещины, необходимо тщательное удаление поверхностной оксидной пленки основного и присадочного материала. Из-за химической активности титана обязательна защита инертными газами сварочной ванны и остывающих участков от соприкосновения с воздушной атмосферой.

Таблица 8.5. Механические свойства титановых сплавов

Марка сплава	Класс по структуре	$\sigma_{\text {v }}$, МПа	$\begin{gathered} \delta, \%, \\ \text { не менее } \end{gathered}$	KCU, Дж/ $/ \mathrm{cm}^{2}$, не менее	Термическая обработка	Область применения
Технический титан BT1-0	α-сплав	390... 540	20	100	Отжиг	Химическая промышленность, криогенные установки
BT5	То же	$700 \ldots 950$	10	50	То же	Детали для работы при криогенных и повышенных температурах до $450^{\circ} \mathrm{C}$
BT5-1	"	$750 \ldots 950$	10	40	*	То же
OT4	Псевдо- α сплав	$700 \ldots 900$	12	40	*	*
BT6	$(\alpha+\beta)$-сплав мартенситного класса	1100... 1150	14	40	Отжиг, закалка, старение	Сварные конструкции для длительной работы при температуре $400^{\circ} \mathrm{C}$, кратковременно до $750^{\circ} \mathrm{C}$
BT14	То же	1150... 1400	6	50	То же	То же
BT16	*	1150... 1250	4	-	"	Детали для длительной работы до температуры $350^{\circ} \mathrm{C}$
BT22	($\alpha+\beta$)-сплав переходного класса	I 100... 1500	9	-	"	Детали, работаюшие при температуре $500^{\circ} \mathrm{C}$
BT15	$\text { Псевдо- } \beta$ спилав	1300... 1800	4	-	"	Детали для длительной работы до температуры $350^{\circ} \mathrm{C}$, кратковременно - до $750^{\circ} \mathrm{C}$

Применение тнтана п его сплавов. В настоящее время титан широко используется в ракетно-космической технике, в судостроении и транспортном машиностроении, где важную роль играют малая плотность в сочетании с высокой прочностью и сопротивляемостью коррозии. Из сплавов титана делают обшивку фюзеляжа и крыльев сверхскоростных самолетов, панели и шпангоуты ракет, диски и лопатки турбин. Первым потребителем титана стала авиационная промышленность. Применение для изготовления узлов и деталей высокопрочных титановых сплавов вместо алюминиевых позволило создать самолеты, преодолевающие звуковой барьер. Температура на поверхности обшивки планера при сверхзвуковых скоростях существенно превышает допустимый уровень жаропрочности алюминиевых и магниевых сплавов:

Скорость аппарата, км/ч	2000	3000	4000	$10 \mathrm{M}^{*}$
Температура поверхности	$75 \ldots 110$	$210 \ldots 290$	$380 \ldots 580$	$800 \ldots 1000$

обшивки планера, ${ }^{\circ} \mathrm{C}$
*10М - гиперзвуковая скорость, в 10 раз превышаюцая скорость звука.
Титановые сплавы пригодны для изготовления планеров летательных аппаратов, имеющих скорость полета примерно 4000 км/ч. Из титана можно изготавливать лонжероны, шпангоуты, детали шасси, что позволяет снизить их массу на 40% по сравнению с массой стальных деталей.

В ракетно-космической и авиационной технике в настоящее время используется до 80% общего объема производства титана.

Благодаря высокой коррозионной стойкости в морской воде, хорошему сопротивлению эрозии и кавитации титан и его сплавы относятся к материалам, практически идеально подходящим для строительства судов и морских сооружений (рис. 8.10).

В первую очередь титановые сплавы нашли применение для оборудования подводных лодок. В Норвегии, США, Японии и России ведутся работы по использованию титановых сплавов для морских платформ, предназначенных для добычи нефти и газа и железомарганцевых конкреций со дна Мирового океана.

Устойчивость титана к хлорсодержащим окислительным сре-

Рис. 8.10. Диаграмма коррозионной стойкости титана в морской воде и рассолах:
I - питтинг и щелевая коррозия; II шелевая коррозия; III - полный иммунитет к коррозии

дам обусловила его широкое использование в химической промышленности для производства хрома, хлоратов, диоксида хлора, лимонной кислоты, при изготовлении оборудования для целлю-лозно-бумажной промышленности. При этом оборудование из титановых сплавов характеризуется высокой долговечностью и низкими затратами на текущий ремонт. Благодаря высокой стойкости к хлоридному воздействию титановые контейнеры целесообразно использовать для захоронения радиоактивных отходов в специальных подземных шахтах и галереях.

Высокая коррозионная стойкость в различных средах делает сплавы титана перспективными для применения в пищевой промышленности. Некоторые пищевые продукты могут портиться от контакта со сталью, тогда как титан не придает им постороннего запаха, цвета или вкуса. Благодаря пластичности и вязкости при низких температурах титановые сплавы применяют в холодильной и криогенной технике.

Титан используется в медицине благодаря полной биологической совместимости с тканями человеческого организма. Титан не отторгается костной и мышечной тканями и легко обрастает ими. По своей биологической инертности он превосходит все известные коррозионно-стойкие стали и сплавы. В ортопедической хирургии титановые сплавы используют в качестве протезов плечевых, бедренных, коленных суставов, для соединения и сращивания переломов. Титановые сплавы применяют для изготовления сердечно-сосудистых клапанов и электронных стимуляторов, в качестве зубопротезных импнантатов.

В России, США и других странах появились монументальные сооружения, изготовленные из титана. Широко известны монумент Покорителям космоса и памятник Ю. Гагарину в Москве.

В Японии широко используется листовой титан для наружной обшивки крыш, внутреннего интерьера.

На титановых изделиях методом анодного окисления можно образовывать слои оксидов различной толщины, изменяющие цвет их поверхности. Регулируя уровень напряжений и время обработки, можно получить темно-синий, светло-синий, желтый, розовый, бирюзовый, зеленый цвета. Отжиг титановых изделий в атмосфере азота или ионно-плазменная обработка позволяют формировать на поверхности стойкие нитриды титана золотых оттенков. Такая технология использована для реставрации памятников и изготовления крестов на восстанавливаемых церковньх зданиях.

Широкое внедрение титановых сплавов объясняется высоким сродством титана ко многим элементам и прочностью химических связей в его природных соединениях, однако сдерживается пока их сравнительно высокой стоимостью. Совершенствование технологических процессов производства и широкие перспективы применения титановых сплавов в различных отраслях позволяют с уве-

ренностью утверждать, что они станут важнейшими конструкционными материалами ближайшего будущего.

8.4. Медь и ее сплавы

Основные свойства меди. Медь - металл розовато-красного цвета, плотность меди 8,95 г/см ${ }^{3}$, температура плавления $1083^{\circ} \mathrm{C}$. Медь кристаллизуется в ГЦК решетке и не имеет полиморфных преврашений. На воздухе при наличии влаги и углекислого газа медь медленно окисляется, покрываясь пленкой так называемой патины зеленого цвета, которая является щелочным карбонатом меди $(\mathrm{CuOH})_{2} \mathrm{CO}_{3}$. Эта пленка в определенной мере защищает медь от дальнейшей коррозии.

Чистая медь обладает высокой электропроводностью (на втором месте после серебра), пластичностью, коррозионной стойкостью в пресной и морской воде, а также в некоторых химических средах. Медь принято считать эталоном электро- и теплопроводности по сравнению с другими металлами. Характеристики этих свойств меди принимаются за 100%, в то время как у алюминия, магния и железа они составляют соответственно $60 ; 40$ и 17% свойств меди. Механические свойства меди в литом состоянии: $\sigma_{\mathrm{B}}=160 \mathrm{M} П а ; \sigma_{0,2}=35 \mathrm{M}$ Па; $\delta=25 \% ;$ в горячедеформированном: $\sigma_{\mathrm{B}}=250 \mathrm{M}$ Па; $\sigma_{0,2}=95 \mathrm{MПа} ; \delta=50 \%$. Из-за низких значений предела текучести и высокой стоимости чистая медь как конструкционный материал не применяется. Около половины производимой меди используется в электро-и радиотехнике.

Электропроводность меди зависит от содержания примесей. При наличии даже небольшого количества примесей электропроводность резко падает. Для проводов применяют электролитическую медь следующих марок (ГОСТ 859-2001): М3 - $99,5 \% \mathrm{Cu}$; М2 $99,7 \%$; M1 - 99,9\%; М0 - 99,95\%; M00-99,99\% Cu.

Для повышения прочности проводов, например трамвайных и троллейбусных, их дополнительно наклепывают или легируют кадмием в количестве 1%. При этом электрическая проводимость уменышается на 10%, но прочность увеличивается почти в 2 раза.

Вредными примесями, снижающими механические и технологические свойства меди и ее сплавов, являются висмут и свинец, сера и кислород. Висмут и свинец почти нерастворимы в меди и образуют легкоплавкие эвтектики по границам зерен, что способствует красноломкости и ухудшает способность к горячей деформации. Из-за отрицательного влияния на пластичность меди содержание висмута не должно превышать $0,002 \%$. Сера с медью образует эвтектику $\mathrm{Cu}-\mathrm{Cu}_{2} \mathrm{~S}$, обладающую повышенной хрупкостью. Особо вредной примесью является кислород, образующий даже в небольших количествах хрупкую эвтектику $\mathrm{Cu}-\mathrm{Cu}_{2} \mathrm{O}$ по

границам зерен. При нагреве металла с включениями эвтектики в атмосфере, содержащей водород, диффундирующий в глубь меди, проявляется ее так называемая водородная болезнь: $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2}=$ $=2 \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$, в результате чего пары воды создают высокое давление и возможно образование трещин.

Медь и ее сплавы имеют удовлетворительную технологичность. Медь хорошо деформируется, хорошо сваривается и паяется. Ее недостатком является сравнительно плохая обрабатываемость резанием.

Соединение деталей из меди и ее сплавов часто выполняют посредством пайки. Высокотемпературные припои изготавливают на основе меди и цинка с добавкой серебра; их температура плавления составляет $600 \ldots 1000^{\circ} \mathrm{C}$. Низкотемпературные припои изготавливают из сплавов олова со свинцом; их температура плавления $200 \ldots 300^{\circ} \mathrm{C}$. Паяные медные соединения обычно применяют в криостатах исследовательских установок.

Сплавы меди устойчивы к коррозии, обладают хорошими антифрикционными, технологическими и механическими свойствами и широко используются в качестве конструкционных материалов. По технологическим характеристикам различают деформируемые и литейные медные сплавы, по химическому составу их подразделяют на латуни и бронзы. Латуни представляют собой сплавы меди с цинком, а бронзы - сплавы меди с другими элементами.

Медные сплавы обозначают начальной буквой сплава Л - латунь или Бр - бронза, после чего следуют первые буквы основных элементов, образующих сплав: О - олово; Ц - цинк; Мц - марганец; А - алюминий; Ж - железо; Ф - фосфор; Б - бериллий; X - хром; Н - никель и т.д., а после них цифры, указывающие содержание легирующих элементов в процентах. В марках деформируемых латуней не указывают содержание цинка, а деформируемых бронз - содержание меди, их концентрации определяются по разности от 100%. Например, ЛЖМц-59-1-1 - латунь, содержащая, \%: $59 \mathrm{Cu} ; 1 \mathrm{Fe} ; 1 \mathrm{Mn}$; ост. Zn ; БрОФ6,5-0,15 - бронза, содержащая, \%: 6,5 Sn; 0,15 P; ост. Сu.

Порядок цифр в обозначениях марок деформируемых и литейных сплавов различен. В марках деформируемых латуней и бронз цифры, отделенные друг от друга дефисом, ставятся в конце обозначения и расположены в той же последовательности, что и буквы, например ЛА60-1-1 или БрОЦ4-3.

В литейных латунях и бронзах содержание всех компонентов сплавов в процентах, в том числе содержание цинка, приведены сразу же после обозначающих их букв. Содержание меди в литейных сіллавах определяется по разности от 100%. Например, ЛЦ16К4 - литейная латунь, содержащая, \%: $16 \mathrm{Zn} ; 4 \mathrm{Si}$; ост. Си; БрО5Ц5С5 литейная бронза, содержащая, $\%: 5 \mathrm{Sn} ; 5 \mathrm{Zn} ; 5 \% \mathrm{~Pb}$, ост. Cu .

Сплавы медн с пинком, илн латуни. Двойные или многокомпонентные сплавы меди, в которых основным легирующим элементом является цинк, называют латунями.

В системе $\mathrm{Cu}-\mathrm{Zn}$ образуется шесть твердых растворов: α, β, γ, $\delta, \varepsilon, \eta$, но практическое применение имеют сплавы, содержацие до 45% цинка.

На рис. 8.11, а приведена левая часть диаграммы состояния системы $\mathrm{Cu}-\mathrm{Zn}$, содержащая область однофазных (α) и двухфазных $(\alpha+\beta)$ латуней.

Однофазная α-латунь представляет собой твердый раствор цинка в меди с ГЦК решеткой и может содержать до 39% цинка. Однофаз-

Рис. 8.11. Диаграмма состояния системы $\mathrm{Cu}-\mathrm{Zn}$ (а) и влияние содержания цинка на механические свойства латуни (б)

ная α-латунь характеризуется высокой пластичностью. При содержании цинка более 39% в структуре проявляется хрупкая β-фаза.

Существуют две модификации β-фазы: выше температуры $454 \ldots 486^{\circ} \mathrm{C}$ устойчива гомогенная пластичная β-фаза, имеющая неупорядоченное расположение атомов, ниже этого температурного диапазона - более твердая и хрупкая β^{\prime}-фаза, характеризующаяся упорядоченным расположением атомов меди и цинка.

Двухфазные $(\alpha+\beta)$-латуни могут содержать до 45% цинка. Так как β^{\prime}-фаза, существующая при комнатной температуре, имеет бо́льшую хрупкость и твердость, двухфазные латуни менее пластичны и более прочны.

Влияние химического состава на свойства латуней показано на рис. 8.11, б. В отличие от равновесного состояния β^{\prime}-фаза практически появляется уже при концентрации цинка более 30%. Поэтому в сплавах, содержащих менее 39% цинка, увеличение его концентрации повышает и прочность, и пластичность. При увеличении содержания цинка свыше 39% пластичность сплавов начинает уменьшаться, а после появления в структуре значительного количества β^{\prime}-фазы происходит резкое падение пластичности. Прочность при увеличении содержания цинка растет до 45%, а потом также резко падает. При дальнейшем увеличении содержания цинка (области $\beta, \alpha+\beta$ и т.д.) свойства сохраняют свои низкие значения.

Латуни обычно хорошо обрабатываются давлением. Однофазные α-латуни высокопластичны и хорошо деформируются в холодном состоянии. Двухфазные ($\alpha+\beta^{\prime}$)-латуни лучше деформируются при нагреве выше температуры превращения $\beta \leftrightarrow \beta^{\prime}$. Обычно их деформируют при температуре несколько выше $700^{\circ} \mathrm{C}$.

По технологическим признакам различают деформируемые и литейные латуни (табл. 8.6).

Редко легируют дополнительно другими элементами α-латуни, которые представляют собой обычно двойные сплавы меди с цинком. В марках этих латуней Л62, Л68, Л80, Л90 цифры показывают содержание меди. Цинк дешевле меди, поэтому, чем больше цинка в латуни, тем ниже ее стоимость. Из однофазных α-латуней холодным деформированием изготавливают ленты, гильзы патронов, трубки теплообменников, проволоку.

Латунь, содержашая до 10% цинка, так называемый томпак, имеет цвет золота и применяется для изготовления украшений.

Дополнительно легируют алюминием, железом, никелем ($\alpha+$ $+\beta$)-латуни для увеличения прочности, а также для улучшения обрабатываемости на станках. Высокими коррозионными свойствами обладают латуни, легированные оловом (ЛО70-1, ЛО62-1) и называемые морскими латунями. Наибольшей прочностью обладают латуни, дополнительно легированные алюминием, железом, марганцем

Структура однофазной α-латуни и двухфазной ($\alpha+\beta$)-латуни показана на рис. 8.12.

Таблица 8.6. Хнмический состав и механнческие свойства латуней

Марка латуни	Ctpysтура		Содержание, \%	$\stackrel{\sigma_{\mathrm{B}}}{\mathrm{M}}$	$\delta,$	Tвердость HB	Область применения
		Cu	Легирующие элементы				
Деформируемье латуни (ГОСТ 15527-70)							
Л90 (томпак)	α	$88 . . .91$	-	260	45	530	Ленты, листы, трубы, художественные изделия, мембраны, змеевики
Л80	α	$79 \ldots 81$	-	320	52	550	Ленты, проволока, трубы конденсаторов, теплообменников
Л63	$\alpha+\beta$	$62 \ldots 65$	-	330	50	560	Ленты, проволока, прутки, трубы радиаторов, патрубки, прокладки
ЛС59-1	$\alpha+\beta$	$57 \ldots 60$	$0,8 \ldots 1,9 \mathrm{~Pb}$	400	45	800	Полосы, прутки, втулки, краны, тройники, прокладки
ЛЖМц59-1-1	$\alpha+\beta$	$57 . .60$	$\begin{aligned} & 0,6 \ldots 1,2 \mathrm{Fe} ; 0,1 \ldots 0,4 \mathrm{Al} ; \\ & 0,3 \ldots 0,7 \mathrm{Sn} ; 0,5 \ldots 0,8 \mathrm{Mn} \end{aligned}$	450	50	880	Проволока, трубы
ЛАЖ60-1-1	$\alpha+\beta$	$58 . .61$	$\begin{aligned} & 0,75 \ldots 1,5 \mathrm{Al} ; \\ & 0,75 \ldots 1,5 \mathrm{Fe} ; \\ & 0,1 \ldots 0,6 \mathrm{Mn} \end{aligned}$	450	45	880	Трубы, прутки, свариваемые элементы аппаратуры
Литейные латуни (ГОСТ 17711-93)							
ЛЦ16K4	$\alpha+\beta$	78...81	$3 \ldots 4,5 \mathrm{Si}$	300	15	100	Арматура, детали приборов
ЛЦ40Мц3Ж	$\alpha+\beta$	53..58	$3 \ldots 4 \mathrm{Mn} ; 0,5 \ldots 1,5 \mathrm{Fe}$	500	10	100	Детали ответственного назначения, гребные винты и их лопасти
ЛЦ23A6Ж3Мц2	$\alpha+\beta$	64...68	$\begin{gathered} 4 \ldots 7 \mathrm{Al} ; 2 \ldots 4 \mathrm{Fe} ; \\ 1,5 \ldots 3 \mathrm{Mn} \\ \hline \end{gathered}$	700	7	160	Гайки нажимных винтов, червячные винты

Отрицательным свойством деформированных латуней, содержащих более 20% цинка, является склонность к растрескиванию при вылеживании во влажной атмосфере, содержащей следы аммиака. Сезонное растрескивание обусловлено коррозией по границам зерен в местах неравномерной концентрации примесей. Для снижения этого дефекта после деформации латуни подвергают отжигу при температуре ниже температуры рекристаллизации (обычно $250^{\circ} \mathrm{C}$).

Из деформированных латуней изготавливают трубы, прутки, полосы, проволоку. Литейные латуни отливают в землю, в кокиль, под давлением, их используют для изготовления арматуры и деталей для судостроения, гаек нажимных болтов для сложных условий работы, втулок, вкладышей и подшипников.

Благодаря узкому интервалу между линиями ликвидус и солидус литейные латуни не подвержены ликвации и усадочной пористости.

Бронзы. Двойные или многокомпонентные сплавы меди с оловом, алюминием, свинцом, бериллием, кремнием, хромом и другими элементами, среди которых цинк не является основным легирующим элементом, называются бронзами. По главному легирующему элементу различают бронзы оловянные, свинцовые, кремниевые и др. Наиболее часто применяют оловянные бронзы.

Диаграмма состояния системы $\mathrm{Cu}-\mathrm{Sn}$ (рис. 8.13) характеризуется сравнительно большим расстоянием между линиями ликвидус и солидус. Поэтому особенностью двухкомпонентньх оловянных бронз являются их повышенная склонность к ликвации, вызванная медленно проходящим процессом диффузии, низкая жидкотекучесть и рассеянная пористость.

В соответствии с диаграммой состояния предельная растворимость олова в меди составляет $15,8 \%$. Учитывая склонность сплавов системы $\mathrm{Cu}-\mathrm{Sn}$ к неравновесной кристаллизации, при обыч-

Рис. 8.12. Структура однофазной α-латуни (a), увеличение в 200 раз, и двухфазной $(\alpha+\beta)$-латуни (б), увеличение в 100 раз

Рис. 8.13. Диаграмма состояния системы $\mathrm{Cu}-\mathrm{Sn}(a)$ и зависимость механических свойств оловянной бронзы от содержания олова (б)

ных условиях охлаждения область твердого раствора α сужается (на рис. 8.13, a штриховые линии). Уже при содержании олова $5 \ldots 6$ в структуре появляется $(\alpha+\beta)$-эвтектоид, в котором δ-фаза представляет собой твердое и хрупкое электронное соединение $\mathrm{Cu}_{31} \mathrm{Sn}_{8}$. С появлением δ-фазы снижаются пластичность и вязкость сплавов. Бронзы с содержанием олова более 12% из-за повышенной хрупкости как конструкционный материал практически не применяются.

На рис. 8.14 приведена микроструктура оловянной бронзы в литом состоянии и после деформации и отжига. Светлые включения произвольной формы (рис. 8.14, б) представляют собой эвтектоид ($\alpha+\mathrm{Cu}_{31} \mathrm{Sn}_{8}$).

Двойные оловянные бронзы дорогостояци и имеют пониженные литейные свойства. Их обычно дополнительно легируют цинком, свинцом, никелем, фосфором.

Различают деформируемые и литейные оловянные бронзы (табл. 8.7).

Деформируемые оловянные бронзы содержат $3 . .7 \%$ олова, до 5% цинка и свинца и до $0,4 \%$ фосфора, состоят из однородного твердого раствора и после отжига имеют однофазную структуру. Благодаря хорошей пластичности деформируемые оловянные бронзы легко подвергаются обработке давлением; поставляются в виде прутков, труб и лент, используются также для изготовления различных деталей с высокими упругими свойствами. Прочность таких бронз $\sigma_{\mathrm{B}}=320 \ldots 350$ МПа при относительном удлинении $\delta=30 \ldots 50 \%$.

При концентрации олова $9 \ldots 11 \%$ в структуре увеличивается количество хрупкой составляющей - эвтектоида, содержащего

Рис. 8.14. Микроструктура оловянной бронзы, увеличение в 200 раз:
a - после литья; 6 - после деформации и отжига
соединение $\mathrm{Cu}_{31} \mathrm{Sn}_{8}$, что исключает возможность пластической деформации. Такие бронзы применяют только в литом состоянии.

Литые оловянные бронзы с цинком и свинцом имеют высокие литейные свойства: малую объемную усадку (менее 1%) и хорошую жидкотекучесть. Из литейных бронз изготавливают сложные отливки, в частности художественное литье.

Высокая коррозионная стойкость позволяет использовать литейные бронзы в качестве арматуры, работающей в агрессивных средах и обладающей высокой электро- и теплопроводностью.

Наличие включений твердого эвтектоида обеспечивает высокую стойкость к истиранию, а мягкие частицы облегчают приработку и образуют на поверхности мельчайшие каналы, по которым может циркулировать смазочный материал. Поэтому бронзы, содержащие $9 \ldots 10 \%$ олова, являются одним из лучших антифрикционных материалов и применяются для изготовления подшипников. Для улучшения антифрикционных свойств в состав бронз также вводят свинец.

Литые оловянные бронзы имеют предел прочности $\sigma_{\text {в }}=170 \ldots$ 200 МПа при относительном удлинении $\delta=5 \ldots 10 \%$.

Среди оловянных бронз следует выделить так называемую колокольную бронзу, которая содержит примерно 20% олова с небольшими добавками других элементов.

Из безоловянных бронз наибольшее применение нашли алюминиевые, кремниевые и бериллиевые бронзы.

8.5. Припои

Припои. Сплавы, применяемые для пайки металлов, называют припоями. Припои должны обладать сравнитељьно невысокой температурой плавления и в расплавленном состоянии хорошо смачивать паяемый материал.

Низкотемпературные оловянные припои имеют температуру плавления $200 \ldots 300^{\circ} \mathrm{C}$ и обеспечивают лишь герметичность спая без высоких механических свойств ($\sigma_{\mathrm{B}}=50 \ldots 70 \mathrm{M}$ Па). Из-за низкой прочности соединения паяная деталь не должна подвергаться высоким механическим нагрузкам. В качестве низкотемпературных припоев чаще всего применяют сплавы свинца и олова, обозначаемые ПОС60, ПОС40, ПОСЗ0, где цифры указывают на содержание олова в процентах. Припой ПОС60, в производстве обычно называемый третником, из мягких припоев является наиболее легкоплавким. Его температура плавления составляет примерно $185^{\circ} \mathrm{C}$.

Кроме оловянно-свинцовых припоев применяют оловянно-цинковые, содержащие $40 ; 60 ; 90 \%$ олова (марки ПОЦ 40 , ПОЦ60, ПОЦ90). Такие припои имеют более высокую прочность по сравнению с оловянно-свинцовыми припоями.

Высокотемпературные припои имеют высокую температуру плавления, их применение для пайки сложнее, но спай имеет значительно более высокие механические свойства. При пайке медных сплавов свойства припоев близки к свойствам основного металла. В качестве высокотемпературных припоев используют латуни $\mathrm{Cu}-\mathrm{Zn}$ или сплавы $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}$ - так называемые серебряные припои с температурой плавления $800^{\circ} \mathrm{C}$. Серебряные припои маркируют буквами ПСр и цифрой, показывающей среднее содержание серебра в процентах, например ПСр 25 , ПСр 50 .

8.6. Свойства и применение сплавов цветных металлов при низких температурах

Алюминий и его сплавы. Способность алюминия и его сплавов сохранять пластичность вплоть до криогенных температур послужила основой для их широкого использования при изготовлении низкотемпературного оборудования. Применимость алюминиевых сплавов для работы в условиях низких температур обусловлена кристаллической структурой алюминия, который кристаллизуется в ГЦК решетке и не имеет полиморфных превращений.

В холодильной и криогенной технике применяют как технический алюминий, так и его сплавы. Технический алюминий широко используют для изготовления малонагруженных элементов конструкций. В общем объеме потребление его достаточно велико. Из алюминия изготавливают такие детали, как насадки регенераторов, паяные теплообменники аппаратов воздухоразделительных установок и др. Алюминиевые сплавы применяют для изготовления емкостей и трубопроводов для хранения и транспортирования жидких газов: природного газа, кислорода, азота, водорода и гелия, а также в качестве материала для ректификационных колонн и трубных систем. При температуре эксплуатации ниже 120 K алю-

Миниевые сплавы используют главным образом в виде горячекатаНоГо листа.

Высокий коэффициент теплопроводности алюминиевых сплавов часто заставляет отказываться от применения их в деталях, которые определяют притоки теплоты к охлаждаемым элементам. Например, горловины криостатов выполняют из аустенитных сталей или полимерньх материалов, хотя сам внутренний сосуд изготавливают из алюминиевого сплава.

Алюминиевые сплавы имеют более высокий ТКЛР, чем аустенитные стали. Это определяет более высокий уровень термических напряжений, особенно в жесткозащемленных элементах конструкций при их охлаждении. Поэтому в трубопроводах для перекачки сжиженных газов в случае отсутствия возможности применения компенсаторов деформации предпочтительно использовать сплавы на основе железа.

В технике низких температур применяют деформируемые и литейные алюминиевые сплавы. Временное сопротивление деформируемых термообработанных алюминиевых сплавов может достигать 500 МПа и более при плотности менее 2,85 г $/ \mathrm{cm}^{3}$. Удельная прочность $\sigma_{\mathrm{B}} /(\gamma g)$ алюминиевых сплавов имеет высокие значения и приближается к удельной прочности высокопрочных сталей. Прочность при растяжении деформируемых алюминиевых сплавов с понижением температуры от 293 до 77 K увеличивается на 35 ... 60%, а предел текучести - на $15 \ldots 25 \%$. Пластичность при снижении температуры обычно даже несколько возрастает или остается на уровне пластичности при комнатной температуре.

Алюминиевые сплавы не имеют порога хладноломкости: вязкость при ударном изгибе у них равномерно понижается с падением температуры; по сравнению с аустенитными сталями значения ее сушественно ниже. При низких температурах алюминиевые сплавы имеют вязкий излом при относительно малой ударной вязкости. Усталостная прочностъ, определенная как на гладких, так и на надрезанных образцах, с понижением температуры также увеличивается. Вязкость разрушения алюминиевых сплавов в условиях плоской деформации почти не уменьшается, а иногда даже увеличивается при криогенных температурах по сравнению с вязкостью разрушения при комнатной температуре. Величина вязкости разрушения зависит от чистоты металла.

Наибольшее применение в технике низких температур нашли стлавы алюминия с магнием (магналии) благодаря удачному сочетанию в них прочности, пластичности, свариваемости, коррозионной стойкости. Увеличение содержания магния ведет к росту прочности сплава. Применяемые термически неупрочняемые сплавы содержат не более 7% магния.

Из магналиев как за рубежом, так и в России предпочтение в машиностроении отдается сплаву АМг5 - по свариваемости он

превосходит сплав AMr 2 , хотя несколько уступает ему по пластичности.

В холодильной и криогенной технике также используют термоупрочняемые алюминиевые сплавы, легированные медью, магнием, марганцем и друтими элементами. Оптимальные механические свойства эти сплавы приобретают после термической обработки, состоящей из закалки в воде от температуры $500^{\circ} \mathrm{C}$ и последуюшего естественного или искусственного старения за счет дисперсионного выделения при старении интерметаллидных фаз. Механические свойства при криогенных температурах некоторых деформируемых термоупрочняемых алюминиевых сплавов приведены в табл. 8.7.

Прочность термоупрочняемых алюминиевых сплавов приближается к прочности аустенитньх сталей, поэтому во многих случаях они могли бы их заменить. Их недостатком является склонность к коррозии под напряжением. Кроме того, эти сплавы разупрочняются в зоне сварного шва.

Таблица 8.7. Механнческне свойства деформнруемых термоупрочняемых алюминиевых сплавов (после закалки и старения) при криогенных температурах испытаний $T_{\text {пса }}$

Марка сплава	$T_{\text {wen }}, \mathrm{K}$	σ_{2}, МПа	$\sigma_{\mathrm{T}}, \mathrm{M}$ Па	\%, \%
Д16	293	470	300	19
	77	560	380	27
	20	660	450	16
Д20	293	400	280	15
	77	510	380	15
	20	660	420	16
1201 (Д20-1)	293	440	350	18
	77	550	400	10
	20	650	450	12
AK6	293	410	300	15
	77	500	380	18
AK8	293	450	310	13
	77	530	410	13
	20	550	360	18
1915	293	340	200	15
	203	370	240	16
	77	470	290	24

Наряду с деформируемыми в технике низких температур применяют литейные алюминиевые сплавы. Их используют главным образом для изготовления деталей сложной конфигурации типа корпусов арматуры. Наибольшее распространение получили сплавы, легированные $8 \ldots 13 \%$ кремния (силумины), обладающие высокими литейными свойствами.

Сварка изделий из алюминиевых сплавов имеет особенности, определяемые свойствами алюминия. Высокая теплопроводность и теплоемкость алюминия обусловливают необходимость обеспечения достаточно интенсивного и концентрированного нагрева при сварке и выбора соответствующих источников нагрева. При проведении сварки плавлением дуга должна быть надежно защищена инертным газом.

Титан и его сплавы. Титановые сплавы относятся к числу наиболее перспективных материалов для техники низких температур. Титановые сплавы определенных марок обладают удовлетворительной пластичностью и вязкостью вплоть до 4 K . Благодаря низкой плотности в сочетании с высокой прочностью и достаточной пластичностью применение титановых сплавов при низких температурах позволяет уменьшить массу конструкций в сравнении с хромоникелевыми коррозионно-стойкими сталями на $20 \ldots 25 \%$ и алюминиевыми сплавами - на $40 \ldots 45 \%$. Поэтому титановые сплавы все чаще применяют для изготовления деталей и узлов, работаюших при низких температурах в летательных аппаратах.

Химическая активность титана требует определенной осторожности при использовании титановых сплавов в конструкциях, где рабочей средой является газообразный или жидкий кислород. Для технического титана горение проволоки диаметром 0,5 мм происходит уже при давлении $0,1 \mathrm{M}$ Ма, с увеличением давления кислорода скорость горения возрастает. В этом титановые сплавы уступают медным сплавам и хромоникелевым сталям, для которых возможно значительно более высокое минимальное давление кислорода.

Сплавы со структурой α-фазы типа BT5-1, легированные 4... 6% алюминия, $2 \ldots 3 \%$ олова, и ОТ4-1, легированные $1,5 \ldots 2,5 \%$ алюминия, $0,7 \ldots 2 \%$ марганца, хорошо свариваются, сохраняют высокую пластичность при низких температурах и поэтому являются наиболее перспективными конструкционными материалами для использования в холодильной и криогенной технике. Сплавы с двухфазной ($\alpha+\beta$)-структурой типа ВТ3-1, содержащие $5,5 \ldots 7 \%$ алюминия, $0,8 \ldots 2 \%$ хрома, $2 \ldots 3 \%$ молибдена, $0,2 \ldots 0,7 \%$ железа, имеют более высокую прочность, но несколько меньшую пластичность, их реже используют при криогенных температурах.

Механические свойства сплавов титана при низких температурах для отожженных прутков сечением $12 \ldots 20$ мм приведены в табл. 8.8.

Табли иа 8.8. Механнческие свойства тнтанових сплавов при крногенных температурах испнтаннй $\boldsymbol{T}_{\text {шен }}$

Сплав	Структура	$T_{\text {w }}$, K	$\stackrel{\sigma_{\mathrm{p}},}{\mathrm{M} \mathbf{n}^{2}}$	$\begin{aligned} & \sigma_{02}, \\ & \mathrm{M} \AA \mathrm{~A} \end{aligned}$	¢, \%	$\psi, \%$	$\begin{gathered} \mathrm{KCU}, \\ \text { Д*/ } \mathrm{cm}^{2} \end{gathered}$
BT3-1	($\alpha+\beta$)-сплав	293	1080	1010	15	38	70
		77	1670	1540	6	21	30
		20	1880	1640	4	20	60
BT5-1	α-сплав	293	820	800	20	55	100
		77	1320	1310	16	27	40
		20	1580	1400	15	9	40
OT4-1	Псевдо- α-сплав	293	650	630	21	54	105
		77	1150	1090	25	49	23
		20	1350	-	14	-	30

Вязкость разрушения титановых сплавов при понижении температуры уменьшается. Так, для сплава типа ВТ5-1 при переходе от испытания при комнатной температуре к испытанию в жидком водороде значение коэффициента интенсивности напряжений падает вдвое: с 124 до $62 \mathrm{MПа} \cdot$ м $^{1 / 2}$. Аналогично и поведение сплава ВТ3-1, хотя для него значение величины $K_{\text {Ic }}$ значительно меньше (ВТ3-1 более прочный сплав): 52 M Ма \cdot м $^{1 / 2}$ при температуре 293 K и 34 M Ма \cdot м $^{1 / 2}$ при температуре 20 K .

Медь п ее сплавы. Материалами, одними из первых нашедшими применение в холодильном и криогенном оборудовании, являются медь и ее сплавы. Медь не имеет порога хладноломкости, и нижний температурный предел ее использования близок к абсолютному нулю. Однако из-за высокой стоимости и дефицитности меди применение медных сплавов в технике низких температур в последнее время сокращается.

Технически чистую медь используют в установках разделения газов методом глубокого охлаждения для изготовления различных трубчатых конструкций: витых и прямотрубных теплообменников, трубчатых конденсаторов и др. Листовую медь используют для изготовления внутренних емкостей и экранов сосудов Дьюара, в которых хранятся и транспортируются жидкие газы, для изготовления обечаек ректификационных колонн жидкого воздуха. Широкое применение находят сплавы меди - латуни и бронзы. Их применяют в корпусах холодильной и криогенной арматуры, для изготовления отливок, пружин и других деталей. Медь кристаллизуется в ГЦК решетке и не имеет полиморфных превращений. Тип кристаллической решетки обусловил применимость меди и ее сплавов

при низких температурах. Медь и ее сплавы имеют высокое значение ТКЛР. С понижением температуры до 120 K этот коэффициент уменьшается, но это уменьшение выражено значительно слабее, чем у коррозионно-стойких сталей и алюминиевых сплавов.

Технически чистая медь имеет невысокие прочностные свойства. При снижении температуры от 293 до 20 K прочность и твердость меди повышаются почти в 2 раза, пластичность сохраняется на том же уровне. Ударная вязкость даже увеличивается, сохраняя при 20 K столь высокие значения, что надрезанные образцы не разбиваются копром, а протягиваются между его опорами. Усталостная прочность меди и ее сплавов с понижением температуры растет так же, как модуль упругости и модуль сдвига. Широкое применение в холодильном и криогенном машиностроении находят латуни марок Л63, Л68, ЛЖМц59-1-1, Л59, ЛК80-3Л и бронзы марок БрАЖМц10-3-1,5, БрКМц3-1, БрБ2.

Механические свойства меди и ее сплавов при криогенных температурах приведены в табл. 8.10.

Табли ца 8.10. Механические свойства медных сплавов при крногенных
температурах испытаний $T_{\text {нси }}$

Сплав и его состояние	$T_{\text {Mnn }}$,	$\stackrel{\sigma_{\text {\% }}}{\text { мП, }}$	$\begin{aligned} & \sigma_{020}, \\ & \text { M } \quad 2 \end{aligned}$	$\begin{aligned} & \hline \delta, \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{KCU}, \\ \text { Д } \times / \mathrm{cm}^{2} \end{gathered}$
Медь M1, отожженная	293	230	50	40	320
	77	350	90	42	420
	20	410	80	64	380
Латунь Л68, отожженная при температуре $550^{\circ} \mathrm{C}$ в течение 2 ч	293	400	280	50	140
	195	430	310	50	170
	77	540	400	51	140
Латунь ЛЖМц59-1-1, горячекатаное состояние	293	460	200	34	120
	77	600	280	37	100
	20	710	320	38	100
Латунь ЛК $80-3$, отожженная при температуре $500^{\circ} \mathrm{C}$ в течение 5 ч	293	390	130	37	100
	77	430	210	23	60
Бронза БрАЖМц10-3-1,5, кованый пруток 12×12 мм после закалки от температуры $850^{\circ} \mathrm{C}$ в воде и отпуска при температуре $350^{\circ} \mathrm{C}$	293	830	360	18	50
	77	940	430	15	40
Бронза БрБ2, после закалки от температуры $760^{\circ} \mathrm{C}$ в воде и старения при температуре $320^{\circ} \mathrm{C}$	293	1400	1260	9	20
	77	1600	1470	10	30
	20	1720	1440	9	30

Латунь Л68 применяют для изготовления трубопроводов, сеток, прокладок, работающих при температуре $520 \ldots 20$ K. Латунь марки ЛС59-1 применяют для изготовления крепежных изделий, работающих в интервале температур 520 ... 20 K . Для более ответственных крепежных деталей в этом же температурном диапазоне применяют латунь марки ЛЖМц59-1-1.

Из литейной латуни ЛК80-3 изготавливают арматуру, корпуса трубопроводов и другие литые детали, работающие при температуре $520 \ldots 20 \mathrm{~K}$.

Бронзу марки БрАЖМц10-3-1,5 применяют для изготовления втулок, шестерен, вентилей, деталей клапанной арматуры, эксплуатируемых при температуре $520 \ldots 77 \mathrm{~K}$.

Наибольшую прочность имеют медно-бериллиевые сплавы, временное сопротивление которьх в термообработанном состоянии более 1000 МПа при удовлетворительной вязкости и пластичности при низких температурах. Поэтому бронза БрБ2, сочетающая высокую прочность с высокой релаксационной стойкостью, нашла применение для изготовления пружинящих элементов криогенной арматуры; они хорошо работают вплоть до 4 K .

Контрольные вопросы

1. Какие металлы относятся к цветным?
2. Какие из цветных металлов относят к легким?
3. Как принято классифицировать сплавы цветных металлов по технологическим свойствам?
4. Что такое латунь?
5. Какие сплавы относят к бронзам?
6. В чем особенность бериллиевых бронз?
7. Что такое дуралюмин?
8. Какие сплавы называют силуминами?
9. Какова коррозионная стойкость сплавов на основе титана?
10. Почему чистый магний не используют для изготовления изделий?
11. С какой целью используют припои?

РАЗДЕЛ ॥
 КЕРАМИЧЕСКИЕ, КОМПОЗИЦИОННЫЕ И ПОРОШКОВЫЕ МАТЕРИАЛЫ

ГЛАВА 9
 КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

9.1. Керамическая технология и классификация керамики

Керамика относится к основным материалам, оказывающим определяющее влияние на уровень и конкурентоспособность промышленной продукции. Это влияние сохранится и в ближайшем будущем. Освоение производства керамики в конце 1960 -х гт. явилось настоящей революцией в материаловедении. За короткое время керамика стала, по общему мнению, третьим промышленным материалом после металлов и полимеров.

Керамика была первым конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах

Основными разработчиками и производителями керамических материалов являются США и Япония. В табл. 9.1 приведены характеристики основных видов керамики. Исследование, проведенное Национальным бюро стандартов США, показало, что использование керамических материалов позволило к 2000 г. осуществить экономию ресурсов страны в размере более 3 млрд долл. Ожидаемая экономия была достигнута прежде всего за счет использования транспортных двигателей с деталями из керамики, керамических материалов для обработки резанием и оптокерамики для передачи информации. Помимо прямой экономии применение керамики позволяет снизить расход дорогих и дефицитных металлов: титана и тантала в конденсаторах, вольфрама и кобальта в режущих инструментах, кобальта, хрома и никеля в тепловых двигателях.

Керамическая технология предусматривает следующие основные этапы: получение исходных порошков, консолидацию порошков, т.е. изготовление компактных материалов, их обработку и контроль изделий. При производстве высококачественной керамики с высокой однородностью структуры используют порошки исходных материалов с размером частиц до 1 мкм. Процесс получения столь высокой степени дисперсности требует больших энергозатрат и является одним из основных этапов керамической технологии.

Получение исходных порошков производится механическим путем с помощью мелющих тел, а также распьлением измельчае-

мого материала в жидком состоянии, осаждением на холодных поверхностях из парогазовой фазы, виброкавитационным воздействием на частицы, находящиеся в жидкости, с помощью самораспространяющегося высокотемпературного синтеза и другими методами. Для сверхтонкого помола (частицы менее 1 мкм) наиболее перспективны вибрационные мельницы, или аттриторы.

Консолидация керамических материалов состоит из процессов формования и спекания. Различают три основные группы методов формования:

- прессование под действием сжимаюшего давления, при котором происходит уплотнение порошка за счет уменьшения пористости;
- пластичное формование выдавливанием прутков и труб через мундштук (экструзия) формовочных масс с пластификаторами, увеличивающими их текучесть;
- шликерное литье для изготовления тонкостенных изделий любой сложной формы, при котором для формования используют жидкие суспензии порошков.

При переходе от прессования к пластичному формованию и штикерному литью увеличиваются возможности изготовления изделий сложной формы, однако усложняется процесс сушки изделий и удаления пластификаторов из керамического материала. Поэтому для изготовления изделий сравнительно простой формы предпочтение отдается прессованию, а более сложной - экструзии и шликерному литью.

При спекании отдельные частицы порошков превращаются в монолит, при этом формируются окончательные свойства керамики. Процесс спекания сопровождается уменьшением пористости и усадкой.

Применяют печи для спекания при атмосферном давлении, установки горячего изостатического прессования (газостаты), прессы горячего прессования с усилием прессования до 1500 KH . Температура спекания в зависимости от состава может составлять $2000 \ldots 2200^{\circ} \mathrm{C}$.

Часто применяют совмещенные методы консолидации, сочетающие формование со спеканием, а в некоторых случаях - синтез образуюшегося соединения с одновременным формованием и спеканием.

Обработка керамики и контроль являются основными составляющими в балансе стоимости керамических изделий. По некоторым данным, стоимость исходных материалов и консолидации составляет всего 11% (для металов 43%), в то время как на обработку приходится 38% (для металлов 43%), а на контроль 51% (для металлов 14%). К основным методам обработки керамики относятся термическая обработка и размерная обработка поверхности. Термическая обработка керамики производится с целью кри-

Таблица 9.1. Характеристика

Функциональный тип керамики	Используемые свойства и характеристики
Электрокерамика	Электропроводность, электроизоляци- онные, диэлектрические и пьезоэлект- рические свойства
Магнетокерамика	Магнитные свойства
Оптокерамика	Прозрачность, поляризация, флуорес- ценция
Хемокерамика	Абсорбционная и адсорбционная спо- собность, каталитическая активность, коррозионная стойкость
Биокерамика	Биологическая совместимость, стой- кость к биокоррозии
Термокерамика	Жаропрочность, жаростойкость, огне- упорность, теплопроводность, низкий КТР, теплоемкость
Механокерамика	Твердость, прочность, модуль упругос- ти, вязкость разрушения, износостой- кость, триботениические свойства, КТР, термостойость
Сверхпроводящая керамика	Электропроводность
ндерная керамика	Радиационная стойкость, жаропроч- ность, жаростойость, сечение захвата ность

Примечание. КТР - коэффициент термического расширения; МГД -

основных видов керамнки

Область применения	Используемые сосдинения
Интегральные схемы, конденсаторы, вибраторы, зажигатели, нагреватели, термисторы, транзисторы, фильтры, солнечные батареи, твердые электролиты	$\mathrm{BeO}, \mathrm{MgO}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{ZnO}, \mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{ZrO}_{2}, \mathrm{SiC}, \mathrm{B}_{4} \mathrm{C}, \mathrm{TiC}, \mathrm{CdS}$, титанаты, $\mathrm{Si}_{3} \mathrm{~N}_{4}$
Головки магнитной записи, магнитные носители, магниты	Магнитомягкие и магнитотвердые ферриты
Лампы высокого давления, окна прозрачные для инфракрасного излучения, лазерные материалы, световоды, элементы оптической памяти, экраны дисплеев, модуляторы	$\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Y}_{2} \mathrm{O}_{2}, \mathrm{SiO}_{2}, \mathrm{ZrO}_{2}$, $\mathrm{TiO}_{2}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{ThO}_{2}, \mathrm{ZnS}, \mathrm{CdS}$
Сорбенты, катализаторы и их носители, электроды (например, топливных элементов), датчики влажности газов, элементы химических реакторов	$\mathrm{ZnO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SnO}, \mathrm{SiO}_{2}, \mathrm{MgO}$, $\mathrm{BaS}, \mathrm{CeS}, \mathrm{TiB}_{2}, \mathrm{ZrB}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiC}$, титаниды
Протезы зубов, суставов	Системы оксидов
Отнеупоры, тепловые трубы, футеровка высокотемпературных реакторов, электроды для металлургии, теплообменники, теплозащита	$\mathrm{SiC}, \mathrm{TiC}, \mathrm{B}_{4} \mathrm{C}, \mathrm{TiB}_{2}, \mathrm{ZrB}_{2}, \mathrm{Si}_{3} \mathrm{~N}_{4}$, $\mathrm{BeS}, \mathrm{CeS}, \mathrm{BeO}, \mathrm{MgO}, \mathrm{ZrO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$, TiO_{2}, композиты
Детали для тепловых двигателей, уплотнительные, антифрикционные и фрикционные детали, режущий инструмент, пресс-инструмент, направляющие и друтие износостойкие детали	$\mathrm{Si}_{3} \mathrm{~N}_{4}, \mathrm{ZrO}_{2}, \mathrm{SiC}, \mathrm{TiB}_{2}, \mathrm{ZnB}_{2}, \mathrm{TiC}$, TiN, WC, $\mathrm{B}_{4} \mathrm{C}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{BN}$, композиты
Ядерное горючее, футеровка реакторов, экранирующие материалы, поглотители излучения, поглотители нейтронов	$\mathrm{UO}_{2}, \mathrm{UO}_{2}-\mathrm{PuO}_{2}, \mathrm{UC}, \mathrm{US}, \mathrm{ThS}$, $\mathrm{SiC}, \mathrm{B}_{4} \mathrm{C}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{BeO}$
Линии электропередачи, МГД-генераторы, накопители энергии, интегральные схемы, железнодорожный транспорт на магнитной подвеске, электромобили	Оксидные системы: $\begin{aligned} & \mathrm{La}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}, \\ & \mathrm{La}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}, \\ & \mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O} \end{aligned}$

магнитогидродинамический.

сталлизации межзеренной стеклофазы. При этом на $20 . . .30 \%$ повышаются твердость и вязкость разрушения материала.

Большинство керамических материалов с трудом поддается механической обработке, поэтому основным условием керамической технологии является получение при консолидации практически готовых изделий. Для доводки поверхностей керамических изделий применяют абразивную обработку алмазными кругами, электрохимическую, ультразвуковую и лазерную обработку. Эффективно применение защитных покрытий, позволяющих устранить мельчайшие поверхностные дефекты - неровности, риски и т.д.

Для контроля керамических деталей чаще всего используют рентгеновскую и ультразвуковую дефектоскопиию.

Учитывая, что большинство керамических материалов имеет низкую вязкость и пластичность и соответственно низкую трещиностойкость для аттестации изделий применяют методы механики разрушения с определением коэффициента интенсивности напряжений K_{Ic}. Одновременно строят диаграмму, показывающую кинетику роста дефекта.

Количественно вязкость разрушения кристаллической керамики и стекла составляет $1 \ldots 2$ МПа м $^{1 / 2}$, в то время как для металлов значения $K_{\text {Ic }}$ значительно выше (более $40 \mathrm{MПa} \cdot \mathrm{~m}^{1 / 2}$). Прочность химических межатомных связей, благодаря которой керамические материалы обладают высокой твердостью, химической и термической стойкостью, одновременно обусловливает их низкую способность к пластической деформации и склонность к хрупкому разрушению.

Возможны два подхода к повышению вязкости разрушения керамических материалов:

- традиционный, связанный с совершенствованием способов измельчения и очистки порошков, их уплотнения и спекания;
- заключающийся в торможении роста трещин под нагрузкой.

Существует несколько способов торможения роста трещин. Один из них основан на том, что в некоторых керамических материалах, например в диоксиде циркония ZrO_{2}, под давлением происходит перестройка кристаллической структуры. Исходная тетрагональная структура ZrO_{2} переходит в моноклинную, имеющую на $3 \ldots 5 \%$ больший объем. Расширяясь, зерна ZrO_{2} сжимают трешину, и она теряет способность к распространению (рис. 9.1, a). При этом сопротивление хрупкому разрушению возрастает до 15 M Ма \cdot м $^{1 / 2}$.

Второй способ (рис. 9.1, б) заключается в создании композиционного материала путем введения в керамику волокон из более прочного керамического материала, например карбида кремния SiC. Развивающаяся трещина на своем пути встречает волокно и дальше не распространяется. Сопротивление разрушению стеклокерамики с волокнами SiC возрастает до $18 \ldots 20 \mathrm{M}$ Па $\cdot \mathrm{m}^{1 / 2}$, существенно приближаясь к соответствующим значениям для металлов.

Рис. 9.1. Схема упрочнения конструкционной керамики включениями диоксида циркония $\mathrm{ZrO}_{2}(a)$, волокнами (б) и мелкими трещинами ():

1 - тетрагональный $\mathrm{ZrO}_{2} ; 2$ - моноклинный ZrO_{2}

Третий способ состоит в том, что с помощью специальных технологий весь керамический материал пронизывают микротрецинами (рис. 9.1, в). При встрече основной трещины с микротрещиной угол в острие трещины возрастает, происходит затупление трещины, и дальше она не распространяется.

Определенный интерес представляет физико-химический способ повышения надежности керамики, который реализован для одного из наиболее перспективньх керамических материалов на основе нитрида кремния $\mathrm{Si}_{3} \mathrm{~N}_{4}$. Способ основан на образовании определенного стехиометрического состава твердых растворов оксидов металлов в нитриде кремния, получивших название сиалонов. Примером высокопрочной керамики, образуюшейся в этой системе, являются сиалоны состава $\mathrm{Si}_{6-x} \mathrm{Al}_{x} \mathrm{~N}_{8-x} \mathrm{O}_{x}$, где x - число замещенных атомов кремния, азота в нитриде кремния, $x=0-4,2$. Важным свойством сиалоновой керамики является стойкость к окислению при высоких температурах, значительно более высокая, чем у нитрида кремния.

9.2. Свойства и применение керамических материалов

Общие сведения. Принципиальными недостатками керамики являются ее хрупкость и сложность обработки. Керамические материалы плохо работают в условиях механических или термических ударов, при циклических условиях нагружения. Им свойственна высокая чувствительность к надрезам. В то же время керамические материалы обладают высокой жаропрочностью, превосходной коррозионной стойкостью и малой теплопроводностью, что позволяет с успехом использовать их в качестве элементов тепловой зашиты.

Таблица 9.2. Свойства инструментальных материалов

Свойство	Быстрорежу- щаяя сталь	Твердый сплав	Керамика на основе $\mathrm{Al}_{2} \mathrm{O}_{3}$
Твердость НV	850	1700	2100
Температура размягчения, ${ }^{\circ} \mathrm{C}$	550	1100	1500
Температура начала образо- вания окалины, ${ }^{\circ} \mathrm{C}$	800	800	-

При температуре вьпше $1000^{\circ} \mathrm{C}$ керамика прочнее любых сплавов, в том числе суперсплавов, а сопротивление ползучести и жаропрочность ее выше.

К основным областям применения керамических материалов относятся режуций инструмент, детали двигателей внутреннего сгорания и газотурбинных двигателей и др.

Режущий керамический инструмент. Режущая керамика характеризуется высокой твердостью, в том числе при нагреве, износостойкостью, химической инертностью к большинству металлов в процессе резания. По комплексу этих свойств керамика существенно превосходит традиционные режущие материалы - быстрорежущие стали и твердые сплавы (табл. 9.2).

Высокие свойства режущей керамики позволили существенно повысить скорости механической обработки стали и чугуна (табл. 10.3).

Для изготовления режущего инструмента широко применяют керамику на основе оксида алюминия с добавками диоксида циркония, карбидов и нитридов титана, а также на основе бескислородных соединений - нитрида бора с кубической решеткой ($\beta-\mathrm{BN}$), обычно называемого кубическим нитридом бора, и нитрида кремния $\mathrm{Si}_{3} \mathrm{~N}_{4}$.

Режущие элементы на основе кубического нитрида бора в зависимости от технологии получения, выпускаемые под названиями

Таб лица 9.3. Звачения скоростн резання при точении керамическим инструментом и инструментом из твердого сплава

Обрабатываемый материал	твердость	Скоросъь резания, мм/мин, инструментом, оснащенным	
		керамикой	твердым сплавом
Углеродистая сталь	$150 \ldots 250 \mathrm{HB}$	$250 \ldots 300$	$100 \ldots 200$
Легированная сталь	$46 \ldots 56 \mathrm{HRC}$	$100 \ldots 160$	$25 \ldots 65$
Серыґ̆ чугун	$120 \ldots 240 \mathrm{HB}$	$300 \ldots 400$	$100 \ldots 200$
Высокопрочный чугун	$160 \ldots 300 \mathrm{HB}$	200	$50 \ldots 100$

эльбор, боразон, композит 09 и др., имеют твердость, близкую к твердости алмазного инструмента, и сохраняют устойчивость к нагреву на воздухе до температуры $1400^{\circ} \mathrm{C}$. В отличие от алмазного инструмента кубический нитрид бора химически инертен по отношению к сплавам на основе железа. Его можно использовать для чернового и чистового точения закаленных сталей и чугунов практически любой твердости.

Состав и свойства основных марок режущей керамики приведены в табл. 9.4. Режущие керамические пластины используют для оснащения различных фрез, токарньх резцов, расточных головок, специального инструмента

Керамические двигатели. Из второго закона термодинамики следует, что для повышения КПД любого термодинамического процесса необходимо повышать температуру на входе в энергетическое преобразовательное устройство: КПД =1- T_{2} / T_{1}, где T_{1}, T_{2} температура соответственно на входе и выходе энергетического преобразовательного устройства. Чем выше температура T_{1}, тем больше КПД. Максимально допустимые температуры определяются теплостойкостью материала. Конструкционная керамика допускает применение более высоких температур по сравнению с металлом и поэтому является перспективным материалом для двигателей внутреннего сгорания и газотурбинных двигателей. Помимо более высокого КПД двигателей за счет повышения рабочей температуры достоинством керамики является низкая плотность и теплопроводность, повышенная термо- и износостойкость. Кроме того, при использовании керамики снижаются или исключаются расходы на систему охлаждения

Вместе с тем следует отметить, что в технологии изготовления керамических двигателей остаются нерешенные проблемы. К ним прежде всего относятся проблемы обеспечения надежности, стойкости к термическим ударам, разработки методов соединения керамических деталей с металлическими и пластмассовыми.

Наиболее эффективно применение керамики для изготовления адиабатных поршневых двигателей, имеющих керамическую изоляцию, и высокотемпературных газотурбинных двигателей.

Конструкционные материалы адиабатных двигателей должны быть устойчивы в области рабочих температур $1300 \ldots 1500 \mathrm{~K}$, иметь прочность при изгибе не менее 800 M Ма и коэффициент интенсивности напряжений не менее 8 M Ма $\cdot \mathrm{m}^{1 / 2}$. Этим требованиям в наибольшей мере удовлетворяют керамики на основе диоксида циркония и нитрида кремния. Основные работы по керамическим двигателям проводятся в Японии и СШЕ. Фирма Isuzu Motor (Япония) освоила изготовление форкамеры и клапанного механизма адиабатного двигателя, Nissan Motor (Япония) - крыльчатки турбокомпрессора, Mazda Motor (Япония) - форкамеры и пальца толкателя

Марка керамики	Фирма-изготовитель	Состав основной фазы	Твердость	Прочность при изгибе, МГІа	Плотность, $\mathrm{r} / \mathrm{Cm}^{3}$	Средний размер зерен, мкм
BO-13	ВНИИТС (Россия)	$\mathrm{Al}_{2} \mathrm{O}_{3}$	92 HRA	$450 \ldots 500$	3,96	$1 . . .3$
BOK-60		$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{TiC}$	94 HRA	$600 \ldots 650$	4,25	1... 3
SN60	Feldniuhle (Германия)	$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{ZrO}_{2}$	2200 HV	600	3,97	2
SN20		$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{TiC}$	2100 HV	600	4,28	2
SN100		$\mathrm{Si}_{3} \mathrm{~N}_{4}+\mathrm{Y}_{2} \mathrm{O}_{3}$	1700 HV	800	3,3	-
AC5	Hertel (Германия)	$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{ZrO}_{2}$	1700 HV	500	4	1,8
MC2		$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{TiC}$	2000 HV	-	4,25	-
HCl		$\mathrm{Si}_{3} \mathrm{~N}_{4}$	1500 HV	800	3,3	-
CC620	Sandvik Ceramant (Швеция)	$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{ZrO}_{2}$	1650 HV	-	-	$2 \ldots 3$
CC650		$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{ZrO}_{2}+\mathrm{TiO}_{2}$	1800 HV	$400 . . .500$	4,27	-
CC680		$\mathrm{Si}_{3} \mathrm{~N}_{4}$	1500 HV	-	-	-
Widalox	Krupp-Widia (Германия)	$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{ZrO}_{2}+\mathrm{TiO}_{2}$	1730 HV	650	4,12	-
CX2	NGK (США)	$\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{TiN}$	-	750	4,15	-

Примечание. Производимый в России эльбор при плотности 3,45 г/см ${ }^{3}$ имеет прочность при изгибе 700 M Ма.

Компания Cummins (США) освоила альтернативный вариант двигателя грузовика с плазменными покрытиями из диоксида џиркония, нанесенными на днище поршня, внутреннюю поверхность цилиндра, впускные и выпускные каналы. Экономия топлива на 100 км пути составила более 30%.

Фирма Isuzu Motor сообщила об успешной разработке керамического двигателя, работающего на бензине и дизельном топливе. Двигатель развивает скорость до 150 км/ч, коэффициент полноты сгорания топлива на $30 \ldots 50 \%$ выше, чем у обычных двигателей, а масса на 30% меньше.

Конструкционной керамике для газотурбинных двигателей в отличие от адиабатных не требуется низкая теплопроводность. Учитывая, что керамические детали газотурбинных двигателей работают при более высоких температурах, они должны сохранять прочность на уровне 600 МПа при температуре $1470 \ldots 1670 \mathrm{~K}$ (в перспективе $1770 \ldots 1920 \mathrm{~K}$) при пластической деформации не более 1% за 500 ч работы. В качестве материала для таких ответственных деталей газотурбинных двигателей, как камера сгорания, детали клапанов, ротор турбокомпрессора, статор, используют нитриды и карбиды кремния, имеющие высокую теплостойкость.

Повышение тактико-технических характеристик авиационных двигателей невозможно без применения керамических материалов.

Керамика специального назначения. К керамике специального назначения относятся сверхпроводящая керамика, керамика для изготовления контейнеров с радиоактивными отходами, броневой защиты военной техники и тепловой защиты головных частей ракет и космических кораблей.

Контейнерь для хранения радиоактивньх отходов. Одним из сдерживающих факторов развития ядерной энергетики является сложность захоронения радиоактивных отходов. Для изготовления контейнеров применяют керамику на основе оксида бора $\mathrm{B}_{2} \mathrm{O}_{3}$ и карбида бора $\mathrm{B}_{4} \mathrm{C}$ в смеси с оксидом свинца PbO или соединениями типа $2 \mathrm{~Pb}-\mathrm{PbSO}_{4}$. После спекания такие смеси образуют плотную керамику с малой пористостью. Такая керамика характеризуется сильной поглощающей способностью по отношению к ядерным частицам - нейтронам и γ-квантам.

Ударопроиная броневая керамика. Впервые броневая керамика была использована в авиации армии США во время войны во Вьетнаме. С тех пор непрерывно растет применение армиями разных стран брони из керамики в комбинации с другими материалами для защиты сухопутных боевых машин, кораблей, самолетов и вертолетов. По разным оценкам, рост применения броневой керамической защиты составляет $5 \ldots 7 \%$ в год. Одновременно наблюдается рост производства композиционной брони для индивидуальной защиты сил охраны правопорядка, обусловленный ростом преступности и актов терроризма.

По своей природе керамические материалы являются хрупкими. Однако при высокой скорости нагружения, например в случае взрывного удара, когда эта скорость превышает скорость движения дислокаций в металле, пластические свойства металлов не будут играть никакой роли и металл будет таким же хрупким, как и керамика В этом конкретном случае керамика существенно прочнее металла.

Важными свойствами керамических материалов, обусловивших их применение в качестве брони, являются высокие твердость, модуль упругости, температура плавления (разложения) при плотности, в 2-3 раза меньшей по сравнению с плотностью металлических материалов. Сохранение прочности при нагреве позволяет использовать керамику для кумулятивных снарядов.

В табл. 9.5 приведены основные свойства широко применяемых ударопрочных броневых керамических материалов в сравнении со свойствами броневой стали.

Наиболее высокие защитные свойства имеют материалы на основе карбида бора. Их массовое применение сдерживается высокой стоимостью метода прессования. Поэтому плитки из карбида бора используют при необходимости существенного снижения массы броневой защиты, например для защиты автоматических систем управления вертолетов, кресел экипажа и десанта. Керамику из диборида титана, имеющую наибольшую твердость и модуль упругости, применяют для зациты от тяжелых бронебойных и кумулятивных танковых снарядов.

Для массового производства керамики наиболее перспективен сравнительно дешевый оксид алюминия. Керамику на его основе используют для защиты живой силы, сухопутной и морской военной техники.

Таблица 9.5. Свойства ударопрочной керамики и броневой стали

Материал	$\begin{gathered} \gamma, \mathrm{cm}^{3} \end{gathered}$	$\begin{gathered} H_{x}, \\ \text { ГПа } \end{gathered}$	${\stackrel{\sigma}{\mathrm{B}^{\prime}}{ }_{\mathrm{M}} \mathrm{a}}^{2}$	$\begin{gathered} E, \\ \text { ППа } \end{gathered}$	$T_{n i}, \mathrm{~K}$	$\begin{gathered} M, \\ (\mathrm{\Gamma} a \cdot \mathrm{M})^{3} \cdot \mathrm{~K} / \mathrm{KT} \end{gathered}$
Горячепрессованный карбид бора $\mathrm{B}_{4} \mathrm{C}$	2,5	30	300	450	3300	5,3 $\cdot 10^{3}$
Горячепрессованный диборид титана TiB_{2}	4,5	33	350	570	3400	$5 \cdot 10^{3}$
Карбид кремния SiC	3,1	21	200	410	3300	$1,8 \cdot 10^{3}$
Спеченный оксид алюминия $\mathrm{Al}_{2} \mathrm{O}_{3}$	3,9	18	370	390	2320	$1,5 \cdot 10^{3}$
Броневая сталь	7,8	3,5	3000	210	1950	0,5 1 10^{3}

Примечание. γ - плотность; H_{k} - твердость по Кнупу; $\sigma_{\text {в }}$ - временное сопротивление; E - модуль упругости, $T_{п л}$ - температура плавления; M - критерий бронестойкости.

По данным фирмы Morgan M. (США), пластина из карбида бора толщиной 6,5 мм или из оксида алюминия толщиной 8 мм останавливает пулю калибром 7,62 мм, летящую со скоростью более 800 м/с при выстреле в упор. Для достижения того же эффекта стальная броня должна иметь толщину 10 мм, при этом масса ее будет в 4 раза больше, чем у керамической.

Наиболее эффективно применение композиционной брони, состоящей из нескольких разнородных слоев. Наружный керамический слой воспринимает основную ударную и тепловую нагрузку, дробится на мелкие частицы и рассеивает кинетическую энергию снаряда. Остаточная кинетическая энергия снаряда поглощается упругой деформацией подложки, в качестве которой может использоваться сталь, дуралюмин или кевларовая ткань в несколько слоев. Эффективно покрытие керамики легкоплавким инертным материалом, играющим роль своеобразного смазочного материала и несколько изменяющим направление летящего снаряда, что обеспечивает рикошет.

Керамика в ракетно-космическом маииностроении. При полете в плотных слоях атмосферы головные части ракет, космических кораблей, кораблей многоразового использования, нагреваемые до высокой температуры, нуждаются в надежной теплозащите.

На рис. 9.2 показана зависимость температуры нагрева головных частей летательных аппаратов от скорости их полета. Материалы для тепловой защиты должны обладать высокой теплостойкостью и прочностью в сочетании с минимальными значениями коэффициента термического расширения, теплопроводности и плотности

Исследовательский центр HACA CIUA (NASA Armes Research Centre) разработал составы теплозащитных волокнистых керамических плит, предназначенных для космических кораблей многоразового использования. Свойства плит некоторых составов приведены в табл. 9.6. Средний диаметр волокон 3 ... 11 мкм

Для повышения прочности, отражательной способности и абляционных ${ }^{1}$ характеристик внешней поверхности теплозащитньх

Рис. 9.2. Примерная зависимость тем пературы лобовых поверхностей головных частей летательных аппаратов от скорости их полета:
l- над уровнем моря; 2 - на высоте 12000 м над уровнем моря

Т аблица 9.6. Составы н свойства теплозапитных плит из волоквистой керамики для космических кораблей

Марка материала	Состав, \%			$\stackrel{\alpha,}{10^{-7} \mathrm{~K}^{-1}}$	Прочностъ при изгибе, k Пla	Плотность, $\mathrm{r} / \mathrm{cm}^{3}$	$\begin{gathered} \text { Температура } \\ \text { поверхности } \\ \text { теплозащиты, К } \end{gathered}$	Абляция за $60 \mathrm{c}, \mathrm{m}$	Средняя скорость уноса, м/с
	SiO_{2}	Боросиликатное стекло	$\mathrm{Al}_{2} \mathrm{O}_{3}$						
FRCI	78	22	-	7,2	1800	0,18...0,22	1670... 1733	0,012 ...0,014	3,9 $\cdot 10^{-3}$
AETBI 2-20	68	12	20	10,1	2800	0,17...0,18	1670... 1790	0,02 ...0,03	2,3 $\cdot 10^{-3}$
HTP16-22	78	--	22	9,9	-	0,22...0,27	1730	0,025	-

Примечание. α - температурный коэффиииент линейного расширения.

Рис. 9.3. Системы керамической теплозащиты лобовых поверхностей летательных аппаратов для диапазона рабочих температур $1260 \ldots 1700^{\circ} \mathrm{C}$: 1 - керамика на основе карбида кремния или нитрида кремния; 2 - теплоизоляиия; 3 - спеченная керамика; q-тепловой поток

материалов их покрьвают слоем эмали толщиной примерно 300 мкм. Эмаль, содержащую SiC или $94 \% \mathrm{SiO}_{2}$ и $6 \% \mathrm{~B}_{2} \mathrm{O}_{3}$, в виде шликера наносят на поверхность, а затем подвергают спеканию при температуре 1470 K . Плиты с покрьтиями используют в наиболее нагреваемых местах космических кораблей, баллистических ракет и гиперзвуковых самолетов. Такие плиты выдерживают до 500 десятиминутных нагревов в электродуговой плазме при температуре 1670 К. Варианты системы керамической теплозащиты лобовых поверхностей летательных аппаратов приведены на рис. 9.3.

Высокопористый волокнистый слой теплоизоляции на основе FRCI, AETB или HTP защищен облицовкой из слоя карбида кремния. Облицовочный слой предохраняет теплоизолирующий слой от абляционного и эрозионного разрушения и воспринимает основную тепловую нагрузку.

Контрольные вопросы

1. Что такое керамика?
2. Как принято классифицировать керамику?
3. Что входит в состав керамических материалов?
4. Из каких операций состоит технология изготовления керамических изделий?
5. Каковы достоинства керамики?
6. С чем связаны недостатки керамики?
7. Где могут применяться керамические материалы?
[^4]ГЛАВА 10

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

10.1. Общая характеристика и классификация

Традиционно применяемые металлические и неметаллические материалы в значительной мере достигли своего предела конструктивной прочности. Вместе с тем развитие современной техники требует создания материалов, надежно работающих в сложной комбинации силовых и температурных полей, при воздействии агрессивных сред, излучений, глубокого вакуума и высокого давления. Зачастую требования, предъявляемые к материалам, могут носить противоречивый характер. Удовлетворить эти требования можно путем использования композиционных материалов.

Композиционным материалом, или композитом, называют объемную гетерогенную систему, состоящую из сильно различающихся по свойствам, взаимно нерастворимых компонентов, строение которой позволяет использовать достоинства каждого из них.

Принцип построения композита человек заимствовал у природы. Типичными композиционными материалами являются стволы деревьев, стебли растений, кости человека и животных. Композиты позволяют иметь заданное сочетание разнородных свойств: высокой удельной прочности и жесткости, жаропрочности, износостойкости, теплозащитных свойств и др. Спектр свойств композитов невозможно получить при использовании обычных материалов. Их применение дает возможность создавать принципиально новые конструкции. Благодаря композитам стал возможен новый качественный скачок в увеличении мощности двигателей, уменьшении массы машин, конструкций и повышении весовой эффективности транспортных средств и авиационно-космических аппаратов.

Важными характеристиками материалов, работающих в этих условиях, являются удельная прочность $\sigma_{\mathrm{B}} /(\gamma g)$ и удельная жесткость $E /(\gamma g)$. По удельной прочности и жесткости композиты превосходят все известные конструкционные сплавы.

Композиты состоят из сравнительно пластичного матричного материала-основы и более твердых и прочных компонентов, являющихся наполнителями. Свойства композитов зависят от свойств основы, наполнителей и прочности связи между ними.

Матрица связывает композицию в монолит, придает ей форму и служит для передачи внешних нагрузок арматуре из наполнителей. В зависимости от материала основы различают композиты с металлической матрицей, или металлические композиционные

Рис. 10.1. Схемы строения композитов:
a - дисперсно-упрочненных; 6 - волокнистых; в - слоистых
материалы (МКМ), с полимерной - полимерные композиционные материалы (ПКМ) и с керамической - керамические композиционные материалы (ККМ).

Ведуиую роль в упрочнении композитов играют наполнители, часто называемые упрочнителями. Упрочнители имеют высокую прочность, твердость и модуль упрутости. По типу упрочняющих наполнителей композиты подразделяют на дисперсно-упрочненные, волокнистые и слоистые (рис. 10.1).

В дисперсно-упрочненные композиты искусственно вводят мелкие равномерно распределенные тугоплавкие частицы карбидов, ок-

Рис. 10.2. Схемы армирования волокнистых (a) и слоистых композитов (б) L - общая высота композита; l_{1}, l_{2} - соотвествснно длина и диаметр волокна
$l_{3}, l_{4} t_{5}$ - размеры слоя в композите

сидов, нитридов и др., не взаимодействуюшие с матрицей и не растворяюшиеся в ней вплоть до температуры пллавления фаз. Чем мельче частицы наполнителя и меныше расстояние между ними, тем прочнее композит. В отличие от волокнистьх в дисперсно-упрочненных комозитах основньм несущим элементом является матрица. Ансамбль дисперсных частиц наполнителя упрочняет материал за счет сопротивления движению дислокаций при нагружении, что затрудняет пластическую деформацию. Эффективное сопротивление движению дислокаций создается вплоть до температуры плавления матрицы, благодаря чему дисперсно-упрочненные композиты отличаются высокой жаропрочностью и сопротивлением ползучести.

Арматурой в волокнистых композитах могут быть волокна различной формы: нити, ленты, сетки разного плетения. Армирование волокнистых композитов может осуществляться по одноосной, двухосной и трехосной схеме (рис. 10.2, a).

Прочность и жесткость таких материалов определяется свойствами армируюших волокон, воспринимаюших основную нагрузку. Армирование дает больший прирост прочности, но дисперсное упрочнение технологически легче осуществимо.

Слоистые композиционные материалы (рис. 10.2, б) набираются из чередующихся слоев наполнителя и матричного материала (типа «сэндвич»). Слои наполнителя в таких композитах могут иметь различную ориентацию. Возможно поочередное использование слоев наполнителя из разньх материалов с разными механическими свойствами. Для слоистых композиций обычно используют неметаллические материалы.

10.2. Дисперсно-упрочненные композиционные материалы

При дисперсном упрочнении частицы блокируют процессы скольжения в матрице. Эффективность упрочнения при условии минимального взаимодействия с матрицей зависит от вида частиц, их объемной концентрации, а также от равномерности распределения в матрице. Применяют дисперсные частицы тугоплавких фаз типа $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{BN}, \mathrm{SiC}$, имеюцие малую плотность и высокий модуль упругости. Композиты обычно получают методом порошковой металлургии, важным достоинством которого является изотропность свойств в разных направлениях.

В промышленности обычно применяют дисперсно-упрочненные композиты на алюминиевой (реже - никелевой) основе. Характерными представителями этого вида композитов являются материалы типа САП (спеченная алюминиевая пудра), которые состоят из алюминиевой матрицы, упрочненной дисперсными частицами оксида алюминия. Алюминиевый порошок получают

распылением расплавленного металла с последующим измельчением в шаровых мельницах до размера 1 мкм в присутствии кислорода. С увеличением длительности помола пудра становится мельче, в ней повышается содержание оксида алюминия. Дальнейшая технология производства изделий и полуфабрикатов из САП включает в себя холодное прессование, предварительное спекание, горячее прессование, прокатку или выдавливание спеченной алюминиевой заготовки в форме готовых изделий, которые можно подвергать дополнительной термической обработке.

Сплавы типа САП удовлетворительно деформируются в горячем состоянии, а сплавы с содержанием оксида алюминия 6...9\% и при комнатной температуре. Из этих сплавов холодным волочением можно получить фольгу толщиной до 0,03 мм. Эти материалы хорошо обрабатываются резанием и обладают высокой коррозионной стойкостью.

Марки САП, применяемые в России, содержат $6 \ldots 23 \%$ оксида алюминия: САП-1 ($6 \ldots 9 \%$), САП-2 ($9 \ldots 13 \%$), САП-3 ($13 \ldots 18 \%$). С увеличением объемной концентрации оксида алюминия возрастает прочность композита. При комнатной температуре характеристики прочности следующие: САП-1 $-\sigma_{\mathrm{B}}=280$ МПа; $\sigma_{0,2}=220 \mathrm{M}$ Па; САП-3 - $\sigma_{\text {в }}=420 \mathrm{MПа;} \sigma_{0,2}=340 \mathrm{M}$ Ма. Материалы типа САП обладают высокой жаропрочностью и превосходят все деформируемые алюминиевые сплавы. Даже при температуре $500^{\circ} \mathrm{C}$ их временное сопротивление не менее $60 \ldots 110$ МПа. Жаропрочность объясняется тормозящим действием дисперсных частиц на процесс рекристаллизации. Характеристики прочности сплавов типа САП весьма стабильны. Испытания длительной прочности сплавов типа САП-3 в течение 2 лет практически не повлияли на уровень свойств как при комнатной температуре, так и при нагреве до $500^{\circ} \mathrm{C}$. При температуре $400^{\circ} \mathrm{C}$ прочность САП в 5 раз выше прочности старекщих алюминиевых сплавов.

Влияние температуры на механические свойства сплавов типа САП отражено в табл. 10.1.

Таблица 10.1. Механические свойства сплавов типа САП в завнсимости от температуры испьгтаний $\boldsymbol{t}_{\text {исп }}$

$t_{\text {мс } \Pi},{ }^{\circ} \mathrm{C}$	$\sigma_{\mathrm{B}}, \mathrm{M} П \mathrm{a}$	$\sigma_{0,2}, \mathrm{M} \Pi \mathrm{a}$	$\delta, \%$
20	380	265	7
100	315	235	6,5
200	235	190	5
300	175	155	3,5
400	130	120	2
500	105	105	2,5

Сплавы типа САП применяют в авиационной технике для изготовления деталей с высокой удельной прочностью и коррозионной стойкостью, работающих при температуре до $500^{\circ} \mathrm{C}$. Из них изготавливают штоки поршней, лопатки компрессоров, оболочки тепловыделяющих элементов и трубы теплообменников.

10.3. Волокнистые композиционные материалы

Помимо обеспечения прочности и монолитности конструкции матрица должна иметь необходимую пластичность и быть работоспособной в той температурной области, для которой предназначен композит.

Для изготовления композитов, применяемых при температуре ниже $200^{\circ} \mathrm{C}$, используют полимерные матрицы. K таким композитам относятся стеклопластики, армированные короткими стеклянными волокнами в матрице из полиэфирной смолы. Стеклопластики применяют для изготовления корпусов автомобилей, лодок, некоторых бытовых приборов. В качестве матриц также используют термореактивные полимеры, в которых поперечные связи между основными цепями формируют жесткую структуру с трехмерной сеткой. Такими полимерами являются эпоксидные смолы, которые благодаря поперечным связям имеют более высокую термостойкость.

На рис. 10.3 схематично показан способ изготовления волокнистоғо композита. Волокна сматывают с бобин, подвергают поверхностной обработке, улучшаюшей адгезию, протягивают в ванну, где их покрывают полимерной смолой. Смола скрепляет волокна в плоский жтут - ленту. Готовые ленты собирают в слоистый листовой материал (аналог фанеры) или же наматывают в более сложные формы. Собранный в листы или намотанный материал отверждают термической обработкой. Слои можно накладывать поочередно с разным направлением волокон и формировать в композите клетчатую структуру арматуры, что придает материалу жесткость.

Недостатком такого композита является отсутствие поперечного армирования в каждом отдельном слое и между слоями. Поэтому материал может расслаиваться. K тому же появившаяся трещина в объемном образце из такого композита легко распространяется между слоями. Для устранения этих недостатков изготавливают тканые композиты.

Для работы при более высоких температурах применяют металлические матрищы. Обычно используют металлы с малой плотностью: алюминий, реже - магний, титан.

Металлические композиты имеют преимущества по сравнению с полимерными. Помимо более высокой рабочей температуры они

Рис. 10.3. Схема изготовления композита

характеризуются лучшей изотропией и большей стабильностью свойств в процессе эксплуатации, более высокой эрозионной стойкостью. Пластичность металлических матриц сообщает конструкции необходимую вязкость, что способствует быстрому выравниванию локальных механических нагрузок. Высокая теплопроводность МКМ предохраняет от локальньх перегревов, что особенно важно для таких изделий, как наконечники ракет и ведущие кромки крыльев Высокая электропроводность МКМ хорошо защищает их от электромагнитного излучения, молнии, снижает опасность статического электричества. Важным достоинством МКМ является более высокая технологичность процесса изготовления, формовки, термической обработки, формирования соединений и покрытий. Свойства основных металлических матриц представлены в табл. 10.2.

Таблица 10,2 Свойства основных металлических матриц

Матрица	$\gamma, \mathrm{r} / \mathrm{cm}^{3}$	σ_{n}, МПа	E, ГПа	$\alpha, 10^{-6} \mathrm{~K}^{-1}$
Al	$2,63 \ldots 2,8$	$250 \ldots 573$	$69 \ldots 73$	$11 \ldots 13$
Mg	$1,74 \ldots 1,83$	$200 \ldots 280$	$43 \ldots 45$	$14 \ldots 15$
Ni	4,5	$500 \ldots 1200$	113	$9 \ldots 10$
Cu	8,94	$220 \ldots 400$	132	$17 \ldots 18$

Примечание. $\gamma-$ плотность; σ_{B} - временное сопротивление; E - модуль упругости; α - температурный коэффициент линейного расширения.

Для наиболее высоких рабочих температур в качестве матричного материала применяют керамику. Ее основной недостаток отсутствие пластичности - в некоторой степени компенсируется армирующими волокнами, тормозящими распространение трещин в керамике. Использование в качестве матричного материала аморфного углерода, а в качестве армирующего материала - волокон из кристаллического углерода (графита) позволило создать композит, выдерживающий нагрев до $2500^{\circ} \mathrm{C}$. Такой углерод-углеродный композит перспективен для авиационной и ракетно-космической техники. Толчком к интенсивному использованию углеродуглеродных композитов в США послужили работы по программе создания космических кораблей многоразового использования. Недостаток углеродной матрицы состоит в возможном окислении и абляции. Для предотвращения этих явлений композит покрывают тонким слоем карбида кремния.

Таким образом, наиболее важным критерием выбора матричного материала является рабочая температура эксплуатации композита.

Помимо высокой прочности и жесткости основными требованиями, предъявляемыми к волокнам дия композитов, является хорошее смачивание материала волокна расплавленной матрицей в процессе изготовления композита. Важными условиями являются слабое взаимодействие волокна с материалом матрицы и его высокая окислительная стойкость.

Для армирования МКМ обычно используют непрерывные волокна: углеродные (УВ), борные (В), оксида алюминия $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, карбида кремния (SiC), карбида бора ($\mathrm{B}_{4} \mathrm{C}$), нитрида бора (BN), диборида титана (TiB_{2}), оксида кремния $\left(\mathrm{SiO}_{2}\right)$. Также в качестве волокон применяют металлическую тонкую проволоку, полученную методом волочения из стали, вольфрама, титана, молибдена и бериллия. Реже используют нитевидные специально выращенные кристаллы разных материалов.

Наибольшее распространение для армирования МКМ получили непрерывные или дискретные уплеродные и борные волокна, свойства которых приведены в табл. 10.3. Волокна бора обычно получают осаждением бора из газовой фазы при диссоциации его галоидных соединений, например хлорида бора BCl_{3}. Бор осаждается на основу из тонкой (12 мкм) вольфрамовой нити, нагретой до температуры $1100 \ldots 1200^{\circ} \mathrm{C}$. В процессе осаждения бор диффундирует в вольфрамовую основу, образуя бориды вольфрама в сердцевине волокна. Время пребывания волокна в реакционной камере составляет $1 . . .2$ мин. Общий диаметр борного волокна составляer $100 \ldots 150$ мKM.

Сырьем для получения высокопрочных и высокомодульных углеродных волокон являются такие полимеры с высоким содержанием углерода, как полиакрилонитрил (ПАН), реже - пек и вис-

Таблица 10.3. Свойства волокон для армирования металлнческих композитов

Тил волокна	Основа	γ, г/cм	σ_{3}, МПа	E, ГПа	$\alpha, 10^{-6} \mathrm{~K}^{-1}$
C	ПАН	$1,7 \ldots 2$	$1,7 \ldots 3,2$	$170 \ldots 517$	$-1 \ldots-1,5$
	Вискоза	$1,6 \ldots 1,8$	$0,6 \ldots 3,2$	$400 \ldots 525$	-
	Пек	2	$1,1 \ldots 2,1$	$380 \ldots 700$	$-1,3$
	Вольфрам	3,15	$3,1 \ldots 3,4$	$420 \ldots 450$	$3,8 \ldots 5$
	УВ	3,05	3,45	$400 \ldots 420$	-
	Вольфрам	2,49	3,52	400	$4,8 \ldots 5$
	УВ	2,25	3,32	380	-
$\mathrm{B}-\mathrm{SiC}$	Вольфрам	2,5	2,9	400	4,9
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-	3,9	$3,9 \ldots 4,3$	$380 \ldots 500$	8,5

Примечания: 1. См. примечаниек табл. 11.2.
2. ПАН - полиакрилонитрил; УВ - углеродное волокно.

коза. Волокно ПАН выдавливают через малые отверстия и подвергают пиролизу в инертной атмосфере при температуре примерно $2000^{\circ} \mathrm{C}$. Углеродные волокна выпускают в виде нитей, содержащих до 10000 элементарных волокон, диаметр которых составляет 7 мкм. Модуль и прочность волокна не изменяется при нагреве его до температуры $600^{\circ} \mathrm{C}$.

Композиты получают разными методами. К ним относятся пропитка пучка волокон жидкими расплавами алюминия и магния, плазменное напыление, применение методов горячего прессования иногда с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций гипа «сэндвич», состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку. Отливку прутков и труб, армированных высокопрочными волокнами, получают из жидкометаллической фазы. Пучок волокон непрерывно проходит через ванну с расплавом и пропитывается под давлением жидким алюминием, магнием или жидкой смолой в случае изготовления полимерного материала. При выходе из пропиточной ванны волокна соединяются и пропускаются через фильеру, формирующую пругок или трубу. Этот метод обеспечивает максимальное наполнение композита волокнами (до 85%), их однородное распределение в поперечном сечении и непрерывность процесса.

Дяя многих видов волокон разработаны технологические проџессы нанесения покрытий для обеспечения лучшей смачиваемосги, окалиностойкости и оптимального взаимодействия волокна с

матрицей. Борные волокна зашишашт от реагирования с расплавами титана и алюминия созданием на поверхности диффузионного баръера из карбидов кремния или бора. Волокна бора, зашищенные карбидом кремния, называют борсик (borsic). Из-за высокой окислительной способности утлероджых волокон на их поверхность наносят специальнње покрытия, а процесск переработки осуществляют в защитнөйі атмосфере.

Углеродные волокна имеют отрицательнюе значение ТКЛР, благодаря чему появляется возможность при соответствующей укладке волокон получать ТКЛР, близкий к нулю.

Волокна карбида кремния получают методом химического осаждения из паровой фазы на подложку из борного или утлеродного волокна. Такие волокна имеют хорошую теплостойкость, стойкость к окислению и мало реагируют с металлом.

10.4. Слоистые композмционные материалы

Материалами основы композитов со слоистым строением являются пластмасса, металл или керамика. В качестве наполнителей применяют полимерные волокна, ленты из тканей, трикотажа и других материалов. Хорошо известные ламинаты изготовлены из смол, армированных полимерными волокнами или стеклотканью. Их широко применяют в строительстве, машиностроении, мебельной промышленности, спортивном снаряжении, домашнем хозяйстве и т.д.

К этой же группе композитов относятся абляционные материалы для тепловой защиты ракет, изготовленные на основе фенолформальдегидных смол с углеродным или стекловолокном. В этих материалах часто используют стеклоткань, которая при многослойном нанесении обеспечивает высокие механические свойства изделий, например тонкостенных труб, втулок и др.

Встречаются композиты, в которых слоистым связующим являются алюминиевые, титановые, медные, никелевые и кобальтовые листы и фольга, а слоями, определяющими специальные свойства и применение, - керамика, интерметаллидные соединения или другие металлы.

Слоистые керамические композиты используют в экстремальных условиях. Компонентами этого типа композитов чаще всего являются керамика, углерод и металлы, например корунд, пиролитический графит, карбиды, оксиды, нитриды в композиции с алюминием, медью, титаном, никелем, кобальтом, танталом, железом. Такие материалы нашли применение в космических аппаратах для изготовления теплоизоляционных силикатных плиток из корунда, боросиликата, углеродных карборундовых ламинатов.

10.5. Свойства и применение кошпозиииошнних матершалов

Физико-механические своиства основных компонентов композитов на основе алюминиевой матрицы приведены в табл. 10.4.

Строение композиционного материала в виде ленты толщиной 0,5 мм, содержащей волокна бора в алюминиевой матрице, пожазано на рис. 10.4. Хорошая совместимость матрицы с армируютцим элементом, высокие прочностные свойства борного волокна и удовлетворительная пластичность материала матрицы определяют высокие удельные значения прочности и жесткости МКМ в сочетании с хорошей технологичностью и конструкционной надежностью изделий из этого материала.

Для создания МКМ с еще более малой плотностью применяют магний. Композиты на основе магния на 30% легче, чем сплавы алюминия, имеют хорошие удельные свойства, стабильный ТКЛР в широком диапазоне температур, что достигается за счет комбинаций свойств матрицы и волокна и может регулироваться в зависимости от конкретных условий использования. Такие материалы можно получать в форме отливок, включая плоские плиты, трубы, прутки и изделия специальной формы.

Магний - один из легких металлов, для которого не возникает проблем взаимодействия с углеродными, борными волокнами и волокнами из карбида кремния. Перспективная система утлеродные

Таблица 10.4. Свойства компонентов композитов на основе
алюмвнневой матрицы

Тип волокна	$\gamma, \mathrm{r} / \mathrm{cm}^{3}$	σ_{8}, M, ${ }^{\text {a }}$	E, ГПа	$\underset{\text { KM }}{\sigma_{\sigma} /(\gamma g),}$	$\begin{gathered} E /(\gamma g), \\ 10^{3} \mathrm{kM} \end{gathered}$	$\begin{gathered} \alpha, \\ 10^{-6} \mathrm{~K}^{-1} \end{gathered}$	${ }^{\text {maxa }}$,
Матрица из алюминиевого сплава	2,63... 2,8	250... 573	$69 . .73$	20	2,5	$11 . . .13$	150
C	2,1...2,3	850/70	360/35	90	20	1...3,6	500
B	2,6	$1800 / 330$	250/140	70	10	6	540
SiC	2,85 ... 2,9	$1600 / 350$	230/140	56	7	6,1	300
B-SiC	2,7...2,8	1400/320	220/180	50	-	-	-
$\mathrm{Al}_{2} \mathrm{O}_{3}$	3,4	1200	260/140	34	7	-	-

Примечания: 1. См. примечание к табл. 11.2.
2. $t_{\text {max }}$ - максимальная температура использования композитов.
3. В числителе - продольные, в знаменателе - поперечные значения прочностных характеристик.

Рис. 10.4. Строение композита $\mathrm{Al}-\mathrm{B}$

волокна - магний обладает самыми высокими удельными характеристиками. Некоторыс свойства МКМ на основе магниевой матрицы приведены в табл. 10.5. Системы углеродные волокна - алюминий и углеродные волокна - магний перспективны для использования в авиационной и космической технике благодаря высоким значениям удельной прочности и жесткости, малому ТКЛР и сравнительно высокой теплопроводности.
Металлы с высокой пластичностью и прочностью хорошо совмещаются с высокопрочными и жесткими волокнами с низкой плотностью и пластичностью, образуя композиты с повышенной жесткостью и малой массой. Примером подобной комбинации может быть титан, армированный волокнами бора или карбида кремния. Однако такие системы имеют пониженную усталостную прочность из-за остаточных напряжений и химического взаимодействия между волокнами и матрицей при высокой температуре изготовления. Кроме того, механическая обработка композитов на основе титановой матрицы представляет большие трудности. Недостатком этого вида композитов является также высокая реакционная способность титановой матрицы. Свойства МКМ на основе титановой матрицы приведены в табл. 10.6.

Влияние температуры испытания на удельные прочность и жесткость композитов показано на рис. 10.5.

На рис. 10.6 приведены свойства композита на основе алюминиевого сплава, армированного борным волокном (с покрытием карбидом кремния).

Прочность и модуль упрутости, а также сопротивление материалов удару для однонаправленных композитов на основе алюминия, магния и титана повышаются по мере увеличения в композиции объемного содержания волокон.

Для очень высоких температур, например в камерах сгорания реактивных двигателей, используют системы, содержащие молибденовую и вольфрамовую проволоку в матрицах из титана и суперсплавов. Наибольшей прочностью при температуре $1093{ }^{\circ} \mathrm{C}$ обладает проволока из сплава $\mathrm{W}-\mathrm{Re}-\mathrm{Hf}-\mathrm{C}: \sigma_{\mathrm{B}}=2,2$ ГПа, что в 6 раз больше прочности никелевых или кобальтовых суперсплавов при такой же температуре.

Большие перспективы открываются с развитием процессов объемного армирования МКМ. В частности, для МКМ объемное армирование дает существенный выигрыш в ударной вязкости. Система $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Al}$ трехмерного армирования поглощает почти та-

Таблица 10.5. Свойства металинесних композитов на основе магнневой матрицм

Материал	$\gamma, \mathrm{r} / \mathrm{cm}^{3}$	$\sigma_{\mathrm{a}} \mathrm{M}$ Ма	E, ГПа	$\sigma_{v} /(\mathrm{yg})$, км	$E /(\mathrm{yg}), 10^{3} \mathrm{kM}$	$\alpha, 10^{6} \mathrm{~K}^{-1}$	$t_{\max }{ }^{\circ} \mathrm{C}$
Магниевые сплавы	1,74...1,83	200... 280	43... 45	15,5	2,5	14... 15	-
Армируюшие волокна:							
C	1,9...1,95	825	352	115*	23*	-	300... 320
B	2,15	550	150	25	7	-	-
$\mathrm{Al}_{2} \mathrm{O}_{3}$	2,5...2,9	530	210	20	8	-	-

Примечание. См. примечания 1,2 к табл. 10.4.

* Проектируемые значения свойств.

Таблица 10.6. Свойста металлических хомпозитов на основе титановой матрицы

Материал	$\gamma, \mathrm{r} / \mathrm{cm}^{3}$	σ_{3}, МПа	E, rПa	$\sigma_{ \pm} /(\gamma g)$, км	$E /(\mathrm{yg}), 10^{3} \mathrm{~km}$	$\alpha, 10^{-6} \mathrm{~K}^{-1}$	$t_{\text {max }}{ }^{\circ} \mathrm{C}$
Титановые сплавы	4,5	500... 1200	113	27	2,6	9	490
Армирующие волокна: B SiC $\mathrm{B}-\mathrm{SiC}$	$\begin{gathered} 3,3 \ldots 3,5 \\ 3,8 \ldots 4 \\ 3,7 \ldots 3,9 \end{gathered}$	$\begin{aligned} & 1500 / 550 \\ & 1720 / 650 \\ & 1400 / 550 \end{aligned}$	$\begin{gathered} 230 \\ 250 / 220 \\ 290 / 200 \end{gathered}$	$\begin{aligned} & 43 \\ & 46 \\ & 37 \end{aligned}$	$\begin{aligned} & 6,5 \\ & 7,5 \\ & 7,5 \end{aligned}$	$4,5 \ldots 5,7$	$\begin{aligned} & 650 \\ & 700 \end{aligned}$

Примечание. См. примечания ктабл. 10.4.

Рис. 10.5. Зависимость удельной прочности (a) и удельной жесткости (6) материала от температури:
$1-\mathrm{B}-\mathrm{Al} ; 2-\mathrm{YB}-\mathrm{Mg} ; 3-\mathrm{B}-\mathrm{Ti} ; 4-\mathrm{VB}-\mathrm{Al} ; 5-\mathrm{SiC}-\mathrm{Ti} ; 6-\mathrm{T} ; 7-\mathrm{Al} ;$ в- композит УВ - высокопрочнаи сталь; УВ - утлеродное волокно

кую же энергию удара, как и чистьй металл. Армирование по толщнне, обеспечиваемое трехмерной волокнистой структурой, предотвращает расслоение и ограничивает распространение трещин.

К недостаткам МКМ относится их сравнительно высокая стоимость и сложность изготовления. В настояшее время стоимость МКМ превосходит стоимость ПКМ в несколько раз. Совершенствование технологии позволит снизить себестоимость МКМ, а их уникальные свойства делают их незаменимыми в ряде конструкций.

Рис. 10.6. Зависимость временного сопротивления (a) и модуля упругости (б) бороалюминиевого композита вдоль (1) и поперек (2) оси армирования от объемного содержания борного волокна

В авиационной и ракетно-космической технике наиболее широко исппльзуют комнозиты с борными волокнами. Детали из боропластика и бороалюминия применяют такие крупные фирмы, как Lockheed, Boeing, General Dywamics. Из боропластика и бороалюминии изготавливают горизонтальные и вертикальные стабилизаторы, рули, элементы хвостового оперения, лонжероны, лопасти винтов, обшивку крыльев и др. Области испөльзования МКМ непрерывно расширяются. Помимо улучшения технических характеристик многих ответственных изделий использование МКМ способно ббеспечить $20 \ldots 30 \%$-ную экономию массы. Современные сплавы $\mathrm{Al}-\mathrm{L}$ имеют этот показатель на уровне $10 \ldots 15 \%$ (рис. 10.7).

Детали из бороалюминия по сравнению с титановыми сплавами дают снижение массы на $30 \ldots 40 \%$, обеспечивая более высокую длительную и усталостную прочность при нагреве до $500^{\circ} \mathrm{C}$. Еще более эффективно применение бороалюминия в ракетно-космической технике. Его использование для изготовления крупных деталей для ракет «Аллас», космических кораблей «Аполлон», «Шаттл» позволило уменьшить их массу на $20 \ldots 50 \%$. Это, в свою очередь, увеличило полезную нагрузку, а для военных самолетов дальность полета, объем вооружения и т.д. Снижение полетной массы истребителя $\mathrm{F}-15$ на 6%, или приблизительно 1100 кт, приводит к увеличению дальности полета на 15%.

Фирма Toyota (Япония) изготовила MKM для деталей автомобилестроения. Алюминий армировали смесью коротких волокон оксидов алюминия ($\mathrm{Al}_{2} \mathrm{O}_{3}$) и кремния (SiO_{2}) (диаметр 3 мкм и ллина до 10 мкм) в различных соотношениях. С увеличением массовой доли волокон $\mathrm{Al}_{2} \mathrm{O}_{3}$ возрастает прочность и модуль упрутости, при росте доли волокон SiO_{2} повышается износостойкостр. Этот материал использовали вместо никелевых сплавов для изготовления накладок поршней, что позволило повысить температуру в камере сгорания двигателя и его мощность. За счет увеличения износостойкости поршней пробег автомобиля увеличен до 300 тыс. км. Производство таких МКМ, по мнению японских специалистов, откроет промышленную технологию следующего поколения.

Правильный выбор материалов с целью экономии массы летательных аппаратов играет определяющую роль. Стоимость конструк-

Рис. 10.7. Потенциальная экономия массы авиакосмических конструкций при использовании различных конструкшионных материалов:

1. 2 - алюминиевые сплавы; 3- титаповый сплав (Ti-10Al-2V-Fe); 4 - сплав $\mathrm{Al}-\mathrm{Li} ; 5$ - порошковые материалы; 6 - металлические композиты

ции составляет 40% для военных самолетов, 68% - для коммерческих, 19% - дия космических аппаратов, 50% - для орбитального космического корабля типа «Шаттл». В космической технике экономию массы принято оценивать через стоимость вывода 1 кт массы на орбиту с учетом числа запусков. Учитывая, что отношение исходной массы к массе, доставленной на околоземную орбиту, составляет $100: 1$, эта величина может составлять до 30 тыс. долл./кт.

Применение композитов в конструкции космического корабля «Шаттл» позволило снизить массу на 1402 kr , в том числе за счет использования боропластика на 410 кт и боралюминия на 82 кт. Такая экономия массы позволила уменьшить затраты на вывод корабля на орбиту на несколько миллионов долларов, что заранее окупает затраты на стоимость элементов конструкции из этих материалов.

Контрольные вопросы

1. Какими свойствами обладают компоненты композиционньх материалов?
2. Какое строение могут иметь композиционные материалы?
3. Что является матрицей в композиционных материалах?
4. Какие наполнители используют для упрочнения композиционных материалов?
5. Что из себя представляют материалы типа САП?
6. Какое влияние на свойства композиционного материала оказывают волокна бора?
7. Какими способами можно получать композиционные материалы?
8. В каких областях промышленности могут применяться композиционные материалы?

ГЛАВА 11

ПОРОШКОВЫЕ МАТЕРИАЛЫ

11.1. Общие сведения

Методы порошковой металлургии позволяют создавать принципиально новые материалы, которые сложно или даже невозможно получить другими способами: многослойные композиции, различные комбинации металлических и неметаллических компонентов, пористые материалы с широким диапазоном контролируемой пористости, изделия из тугоплавких металлов и т.д. Порошковая металлургия дает возможность свести к минимуму отходы металла в стружку, упростить технологию изготовления деталей и снизить трудоемкость их производства.

Технологический процесс изготовления изделий из порошков включает в себя получение порошков, подготовку шихты, формование, спекание, горячее прессование и штамповку. Иногда применяют дополнительную обработку, состоящую из пропитки деталей смазочными материалами, термической и химико-термической обработки, калибровки и обработки резанием.

Размеры частиц порошка обычно составляют от 0,1 мкм до 0,1 мм. Более крупные фракции называют гранулами, более мелкие пудрой.

Металлические порошки получают физико-механическими и химико-металлургическими способами. В основе физико-механических способов получения порошков лежат методы механического измельчения металлов в твердом и жидком состояниях. К ним относятся дробление и размол стружки в мельницах, распьление расплавленного металла струей сжатого воздуха, газа или жидкости, грануляция при литье расплавленного металла в жидкость и др.

К химико-металлургическим способам относятся способы восстановления металлов из оксидов, электролитическое осаждение металлов из водных растворов солей, термическая диссоциация карбонильных соединений металлов.

При формовании заготовок из порошков определенного химического состава прессованием им придают форму и размеры готовых деталей, после чего направляют на спекание. При спекании непрочные прессованные заготовки превращаются в прочное спеченное тело со свойствами, приближающимися к свойствам беспористого компактного материала. Температура спекания деталей из конструкционных материалов на основе железа с добавками графита, никеля и других компонентов составляет $1100 \ldots 1200^{\circ} \mathrm{C}$.

Температура спекания изделий антифрикционного назначения на основе железа составляет $1000 \ldots 1050^{\circ} \mathrm{C}$, на основе бронзы $850 \ldots 950^{\circ} \mathrm{C}$. Спекание проводят в течение $0,5 \ldots 1,5$ ч в нагревательных печах, как правило, в зашитной атмосфере или в вакууме для предотвращения окисления частиц порошка. Для получения более высоких характеристик механических и эксплуатационных свойств материалов и повышения точности размеров после формования и спекания дополнительно производят горячее прессование, штамповку, прокатку.

Термической обработке порошковых деталей присущи некоторые специфические особенности. Пористость повышает окисляемость порошковых материалов, вследствие чего их нагрев целесообразно проводить в защитной атмосфере. Поры, заполненные газом, снижают теплопроводность, что ухудшает прокаливаемость пористых материалов по сравнению с компактными. Для пористых деталей целесообразно применение закалки с резким охлаждением в струе воды или с энергичным перемешиванием для ускорения срыва паровой рубашки, затрудняющей охлаждение. После закалки детали должны обязательно просушиваться до полного удаления влаги из пор.

В ряде случаев дополнительно проводят ХТО деталей из порошковых материалов. Цементацию и нитроцементацию применяют для повышения твердости и износостойкости поверхностного слоя. Азотирование позволяет получать высокую твердость, усталостную прочность и коррозионную стойкость деталей.

Сульфидирование применяют с целью уменьшения коэффициента трения для повышения износостойкости и твердости железных и железографитовых изделий. Наиболее простой способ сульфидирования - пропитка серой погружением пористьх изделий в расплавленную серу при температуре $140 \ldots 160^{\circ} \mathrm{C}$ (выдержка $10 \ldots 15$ мин) с последующим нагревом до $400 \ldots 500^{\circ} \mathrm{C}$ в герметизированной печи с азотводородной атмосферой.

Оксидирование обработкой паром применяют для повышения износостойкости и коррозионной стойкости порошковых деталей на железной основе. Обычно используют обработку паром при температуре $550^{\circ} \mathrm{C}$ в течение 1 ч с последующим охлаждением в масле. При взаимодействии паров воды с железом на поверхности деталей и на поверхности открытых пор образуется прочная коррози-онно-стойкая пленка.

11.2. Конструкционные материалы

Изделия для машиностроения являются наиболее распространенным видом продукции порошковой металлургии. Учитывая почти полное отсутствие отходов, они имеют минимальную стои-

мость и трудоемкость. Различают конструкционные порошковые материалы общего назначения, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы, и материалы, обладающие специальными свойствами - высокой износостойкостью, твердостью, жаропрочностью, коррозионной стойкостью, специфическими магнитными и электрическими характеристиками. В зависимости от условий нагружения различают мало-, средне- и тяжелонагруженные детали, которые в свою очередь делятся на тяжелонагруженные статическими и динамическими усилиями.

Чем выше требования по прочности, тем меньше должна быть пористость металла. По плотности (пористости) порошковые детали подразделяют на четыре группы. Тяжелонагруженные статическими усилиями детали изготавливают из порошков углеродистых или легированных сталей и цветных сплавов. Пористость материала не должна превышать 9%. Изделия получают холодным прессованием и спеканием с последующей дополнительной горячей и холодной штамповкой или горячим прессованием. Применяют также пропитку легкоплавкими металлическими расплавами с последующей термической обработкой. Тяжелонагруженные динамическими нагрузками детали изготавливают из порошков углеродистых и легированных сталей и сплавов цветных металлов с пористостью не более 2%. В этом случае проводят холодное прессование, спекание, горячую штамповку, горячее прессование или ХТО.

На рис. 11.1 представлена зависимость относительной прочности $\sigma_{\text {отн }}=\left(\sigma_{\text {пор }} / \sigma_{\text {комп }}\right) 100 \%$ от относительной плотности $\gamma_{\text {отн }}=$ $=\left(\gamma_{\text {пор }} / \gamma_{\text {комп }}\right) 100 \%$ порошковых материалов при различных технологических процессах формообразования, где $\sigma_{\text {пор }}, \gamma_{\text {пор }}-$ прочность и плотность порошковых материалов; $\sigma_{\text {комп }}, \gamma_{\text {комп }}$ - прочность и плотность композитов.

С увеличением плотности одновременно возрастают пластичность и ударная вязкость. Изменяя пористость, можно регулировать плотность и механические свойства, подбирать материалы с заданными свойствами для конкретньх условий работы изделий.

Рис. 11.1. Зависимость относительной прочности порошковых конструкционных материалов от их относительной плотности и технологии формообразования:
I- статическое холодное прессование;
2 - высокоскоростное холодное прес сование; 3 - горячая штамповка

387

Порошковые стали по механическим свойствам могут не уступать литым и кованым сталям соответствующего состава. Так, мар-тенситно-стареющие стали благодаря возможности повышения содержания титана до $2 \ldots 3 \%$ имеют временное сопротивление до 2000 M Ма при ударной вязкости КСU $30 . . .40$ Дж/см².

Основой для получения порошковых коррозионно-стойких материалов обычно служат порошки сталей и сплавов определенного состава.

Перспективно использование порошков титана и его сплавов для изготовления тяжелонагруженных деталей. Высокие механические свойства порошковых изделий на основе титана ($\sigma_{\mathrm{B}}=$ $=650 \ldots 900 \mathrm{M} П а ; \delta=8 \ldots 16 \%$) позволяют применять их для изготовления шатунов автомобильных двигателей, что существенно уменьшает массу, снижает инерционные силы и повышает мощность двигателя. Из порошков титана организовано серийное производство таких деталей, как втулки, крышки, трубы для химического и пищевого машиностроения, приборостроения и др.

11.3. Порошковые антифрикционные материалы

Для изготовления подшипников скольжения, уплотнений, подпятников наряду с литыми сплавами (бронзы, баббиты и чугуны) используют антифрикщионные материалы (ГОСТ 26802-86), изготовленные методом порошковой металлургии. Такие материалы создаются на основе меди или железа и содержат вещества тила твердых смазок, что обеспечивает им заданные механические и эксплуатационные свойства.

Антифрикционные порошковые материалы характеризуются низким коэффициентом трения, хорошей износостойкостъю, способностью легко прирабатываться к валу и выдерживать значительные нагрузки. Антифрикционные порошковые материалы обладают преимуществами по сравнению с обычными антифрикционными материалами. Их износостойкость в несколько раз выше, чем у бронз и баббитов, что дает возможность работать при более высоких скоростях и давлениях. Наличие в структуре пористости, регулируемой в широких пределах (до 35%), позволяет их предварительно пропитывать смазочными маслами. Во время работы по мере нагревания масло, удерживаемое в порах и мельчайших каналах материала капиллярными силами, постепенно вытесняется наружу и образует смазочную пленку на рабочей поверхности. При остановке и последующем охлаждении подшипника масло частично всасывается обратно в поры. Пористые подшипники могут работать длительное время без дополнительной смазки. Эффект самосмазываемости в пропитанных маслом пористых подшипниках без подвода смазочного материала извне может сохраняться в течение $3000 \ldots 5000$ ч.

Комтозиционные антифрикционные порошковые материалы позволяют иметь равномерно распределенные включения из веществ, играющих роль твердой смазки (графит, сульфиды, пластмассы и некоторые другие соединения). Такие материалы имеют сравнительно низкий коэффициент трения при работе без жидкой смазки (в режиме сухого трения). Сочетание повышенных антифрикционных свойств твердых смазок и пластмасс со свойствами металлов позволяет получать материалы, способные работать в воде, агрессивных жидкостях, бензине, различных газовых средах, в вакууме, а также в условиях высоких и низких температур.

Антифрикционные порошковые материалы могут представлять собой каркасные конструкции, в которых каркас выполнен из прочного материала, а промежутки заполнены более мягким материалом. Можно, наоборот, иметь мягкую матрицу с равномерно распределенными твердыми включениями разной степени дисперсности, повышающими работоспособность подшипников. Эти особенности позволяют осушествлять направленное регулирование свойств антифрикционных порошковых материалов применительно к конкретным условиям эксплуатации.

Внедрение порошковых подшипников скольжения повышает надежность и долговечность работающего оборудования, снижает трудоемкость процесса их изготовления, позволяет уменьшить отходы металла в стружку, обеспечивает экономию дефицитных цветных металлов и сплавов.

11.4. Фрикционные материалы

Фрикционные порошковые материалы предназначены для работы в тормозньх и передаточных узлах автомобилей, гусеничных машин, дорожных и строительных механизмов, самолетов, станков, прессов и т. п. Фрикиионные элементы из порошковых материалов изготавливают в виде дисков, секторных накладок и колодок различной конфигурации. Применяют фрикиионные порошковые материалы на основе меди и железа.

Порошковые материалы на основе оловянных и алюминиевых бронз, содержащие свинец, графит и железо, предназначены преимущественно для работы в условиях трения со среднеуглеродистыми сталями с твердостью 40 ... 45 НRC при давлении до 35 МПа и скорости скольжения до $50 \mathrm{~m} / \mathrm{c}$. При меньших давлениях и скоростях до $5 \mathrm{~m} / \mathrm{c}$ используют металлопластмассовые материалы.

Порошковые материалы на основе железа, содержацие добавки меди, графита, оксида кремния, асбеста, сульфата бария, предназначены для работы в условиях трения при давлении до $300 \mathrm{MПа}$ и скорости до $60 \mathrm{~m} / \mathrm{c}$ в паре с чугуном либо легированной сталью

в тормозных устройствах различной конструкции - дисковых, колодочных, ленточных тормозах.

В сравнении с асбофрикционными материалами порошковые материалы обладают более высокими значениями термо- и износостойкости (в $2-4$ раза), а в некоторых случаях, например при работе с легированным чугуном, и более высоким (на $15 \ldots 25 \%$) коэффициентом трения.

11.5. Пористые фильтрующие элементы

Для изготовления фильтрующих элементов обычно применяют ткани, войлок, керамику, фарфор, а также сетчатые фильтры из различных материалов. Их недостатками являются низкая коррозионная стойкость, недостаточная механическая прочность, низкая термостойкость и жаропрочность. В большинстве случаев они не допускают высоких перепадов давлений, с трудом поддаются регенерации.

Высокопористые порошковые металлические материалы благодаря жесткому пространственному каркасу имеют более высокую прочность, выдерживают резкие колебания температур, легко обрабатываются, свариваются и паяются, обеспечивают необходимую коррозионную стойкость, жаростойкость, теплопроводность. Вследствие высокой пористости такие материалы имеют хорошую проницаемость для жидкостей и газов при достаточно тонкой фильтрации (до 30 мкм), легко регенерируются (при этом почти полностью восстанавливают свои первоначальные свойства), не засоряют фильтрующиеся жидкости или газы материалами фильтра.

Технология изготовления металлических пористых элементов зависит от их формы и размеров. Фильтры небольших размеров изготавливают спеканием свободно засыпанного порошка. Для $60-$ лее крупных фильтров применяют холодное прессование и последуюшее спекание. Для получения тонких пористых лент применяют прокатку.

Для изготовления пористых проницаемых элементов применяют порошки различных металлов и сплавов: углеродистых и коррози-онно-стойких сталей различных марок, сплавов никеля с хромом и молибденом, сплавов меди, титана, алюминия, вольфрама, молибдена и др. В технике наибольшее распространение получили фильтры из коррозионно-стойкой стали, бронзы, сплавов никеля и титана.

Применение порошковых материалов позволяет увеличить срок службы насосов, двигателей и других агрегатов, работающих на очищенных жидкостях. С их помощью повышается эффективность химических процессов и улучшается качество вакуумной продукции, создаются возможности для получения материалов с новыми свойствами.

11.6. Инструментальные порошковые стали

Получение порошков быстрорежущих сталей осуществляется методами газового и водного распыления. Основные технологические операции получения порошковых заготовок инструмента методом газового распыления (процесс ASEA-Stora) приведены на рис. 11.2.

Метод порошковой металлургии позволяет получать инструментальные стали с более высокими физико-механическими и эксплуатационными свойствами

Недостаток быстрорежущих сталей обычного передела заключается в неравномерном распределении карбидов. В порошковых сталях карбидной ликвации нет. Порошковая металлургия обеспечивает снижение потерь материала, уменьшение энергозатрат, а также необходимое изменение химического состава. За счет измельчения структуры и более равномерного распределения карбидов износостойкость порошковой быстрорежущей стали выше, чем обычной, в 1,5-3 раза. Технология горячего изостатического прессования используется во многих странах, однако необходимость применения сложной аппаратуры снижает ее экономичность. Бо-

Рис. 11.2. Схема процесса ASEA-Stora:
1- заливка расплава; 2 - подача газа; 3 - распыление расплава; 4- рассев фракций; 5 - заполнение контейнера порошком; 6 - заварка верхней крышки контейнера и контроль герметичности; 7 - холодное гидростатическое прессование контейнера; 8 - контроль герметичности; 9 -. предварительный нагрев контейнера; 10 - горячее гидростатическое прессование контейнера; 11 - прессование заготовки

Способ изготовления	$\underset{\substack{\text { Плотность, } \\ \Gamma / \mathrm{cm}^{3}}}{ }$	$\begin{gathered} \text { Массовая } \\ \text { доля } \\ \text { углерода, \% } \end{gathered}$	Вторичная твердость HRC	Твердость HRC после оттуска в течение 4 ч при температуре, ${ }^{\circ} \mathrm{C}$		Предел прочности при изгибе, МПа	Ударная вязкость Дж/см ${ }^{2}$
				620	630		
Горячее изостатическое прессование + ковка	8,18	1...1,1	$67 . . .68$	59	58	$3500 \ldots 4000$	25... 30
			$68 . . .69$	62	60	$3000 . .3300$	25... 28
Горячая экструзия	8,17	1,03...1,1	67,5	59,5	58,5	$3180 . .3510$	17... 19
			68,5	61	60	3150... 3380	15... 17
			68,5	63	61	$2350 . . .2650$	11... 15
Обычная технология	8,16	1...1,1	$67 . . .68$	59	58	$2500 . .3000$	10... 18
			$68 . . .69$	62	60	$2100 . . .2500$	5... 12

лее экономичной считается горячая экструзия, при которой порошковые заготовки после спекания пористостью менее 10% подвергают обжатию высокой степени (свыше 90%). Как правило, при производстве порошковой быстрорежущей стали используют порошки с размером частиц менее 600 мкм. Температура спекания зависит от содержания углерода. Для стали с содержанием углерода 1% температура спекания составляет $1240^{\circ} \mathrm{C}$, при увеличении содержания углерода до $1,6 \%-1200^{\circ} \mathrm{C}$.

Порошковую быстрорежушую сталь подвергают термической обработке, режимы которой те же, что и обработки стали обычного передела: отжиг, закалка и трехкратный отпуск. Температура нагрева при закалке порошковых сталей несколько ниже. Порошковая металлургия обеспечивает мелкозернистую структуру изделий, повышает их прочность, вязкость и износостойкость (табл. 11.1).

Применяют также порошковые высоколегированные инструментальные стали для штампов. По данным О.В. Романа, хромомолибденовая сталь типа X12M высокой плотности, нашедшая применение для изготовления инструмента для ударного выдавливания, имеет следующие физико-механические свойства:

```
Плотность, г/см \({ }^{3}\)
Временное сопротивление, МП
7,7...7,2
Временное сопротивление, МПа ................................... 1 100... 1260
Предел грочности при изгибе, МПа ............................. \(1350 \ldots . .1440\)
Предел прочности при сжатии, МПа............................ \(2080 . . .2160\)
Вязкость разрушения, МПа•м \({ }^{1 / 2}\)........................................................... 42 ... 45
```


11.7. Карбидостали

Карбидосталями называют порошковые материалы, состоящие из легированной стальной матрицы и карбидов с массовой долей $20 \ldots 70 \%$. В качестве карбидной составляющей чаще всего применяют карбид титана. Матрица из легированной стали выполняет роль связки с равномерно распределенными в ней карбидами. Приготовление порошковой смеси состоит в смешивании порошка карбида титана с порошком стали-связки заданного состава либо со смесью порошка железа с порошками легируюших компонентов. В качестве металла-связки обычно используют легированные инструментальные стали марок X12M, X4H2MB, X6B3M, 5X6BM2, Р6М5К5. В табл. 11.2 представлены характеристики свойств спеченных карбидосталей после закалки и отпуска.

Карбидостали после закалки и отпуска обладают высокой твердостью и износостойкостью. По комтІлексу свойств карбидостали занимают промежуточное положение между твердыми сплавами и быстрорежущими сталями.

Кроме инструментов разного назначения карбидостали можно использовать для изготовления деталей, подвергающихся интен-

Таблица 11.2. Свойства карбидосталей, спеченных в вакууме

Марка стали	$\begin{gathered} \text { Массовая } \\ \text { доля } \\ \text { карбида } \\ \text { титана, } \% \end{gathered}$	Твердость НRC после обработки				Предел прочности, МПа	
		спеканием	$\begin{aligned} & \text { отжи- } \\ & \text { гом } \end{aligned}$	$\begin{gathered} \text { закал- } \\ \text { кой } \end{gathered}$	$\begin{gathered} \text { оппус- } \\ \text { ком } \end{gathered}$	$\begin{gathered} \text { при } \\ \text { изгибе } \end{gathered}$	$\begin{gathered} \text { при } \\ \text { сжатии } \end{gathered}$
X12M	50	62	47	70	70	1200	3100
	30	55	31	66	63	1500	2000
X4H2MB	50	63	54	72	71	1100	3600
	30	57	42	66	65	1400	2200
X6B3M	30	58	38	68	67	1230	3100
	10	47	15	57	56	1320	2500
5X6BM2	30	58	37	67	67	1250	2900
	10	48	18	56	55	1350	2300

сивному изнашиванию (втулки, валики, подшипники, зубчатые колеса, кулачки), а также деталей, работаюших в условиях гидроабразивного изнашивания, при повышенных температурах и в коррозионных средах. В качестве матрицы могут использоваться инструментальные, конструкционные, коррозионно-стойкие и другие стали, что определяется назначением карбидосталей.

Карбидостали легче инструментальных сталей на 12%, твердых сплавов - на 50%. Карбидостали обладают высокой твердостью при нагреве, сравнительно низким коэффициентом трения, устойчивостью к адгезии при обработке материалов, незначительным изменением размеров при термической обработке.

Контрольные вопрасы

1. Как получают порошковые материалы?
2. Что такое порошок, гранула, пудра?
3. Какие операции включает в себя технологический процесс изготовления изделий из порошковых материалов?
4. Какую дополнительную обработку производят для изделий, изготовленных из порошков?
5. Как маркирукт порошковые материалы на основе железа?
6. Почему подшипники, изготовленные из порошков, могут длительное время работать без добавления смазочного материала?
7. Какие порошковые материалы использукт для изготовления тормозных узлов?
8. В чем особенность фильтров, изготовленных из порошков?
9. Что такое карбидосталь?

РАЗДЕЛ III
 НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

ГЛАВА 12

ПОЛИМЕРЫ

12.1. Состав и строение полимеров

Неметаллические материалы (пластмасса, резина, керамика, стекло, клей, лакокрасочные покрытия, древесина, ткань и др.) в качестве конструкционных материалов служат важным дополнением к металлам, в некоторых случаях с успехом заменяют их, а иногда сами являются незаменимыми. Двигатели внутреннего сгорания из керамики обходятся без водяного охлаждения, что невозможно при изготовлении их из металла; обтекатели ракет делают только из неметаллических материалов (графит, керамика). Трудно представить домашнюю утварь, аудио- и видеотехнику, компьютеры, спортивное снаряжение, автомобили и другую технику без неметаллических материалов - пластмассы, ламината, керамики, резины, стекла и др.

Достоинством неметаллических материалов является сочетание требуемого уровня химических, физических и механических свойств с низкой стоимостью и высокой технологичностью при изготовлении изделий сложной конфигурации. Трудоемкость при изготовлении изделий из неметаллических материалов в 5-6 раз ниже, они в 4-5 раз дешевле по сравнению с металлическими. В связи с этим непрерывно возрастает использование неметаллических материалов в машиностроении автомобилестроении, авиационной, пищевой, холодильной и криогенной технике и др.

В основе неметаллических материалов лежат полимеры. Полимерами называются высокомолекулярные химические соединения, состоящие из многочисленных маломолекулярных звеньев (мономеров) одинакового строения. Макромолекулы представляют собой длинные цепи из мономеров, что определяет их большую гибкость. Отдельные атомы в мономерах соединены между собой довольно прочными ковалентными химическими связями. Между макромолекулами полимеров действуют значительно более слабые физические связи. Например, мономеры этилен $\mathrm{C}_{2} \mathrm{H}_{4}$ или винилхлорид $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ после разрыва двойных ковалентных связей создают цепь из мономерных звенье (меров), т.е. полимеры, которые называются соответственно полиэтилен и поливинилхлорид.

Различают природные и синтетические полимеры. К полимерам, встречающимся в природе, относятся натуральный каучук, целлюлоза, слюда, асбест, шерсть и т.д. Однако ведущее место занимают синтетические полимеры, получаемые в процессе химического синтеза из низкомолекулярных соединений.

По составу все полимеры подразделяют на органические, элементоорганические и неорганические. Органические полимеры, составляющие наиболее обширную группу соединений, состоят из атомов углерода, водорода, кислорода, азота, серы и галогенов. Элементоорганические соединения содержат в составе основной цепи кроме перечисленных атомы кремния, титана, алюминия и друтих элементов, сочетающихся с органическими радикалами. В природе таких соединений нет - это чисто синтетические полимеры. Их характерными представителями являются кремнийорганические соединения, основная цепь которых построена из атомов кремния и кислорода. Неорганииеские полимеры (силикатное стекло, керамика, слюда, асбест и др.) не содержат атомов углерода. Основой их являются оксиды кремния, алюминия, магния и др.

Для получения материалов с заданными свойствами в технике часто используют не сами полимеры, а их сочетания с другими материалами как органического, так и неорганического происхождения (металлопласты, пластмассы, полимербетоны, стеклопластики и др.).

Своеобразие свойств полимеров обусловлено их структурой. Различают следующие типы полимерных структур: линейную, линей-но-разветвленную, лестничную и пространственную с громоздкими молекулярными группами и специфическими геометрическими построениями (рис. 12.1).

a

σ

B

2

Рис. 12.1. Различные типы структур полимеров:
a - линейная; б - линейно-разветвленная; в - лестничная; г - пространственная сетчатая

Полимеры с линейной структурой представляют собой длинные зигзагообразные или закрученные в спираль цепочки (рис. 12.1, a) Их макромолекулы характеризуются повторениями вдоль цепи одной и той же структурной группы - звена или химической единицы цепи. Для полимеров с линейной структурой существенно наличие достаточно длинных макромолекул с резким различием характера связи вдоль цепи и между цепями (химические и межмолекулярные связи). Для макромолекул полимеров с линейной структурой характерна высокая гибкость. Гибкость - основное свойство полимерных цепей, приводящее к качественно новым свойствам: высокой эластичности и отсутствию хрупкости в твердом состоянии. Полимеры с линейно-разветвленной структурой помимо основной цепи имеют боковые ответвления (рис. 12.1, б). К типичным полимерам с линейной структурой относится полиэтилен, с линейно-разветвленной - полиизобутилен и полипропилен.

Молекула полимера с лестничной структурой (рис. 12.1, в) состоит из двух цепей, соединенных химическими связями. Полимеры с лестничной структурой, к которым относятся, например, кремнийорганические полимеры, характеризуются повышенной термостойкостью, жесткостью, они нерастворимы в органических растворителях.

Полимеры с пространственной сетчатой структурой (рис. I2.1, г) образуют при соединении макромолекул между собой в поперечном направлении прочные химические связи. В результате такого соединения макромолекул образуется сетчатая структура с различной густотой сетки или пространственная сетчатая структура Полимеры с пространственной структурой обладают большей жесткостью и теплостойкостью, чем полимеры с линейной структурой. Полимеры с пространственной структурой являются основой конструкционных неметаллических материалов.

В зависимости от того, как ведут себя полимеры при нагреве, их подразделяют на термопластичные и термореактивные. Термопластичные полимеры при нагреве размягчаются и плавятся, а при охлаждении затвердевают. При этом материал не претерпевает химических превращений, что делает процесс плавления - затвердевания полностью обратимым. Термопластичные полимеры имеют линейную или линейно-разветвленную структуру макромолекул. Между молекулами действуют слабые силы и отсутствуют химические связи. К термопластичным полимерам относятся полиэтилен, полистирол, полиамид и др. Изделия из термопластичных полимеров изготавливают литьем под давлением в водоохлаждаемые формы, ирессованием, экструзией, выдуванием и другими способами.

Термореактивные полимеры сначала имеют линейную структуру и при нагреве размягчаются, затем в результате протекания химических реакций приобретают пространственную структуру и иревращаются в твердое вещество, сохраняя и в дальнейшем вы-

сокую твердость. Последующий нагрев не размягчает их и может привести только к их разложению. Готовый термореактивный полимер не плавится и не растворяется, поэтому в отличие от термопластичного не может подвергаться повторной переработке. K термореактивным полимерам относятся фенолформальдегидная, кремнийорганическая, эпоксидная и друтие смолы.

12.2. Основные свойства полимеров

Полимеры могут находиться в твердом и жидком состояниях (газообразное состояние для них не характерно), кристаллическом и аморфном фазовых состояниях, а также в стеклообразном, высокоэластическом и вязкотекучем деформационных физических состояниях.

Полимеры имеют высокую стойкость в таких средах, как щелочи и концентрированные кислоты. В отличие от металлов они не подвержены электрохимической коррозии. С увеличением молекулярной массы снижается растворимость полимеров в растворителях органического происхождения. Полимеры с пространственной структурой практически не подвержены действию органических растворителей.

Большинство полимеров является диэлектриками. Полимеры в основном относятся к немагнитным веществам. Из всех применяемых конструкционных материалов полимеры имеют наименьшую теплопроводность и наибольшие теплоемкость и тепловую усадку. Тепловая усадка полимеров примерно в $10-20$ раз больше, чем металлов. Причиной потери герметичности уплотнительными узлами при низких температурах является стеклование резины и резкое различие коэффициентов расширения металла и резины в застеклованном состоянии.

Для полимеров характерен широкий диапазон механических характеристик, сильно зависящий от их структуры. Кроме структурных параметров большое влияние на механические свойства полимеров оказывают внешние факторы: температура, длительность и частота или скорость нагружения, давление, вид напряженного состояния, термическая обработка, характер окружающей среды и др.

Особенностями механических свойств полимеров являются их удовлетворительная прочность, но малая жесткость по сравнению с металлическими материалами.

Характеристики основных полимеров представлены в табл. 12.1.
Все полимеры в большей или меньшей степени подвержены процессу старения во времени. Старением полимеров называют самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химичес-

Таблица 12.1. Свойства основньх полимеров

Полимер	$\gamma, \Gamma / \mathrm{cm}^{3}$	$\underset{\text { ППа }}{E \text { при } 20^{\circ} \mathrm{C},}$	σ_{3}, MHa	$\begin{aligned} & K_{\text {tc }} \text { при } 22^{\circ} \mathrm{C}, \\ & \text { МПа } \cdot \mathrm{m}^{1 / 2} \end{aligned}$	ع, \%	$t_{c},{ }^{\circ} \mathrm{C}$
Термопластичные полимеры						
Полиэтилен низкой плотности	0,92	0,15 ...0,24	$7 . .17$	$1 . . .2$	90... 800	0
Полиэтилен высокой плотности	0,96	0,55 ... 1	20... 37	2... 5	15... 100	30
Поливинилхлорид	1,39	2,4... 3	40... 60	2,4	2... 30	80
Полипропилен	0,9	1,2...1,7	$50 . .70$	3,5	10... 700	-20
Полистирол	1,06	3...3,3	35...68	2	1... 2	100
Полиамид	1,14	2...3,5	$60 \ldots 110$	$3 \ldots 5$	60	70
Термореактивные полимеры						
Фенолформальдегидная смола	1,4	8	$35 \ldots 55$	-	0	-
Полиэстер	-	1,3...4,5	$45 . .85$	0,5	0	70
Эпоксидная смола	1,6	2,1...5,5	$40 \ldots 85$	0,6... 1	0	80

Примечание. γ - плотность; E - модуль упругости; σ_{B} - временное сопротивление; $K_{\text {Iс }}$ - вязкость разрушения; ε - полное

Рис. 12.2. Влияние длительности атмосферного старения на относительное удлинение поливинилхлоридного пластика (исходное удлинение принято за 100%):
1 - стабилизированное состояние; Z - не стабилизированное состояние

ких и физических процессов, развивающихся в материале при эксплуатации и хранении.

Старению способствуюот свет, частая смена циклов нагрев охлаждение, воздействие кислорода, озона и другие факторы. Старение ускоряется при многократных деформациях, менее существенное влияние на старение оказывает влага. При старении повышается твердость, хрупкость, теряется эластичность. При высоких температурах ($200 \ldots 250^{\circ} \mathrm{C}$) происходит термическая деструкция - разложение органических полимеров, сопровождающееся испарением летучих веществ.

Ускоренное старение наблюдается при действии механических напряжений, когда не успевают протекать процессы релаксации напряжений, в результате чего ослабляются или нарушаются химические связи. При длительной работе резин в растянутом состоянии на их поверхности под действием атмосферного кислорода образуется хрупкая пленка, склонная к расслаиванию.

Для замедленного старения в полимерные материалы добавляют стабилизаторы двух типов: термостабилизаторы (амины, фенолы) и светостабилизаторы (например, сажа).

Длительность эксплуатации стабилизированных полимеров значительно возрастает (рис. 12.2). Срок наступления хрупкости полиэтилена, стабилизированного сажей, составляет свыше 5 лет. Tрубы из поливинилхлорида могут работать $10-25$ лет.

Контрольные вопросы

1. Какие материалы относят к полимерам?
2. Какое строение имеют полимеры?
3. Какое влияние на свойства оказывает структура полимера?
4. Перечислите основные физико-механические свойства полимеров.
5. Что понимают под старением полимеров?

ПЛАСТИЧЕСКИЕ МАССЫ

13.1. Общая характеристика пластических масс

Пластические массы (далее - пластмассы) - это синтетические материалы, получаемые на основе органических и элементоорганических полимеров. Свойства пластмасс определяются свойствами полимеров, составляюших их основу. Пластмассы состоят из нескольких компонентов: связующего вещества, наполнителя, пластификатора и др.

Связующее вещество является обязательным компонентом. Такие простые пластмассы, как полиэтилен, вообще состоят из одного связующего вещества.

Наполнителями служат твердые материалы органического и неорганического происхождения. Наполнители придают пластмассам прочность, твердость, теплостойкость, а также некоторые специальные свойства, например антифрикционные или наоборот фрикционные. Кроме того, наполнители снимают усадку при прессовании.

Пластификаторы представляют собой нелетучие жидкости с низкой температурой замерзания. Растворяясь в полимере, пластификаторы повышают его способность к пластической деформации. Пластификаторы вводят для расширения температурной области высокоэластического состояния, снижения жесткости пластмасс и температуры хрупкости. В качестве пластификатора применяют сложные эфиры, низкомолекулярные полимеры и др. Пластификаторы должны оставаться стабилными в условиях эксплуатации. Их наличие улучшает морозостойкость и огнестойкость пластмасс.

В состав пластмасс могут также входить стабилизаторы, отвердители, красители и другие вещества.

Стабилизаторы вводят в пластмассы для повышения долговечности. Светостабилизаторы предотвращают фотоокисление, а антиокислители - термоокислительные реакции.

Отвердители изменяют структуру полимеров, влияя на свойства пластмасс. Чаще используют отвердители, ускоряющие полимеризацию. К ним относятся оксиды некоторых металлов, уротропин и др.

Специальные химические добавки вводят с различными целями; например, сильные органические яды - фунгициды - для предохранения пластмасс от плесени и поедания насекомыми в условиях тропиков.

Смазывающие вещества (стеарин, олеиновая кислота) применяют для предотвращения прилипания пластмассы к оборудованию при производстве и эксплуатации изделий

Красители и писменты придают пластмассам желаемую окраску.

Для пластмасс характерны следующие свойства:

- низкая плотность (обычно $1 \ldots 1,8 \mathrm{r} / \mathrm{cm}^{3}$, в некоторых случаях $0,02 \ldots 0,04$ г/cm ${ }^{3}$);
- высокая коррозионная стойкость. Пластмассы не подвержены электрохимической коррозии, на них не действуют слабые кислоты и щелочи. Существуют пластмассы, стойкие к воздействию концентрированных кислот и щелочей. Большинство пластмасс безвредны в санитарном отношении;
- высокие диэлектрические свойства;
- хорошая окрашиваемость в любые цвета. Некоторые пластмассы могут быть изготовлены прозрачными, не уступающими по своим оптическим свойствам стеклам;
- механические свойства широкого диапазона. В зависимости от природы выбранных полимеров и наполнителей пластмассы могут быть твердыми и прочными или же гибкими и упругими. Ряд пластиков по своей механической прочности превосходит чугун и бронзу. При одной и той же массе пластмассовая конструкция может по прочности соответствовать стальной;
- антифрикционные свойства. Пластмассы могут служить полноценными заменителями антифрикционных сплавов (оловянных бронз, баббитов и др.). Например, полиамидные подшипники скольжения длительное время могут работать без добавления смазочного материала;
- высокие теплоизоляционные свойства. Все пластмассы, как правило, плохо проводят теплоту, а теплопроводность таких теплоизоляторов, как пено- и поропласты, почти в 10 раз меньне, чем у обычных пластмасс;
- хорошие технологические свойства.

Изделия из пластмасс изготавливают способами безотходной технологии (без снятия стружки) - литьем, прессованием, формованием с применением невысоких давлений или в вакууме.

Недостатком большинства пластмасс является их невысокая теплостойкость ($100 \ldots 120^{\circ} \mathrm{C}$). В настояцее время верхний температурный предел для некоторых пластмасс поднялся до $300 \ldots 400^{\circ} \mathrm{C}$. Пластмассы могут работать при умеренно низких температурах (до $-70^{\circ} \mathrm{C}$), а в отдельных случаях - при криогенных температурах. Недостатками пластмасс также являются их низкая твердость, склонность к старению, ползучесть, нестойкость к большим статическим и динамическим нагрузкам. Однако достоинства пластмасс значительно превосходят их недостатки, что обусловливает высокие темпы роста их ежегодного производства.

По характеру связующего вещества пластмассы подразделяют на термопластичные, получаемые на основе термопластичных полимеров, и термореактивные, т.е. неразмягчающиеся.

13.2. Термопластичные пластмассы

Широкое применение находят термопластичные пластмассы (термопласты) на основе полиэтилена, полипропилена, полистирола, поливинилхлорида, фторопластов, полиамидов и других полимеров (табл. 13.1).

Табли ца 13.1. Областн применения некоторых термопластов

Термопласт	Диапазон ра- бочих тем- ператур, ${ }^{\circ} \mathrm{C}$	Область применения
Полиэтилен низкой плотности	$-70 \ldots+70$	Упаковка, ненагруженные детали машин и оборудования, футляры, покрытия, фольга
Полиэтилен высокой плотности	$-70 \ldots+80$	То же
Полипропилен	$-20 \ldots+130$	Трубы, детали автомобилей, элементы холодильников, емкости, упаковка
Полистирол	$-40 \ldots+65$	Оборудование радиотехники и фото- графии, электроизоляция, пенящиеся изоляционные материалы (стиропиан
Поливинилхло- рид	$-40 \ldots+70$	Химическое оборудование, трубы, профили, детали машин, элементы насосов и вентиляторов, упаковка, покрытие полов, искусственная кожа, оконные рамы и т.п.
Полиамид	$-60 \ldots+100$	Детали машин, канаты, шнуры, одежда
Полиметилмет- акрилат (стекло органическое)	$-60 \ldots+100$	Детали освещения и оптики, остекление в самолетостроении, на наземном и водном транспорте
Поликарбонаты	$-100 \ldots+135$	Точные детали машин и аппаратуры, радио- и электротехника, фотографи- ческие пленки и др.
Политетрафтор- этилен (тефлон)	$-269 \ldots+260$	Химическая, электротехническая, машиностроительная промышлен- ность, криогенная техника

Полиэтилен является продуктом полимеризации этилена. Свойства полиэтилена зависят от условий полимеризации. По способу изготовления различают полиэтилен низкой плотности $\left(0,918 \ldots 0,93 \mathrm{r} / \mathrm{cm}^{3}\right)$, получаемый полимеризацией при высоком давлении (ГОСТ 16337-77), и полиэтилен высокой плотности ($0,946 \ldots 0,97 \mathrm{r} / \mathrm{cm}^{3}$), получаемый полимеризацией при низком давлении (ГОСТ 16338-85). Полиэтилен высокой плотности имеет степень кристалличности $75 \ldots 95$. Чем выше плотность и степень кристалличности полиэтилена, тем выше его прочность, модуль упругости и теплостойкость. Разрушающее напряжение при растяжении полиэтилена низкой плотности составляет $10 \ldots 17 \mathrm{M}$ Па, полиэтилена высокой плотности - $18 \ldots 35 \mathrm{M}$ Па.

Полиэтилен имеет высокие диэлектрические свойства, практически не поглощает влагу, химически стоек к действию кислот, щелочей и растворителей, нетоксичен, легко сваривается, технологичен (поддается экструзии, литью, напылению, заливке т.д.), сочетает высокую прочность с пластичностью. Стоимость полиэтилена невысока. Недостатком полиэтилена является склонность к старению под действием ультрафиолетовых лучей

Полиэтилен (ГОСТ 25951-83, ГОСТ 20477-86, ГОСТ 1035482) выпускают в виде пленок толщиной $0,03 \ldots 0,3$ мм, шириной 1400 мм и длиной 30 м, а также в виде листов толщиной $1 . .6$ мм и шириной до $1400 \mathrm{mм}$. Полиэтилен применяют для изоляции электропроводов и кабелей, в качестве упаковочного материала для пищевых продуктов, для защиты от коррозии магистральных нефте- и газопроводов, в качестве заменителя стекла, для изготовления предметов домашнего обихода, для защиты металлов от коррозии. Полиэтиленовые трубы могут работать при температуре до $-60^{\circ} \mathrm{C}$, они не подвержены почвенной коррозии. Из полиэтилена изготавливают крышки подшипников, уплотнительные прокладки, детали вентиляторов и насосов, гайки, шайбы, полые изделия вместимостью до 200 л, тару для хранения и транспортирования кислот и щелочей

Полипропилен является полимером пропилена. По сравнению с полиэтиленом полипропилен имеет более высокую механическую прочность и жесткость, бо́лышую теплостойкость и меньшую склонность к старению. Разрушающее напряжение при растяжении полипропилена достигает $25 \ldots 40 \mathrm{M}$ Ма. Недостатком полипропилена является его невысокая морозостойкость ($-20^{\circ} \mathrm{C}$). Детали из полипропилена изготавливают штамповкой, литьем под давлением, пневматическим и вакуумным прессованием; полиэтилен можно сваривать, напылять на металл, ткань, картон. Полипропилен легко подвергается механической обработке на токарных, фрезерных, сверлильных станках.

Полипропилен применяют для изготовления антикоррозионной футеровки резервуаров, труб и арматуры трубопроводов, электроизоляционных деталей, деталей, применяемых при работе в

агрессивных средах. Из полипропилена изготавливают корпусные детали автомобилей и корпуса аккумуляторов, прокладки, трубы, фланцы, водонапорную арматуру, пленки, пленочные покрытия бумаги и картона, корпуса воздушных фильтров; конденсаторы, вставки демпфируюших глушителей, зубчатые и червячные колеса, ролики, подшипники скольжения, фильтры масляньх и воздушных систем, рабочие детали вентиляторов, насосов, уплотнения, детали приборов и автоматов точной механики, кулачковые механизмы, детали телевизоров, магнитофонов, холодильников, стиральых машин, изоляцию проводов и кабелей. Отходы при производстве полипропилена и отработавшие изделия из него используют для повторной переработки.

Полистирол (ГОСТ 20282-86) относится к числу наиболее известных и широко применяемых пластмасс. Полистирол - твердый, жесткий, бесцветный, прозрачный, аморфный полимер, легко окрашиваемый в различные цвета. Полистирол обладает высокой водостойкостью, хорошей химической стойкостью в растворах солей, кислот и щелочей, по сравнению с другими термопластами более стоек к радиации. Недостатками полистирола являются повышенная хрупкость при ударных нагрузках, склонность к старению, невысокая тепло- и морозостойкость. Полистирол применяют для изготовления деталей радио- и электроаппаратуры, предметов домашнего обихода, детских игрушек, трубок для изоляции проводов, пленок для изоляции электрических кабелей и конденсаторов, открытых емкостей (лотки, тарелки и др.), прокладок, втулок, светофильтров, крупногабаритных изделий радиотехники (корпуса транзисторных приемников), деталей электропылесосов (колодки, щелевые сопла, прокладки, ручки), мебельной фурнитуры, конструкционньх изделий с антистатическими свойствами. Ударопрочным полистиролом (механическая смесь полистирола с каучуком) облицовывают пассажирские вагоны, салоны автобусов и самолетов. Из него изготавливают крупногабаритнье детали холодильников, корпуса телефонных аппаратов и др. Его применяют для изготовления деталей машин и аппаратов, непосредственно контактирующих с пищевыми продуктами (молоком и молочными продуктами, вином, коньяком, шампанским и др.), а также для тары и упаковки. Его используют для изготовления пористых материалов.

В числе раэичнвх синтетических материалов широкое распространение получили так называемые газонаполненные пластики, которые подразделяют на пенопласты и поропласты. У пенопластов микроскопические ячейки наполнены газом, между собой не сообщаются, плотность пенопластов, как правило, менее 0,3 г $/ \mathrm{cm}^{3}$. Ячейки у поропластов сообщаются между собой, плотность поропластов несколько выше. Пенопласты и поропласты выпускают на основе полистирола, поливинилхлорида и эфирных полимеров.

Пенопласт применяют в качестве теплоизоляционного слоя в конструкциях судовых трюмов, кузовов автофургонов, холодильных камер на объектах мясомолочной и рыбной промышленности.

Пенополистирол получают из эмульсионного полимера прессовым и беспрессовым методами. Пенополистирол применяют для теплоизоляции холодильников и торгового оборудования. Для производства изделий, контактирующих с пищевыми продуктами, используют обычно суспензионный полистирол. При получении пенополистирола прессовым методом (марок ПС-1 и ПС-4) используют эмульсионный тонкодисперсный полистирол, смешивают его с порообразуюцим компонентом, прессуют, а затем вспенивают в специальных обогреваемых камерах. Беспрессовым методом из блочно-суспензионного стирола получают пенополистирол, называемый стиропором. Полимеризацию стиропора проводят при температуре $70^{\circ} \mathrm{C}$ с непрерывным перемешиванием.

Пенополистирол имеет структуру застывшей пены, он стоек к действию влаги, агрессивных минеральных сред (кроме концентрированной азотной кислоты). Пенополистирол, полученный беспрессовым методом, обладает более высокой химической стойкостью. Устойчив он также и в биологическом отношении - не гниет, стоек к действию грибков и бактерий, не повреждается грызунами. Прочность пенополистирола зависит от размера, формы и прочности стенок пор. Механические свойства беспрессового пенополистирола ниже, чем прессового. Недостатком пенополистирола является присутствие в нем горючего порообразователя, например изопентана. Уменышить или вовсе устранить эту опасность удается путем введения антипиренов, например оксида сурьмы.

Пенополистирол применяют в различньх отраслях промышленности как термо- и звукоизоляционный материал, в пищевой промышленности - для изоляции трюмов для хранения продуктов питания при температуре $-35 \ldots-15^{\circ} \mathrm{C}$. Коэффициент теплопроводности пенополистирола близок к коэффициенту теплопроводности воздуха. Благодаря хорошим амортизационньм свойствам и малой плотности пенополистирол используют в качестве упаковочного материала.

Пенопласт мипора изготавливают на основе эмульсионных карбамидоформальдегидных олигомеров. Мипора обладает исключительно малой плотностью (не более $0,02 г / \mathrm{cm}^{3}$), разрушающее напряжение при сжатии $2,2 \ldots 5$ МПа. Коэффициент теплопроводности мипоры близок к коэффициенту теплопроводности воздуха и равен $0,023 \mathrm{Bт} /(\mathrm{m} \cdot \mathrm{K})$. Мипора в 10 раз легче пробки, имеет хорошую стойкость против горения. При контакте с пламенем мипора обугливается, но не загорается. В мипоре газонаполненные ячейки не сообщаются между собой, что позволяет использовать мипору в качестве теплоизоляционного материала. Недостатками мипоры являются большая хрупкость и водопоглошение. Для уменьшения

хрупкости к мипоре добавляют глицерин, однако это не всегда дает положительные результаты. От проникновения влаги мипору защищают водонепроницаемыми пленками.

В последнее время в промышленности начинают все шире использовать армированные газонаполненные пластмассы, что позволяет сочетать малую плотность с высокой прочностью, т.е. повышать удельную прочность. Газонаполненные пластмассы армируют листами металла или листами более прочных газоненаполненных пластмасс.

Пластмассы на основе поливинилхлорида (ГОСТ 5960-72, ГОСТ 9639-71, ГОСТ 9998-80, ГОСТ 16214-86, ГОСТ 16272-79) имеют хорошие электроизоляционные свойства, стойки к воздействию химикатов, не поддерживают горения, атмосферо-, водо-, масло- и бензостойки. Непластифицированный поливинилхлорид называется винипластом.

Винипласты имеют высокую механическую прочность и упругость, но сравнительно малопластичны. Винипласты стойки к воздействию почти всех минеральных кислот, щелочей и растворов солей. Их недостатками являются склонность к ползучести, низкая ударная вязкость, малая теплостойкость, резкая зависимость от температуры. Винипласт выпускают в виде листов, прутков, труб. Винипластовые детали хорошо механически обрабатываются и хорошо свариваются. Из него изготавливают трубы для транспортирования воды, агрессивных жидкостей и газов, коррозионностойкие емкости, детали вентиляционных установок, теплообменников, шланги вакуум-проводов, защитные покрытия для металлических емкостей, изоляцию проводов и кабелей. Поливинилхлорид используют для получения пенопластов, линолеума, искусственной кожи, объемной тары, товаров бытовой химии, вибропоглощающих материалов в машиностроении и на всех видах транспорта, водо-, бензо- и антифризостойких трубок, прокладок и т.д.

Фторопласты (ГОСТ 21000-81, ГОСТ 10007-80, ГОСТ 14906— 77 , ГОСТ 25428-82) - полимеры фторпроизводных этиленового ряда. Фторопласты имеют прочность при растяжении $15 . . .35$ МПа, при изгибе $10 \ldots 15$ МПа; относительное удлинение при разрыве $250 \ldots 350 \%$. Наиболее широкое распространение получил фторо-пласт-4, или политетрафторэтилен (тефлон). Фторопласт-4 характеризуется высокой плотностью ($2,1 \ldots 2,3$ г/см ${ }^{3}$), термо- и морозостойкостью. Пленка из него не охрупчивается даже в среде жидкого гелия. Фторопласт-4 имеет хорошие диэлектрические свойства и высокую коррозионную стойкость.

По химической стойкости фторопласт-4 превосходит все известные материалы, включая золото и платину, стоек к воздействию всех минеральных и органических щелочей, кислот, органических растворителей, не набухает в воде, не смачивается жидкостями и вязкотекучими средами пищевых производств - тестом, патокой,

вареньем и т.д. При температуре $260^{\circ} \mathrm{C}$ фторопласт-4 невзрывоопасен, негорюч, при непосредственном контакте не охазывает влияния на организм человека, разрушается только под действием расплавленных щелочных металлов и элементарного фтора. Фто-ропласт-4 имеет низкий коэффициент трения и применяется для изготовления подшипников скольжения без добавления смазочного материала. Для уменьшения износа подшипников во фторопласт вводят $15 \ldots 30 \%$ наполнителя (графит, дисульфит молибдена, стеклянное волокно и др.).

Фторопласты широко применяют в электро- и радиотехнической промышленности, для изготовления химически стойких труб, кранов, мембран, насосов, подшипников, деталей медицинской техники, коррозионно-стойких конструкций, тепло- и морозостойких деталей (втулки, пластины, диски, прокладки, сальники, клапаны), для облицовки внутренних поверхностей различных криогенных емкостей.

Полиамиды (ГОСТ 10589-87, ГОСТ 17648-83) включают в себя известные термопластичные пластмассы (найлон, капрон и др.). Ориентированные полиамиды характеризуются высокой прочностью на растяжение (более 400 МПа), ударопрочностью, способностью к поглощению вибрационных нагрузок. Полиамиды имеют низкий коэффициент трения и могут использоваться в качестве подшипников как без добавления смазочных материалов, так и при применении смазочных материалов. Полиамиды используют для изготовления конструкционных и электроизоляционных изделий (зубчатые передачи, уплотнительные устройства, втулки, муфты, подшипники скольжения, лопасти винтов, стойкие к действию щелочей, масел, жиров и углеводородов), технических изделий и товаров культурно-бытового назначения, антифрикционных покрытий металлов.

Полиуретаны - наиболее ценные и широко производимые промышленностью термопласты. Полиуретаны характеризуются высоким модулем упругости, износостойкостью, высоким коэффициентом трения, стойкостью к вибрациям, атмосферостойкостью, а также стойкостью к воздействию масла и бензина. Изделия из полиуретана можно эксплуатировать при понижении температуры до $-70^{\circ} \mathrm{C}$. Волокна из полиуретана малогигроскопичны и имеют высокую химическую стойкость. Их используют для изготовления изоляции, фильтровальных и парашютных тканей.

Стекло органическое (плексиглас) (ГОСТ 9784-75, ГОСТ 10667-90, ГОСТ 15809-70, ГОСТ 17622-73) получают полимеризацией сложных эфиров метакриловой кислоты. Обычно применяют полиметилметакрилат. Этот термопласт оптически прозрачен (светопрозрачность до 92%), имеет низкую плотность, высокую атмосферостойкость, стоек к воздействию разбавленньх кислот и щелочей, углеводородного топлива и смазочных материалов. Стек-

ло органическое выпускают в виде листов толщиной до 25 мм. Его недостаток - низкая поверхностная твердость.

Поликарбонат - термопласт на основе дифенилолпропана и фостена, выпускаемый под названием «дифлон». Поликарбонат характеризуется низкой водопоглощаемостью и газопроницаемостью, хорошими диэлектрическими свойствами, высокой жесткостью, теплостойкостью и химической стойкостью, не имеет запаха и вкуса, физиологически безвреден, бесцветен, прозрачен, хорошо окрашивается. Стоек к световому старению и действию окислителей даже при нагреве до $120^{\circ} \mathrm{C}$. Поликарбонат - один из наиболее ударопрочных термопластов, что позволяет использовать его в качестве конструкционного материала, заменяющего металлы. Из поликарбоната изготавливают шестерни, подшипники, корпуса, крышки, клапаны и другие детали, сосуды для транспортирования фруктовых соков, молока, вин и т.д. Его можно использовать в криогенной технике для работы в среде жидких газов.

Физико-механические свойства поликарбонатов улучшаются при введении в них армирующих волокон. Например, при введении в поликарбонат стекловолокна (до 30%) его модуль упругости при растяжении увеличивается в 3 раза, а твердость по Бринеллю - в 1,5 раза. Теплостойкость материала также увеличивается, а ТКЛР снижается в 3 раза, усадка материала уменьшается в 2 раза. Армированные поликарбонаты типа эстеран нашли применение в производстве ответственных деталей машин, например подшипников качения, кулачков и т.д. Армированные поликарбонаты сохраняют свои свойства и эксплуатационную надежность в диапазоне температур $-200 \ldots+110^{\circ} \mathrm{C}$, а также в вакууме.

В России кроме стеклонаполненного поликарбоната хорошо зарекомендовали себя наполненные стекловолокном полипропилен, полистирол и другие термопласты. Термопласты, армированные стекловолокном, имеют более высокие механические свойства и обеспечивают неизменность формы изделий в условиях повышенных температур. Производство таких термопластов с каждым годом увеличивается на $25 \ldots 30 \%$. Их применяют при изготовлении разнообразных деталей в электронной и электротехнической промышленности, оптическом и точном приборостроении, автомобилестроении, текстильном машиностроении и т.д.

В технике низких температур наибольшее применение находят термопласты на основе полиэтилена, полистирола, фторопластов, полиамидов и других полимеров.

13.3. Термореактивные пластмассы

Основу всякой термореактивной пластмассы (реактопласта) составляет химически затвердевающая термореактивная смола -

связующее вещество. Кроме того, в состав реактопластов входят наполнители, пластификаторы, отвердители, ускорители или замедлители и растворители. Наполнителями могут быть порошковые, волокнистые и гибкие листовые материалы. В качестве порошковых наполнителей используют молотый кварц, тальк, графит, древесную муку, целлюлозу. K пластмассам с порошковыми наполнителями относятся фенопласты (ГОСТ 5689-79) и аминопласты (ГОСТ 9359-80). Из них изготавливают несиюовые конструкционные и электроизоляционные детали (рукоятки, детали приборов, кнопки и т.д.), различные вытяжные и формовочные штампы, корпуса сборочньх и контрольных приспособлений, литейные модели и друтую оснастку.

Упрочненные фенолформальдегидные смолы чаще носят название бакелитов. Такая пластмасса хорошо обрабатывается механически инструментами для обработки металла и может подвергаться полированию. Бакелит трудногорюч и после извлечения из пламени сразу гаснет. Горящий бакелит дает желтый цвет пламени, коптящий в зависимости от вида наполнителя. Остаток, извлеченный из пламени, твердый, разбухший, потрескавшийся и обугленный. В процессе горения выделяются фенол и формальдегид с характерным запахом. Бакелит стоек к воздействию разбавленных кислот и щелочей, а также большинства органических растворителей. Для склеивания треснутых бакелитовых изделий можно применять нитроцеллюлозные клеи или жидкие фенольные смолы. Из бакелита изготавливают изделия галантереи (пуговицы, пепельницы), электротехнические элементы (вилки, розетки), корпуса телефонных аппаратов, детали стиральных машин, защитные шлемы, корпуса аккумуляторов, плиты, лаки, клеи.

Аминопласты являются термоупрочняемыми пластмассами. К ним относятся карбамидоформальдегидные смолы и меламиноформальдегидные смолы.

Упрочненные аминоптасты твердые и жесткие. Их можно полировать и механически обрабатывать инструментами по металлу, они имеют хорошие электроизоляционные свойства, легко окрашиваются. Теплостойкость упрочненных аминопластов примерно $100 \ldots 120^{\circ} \mathrm{C}$. Образец, внесенный в огонь, начинает гореть не более чем через 1 мин. Вынутый из пламени, он не гаснет, но горит медленно (в действительности горят наполнители, сама смола негорюча).

Упрочненные аминопласты стойки к воздействию воды, кислот (в том числе серной и азотной), щелочей и органических растворителей. Для склеивания таких аминопластов можно применять фенолформальдегидные или карбамидоформальдегидные клеи. Из аминогластов изготавливают клеи для дерева, электротехнические детали (розетки, выключатели), галантерею, тонкие покрытия для украшения, лаки (так называемые печные), пенистые материалы.

Реактопласты с волокнистыми наполнителями представляют собой композиции, состоящие из связующего вещества (смолы) и волокнистого наполнителя в виде очесов хлопка (волокниты), асбеста (асбоволокниты), стекловолокна (стекловолокниты).

Волокниты применяют для изготовления деталей с повышенной устойчивостью x ударным нагрузкам, работающих на изгиб и кручение (втулки, шкивы, маховики и др.).

Асбоволокниты обладают хорошими фрикционными (тормозными) свойствами и теплостойкостью, но по водостойкости и диэлектрической приницаемости уступают пластмассам с порошковым наполнителем.

Стекловолокниты негорючи, стойки к действию ультрафиолетовых лучей, химически стойки, имеют стабильные размеры. Некоторые марки стекловолокнитов применяют для изготовления силовых электротехнических деталей в машиностроении, а также крупногабаритных изделий простых форм (кузова автомобилей, лодки, корпуса приборов и т.п.). Стекловолокниты имеют высокие физико-механические характеристики и применяются для изготовления деталей высокого класса точности и сложной конфигурации. Диапазон рабочих температур стекловолокнитов $-60 \ldots+200^{\circ} \mathrm{C}$, их прочность при разрыве $80 \ldots 500 \mathrm{M}$ Па.

В качестве связующих веществ волокнитов и стекловолокнитов применяют полиэстеровые и эпоксидные смолы.

Из полиэстров, упрочненных стекловолокном, изготавливают спасательные лодки, части автомобилей, мебель, корпуса планеров и вертолетов, гофрированные плиты для крыш, плафоны ламп, мачты для антенн, льги и палки, удочки, защитные каски и т. п. В виде текучих смол полиэстры применяют для заливки частей электронной аппаратуры, мумификации анатомических препаратов, изготовления лаков и т.п.

Характерной чертой эпоксидных смол является совершенная прилипаемость почти ко всем пластмассам и металлам; они имеют хорошие механические и электрические свойства.

Термостойкость под напряжением упрочненных эпидианов (материалов, полученных на основе эпоксидной смолы) лежит в пределах $55 \ldots 120^{\circ} \mathrm{C}$ в зависимости от вида упрочнителя, а без нагрузки превышает $150^{\circ} \mathrm{C}$. Упрочненная эпоксидная смола горит в огне так же, как и полиэстровые ламинаты - трудно загорается, после чего начинает коптить. В отличие от полиэстра эпоксидная смола сильно пахнет во время горения. Эпоксидные смолы служат для изготовления лаков, клеев, а также для производства ламинатов.

Большую группу реактопластов составляют слоистые пластмассы, которые содержат листовые наполнители, уложенные слоями. В качестве наполнителей для слоистых пластиков используют материалы органического (бумага, картон, хлопчатобумажная ткань, древесный штон, ткани из синтетических волокон) и неоргани-

ческого (асбестовая бумага, стеклянная ткань, ткань из кварцевых или кремнеземных волокон) происхождения. В зависимости от вида наполнителя различают следующие слоистые пластики: гетинакс, текстолит, стеклотекстолит, древесно-слоистые пластики. Связуюцими веществами при производстве слоистых пластиков служат фенолформальдегидные, эпоксидные, кремнийорганические и друтие смолы.

Свойства слоистых пластиков зависят от соотношения наполнителя и связующего вешества, характера подготовки наполнителя, режимов прессования и термической обработки, других технологических факторов. Благодаря слоистому расположению армирующего наполнителя слоистые пластики обладают анизотропией механических, физических и диэлектрических свойств.

Механические свойства слоистых пластиков определяются прежде всего видом используемого наполнителя. Наибольшей механической прочностью обладают слоистые пластики на основе стеклянной ткани или стеклянных жгутов. Эти материалы, а также слоистые пластики на основе асбоволокнистых наполнителей имеют более высокую теплостойкость по сравнению с теплостойкостью пластиков на основе органических наполнителей.

Пластик на основе бумаги - гетинакс (ГОСТ 2718-74) - применяют в качестве электроизоляционного материала, работающего длительно при температуре $-65 \ldots+105^{\circ} \mathrm{C}$, а также как конструкционный и декоративный материал. Гетинаксы широко применяют в электрических мащинах, трансформаторах (в качестве высоковольтной изоляции) и других аппаратах, при производстве телефонной арматуры, в радиотехнике (для изготовления печатных схем). Из гетинакса изготавливают панели, щитки, прокладки, крышки, шайбы, малонагруженные изделия и т.д.

Древесно-слоистые пластики (ДСП) используют при изготовлении мебели, для внутренней облицовки пассажирских поездов, судов, самолетов, при строительстве в качестве облицовочного материала. Древесно-слоистые пластики обычно изготавливают в форме плит или тонких листов горячим прессованием лущеного древесного шпона, пропитанного полимерным связующим веществом. При производстве ДСП чаще используют березовый или буковый шпон, в качестве связующего вещества используют вод-но-спиртовые растворы олигомеров. Древесно-слоистые пластики маркируют ДСП-А, ДСП-Б, ДСП-В и т.д. в зависимости от направления волокон шпона в разных слоях. В ДСП-А во всех слоях волокна шпона расположены параллельно (иногда четыре слоя с параллельным расположением волокон чередуются с одним слоем, повернутым на $20 \ldots 25^{\circ}$). В ДСП-Б расположение слоев смешанное. Через каждые 5-20 слоев с параллельным расположением волокон укладывают слой, повернутый на 90°. В ДСП-В осуществляется звездообразная укладка слоев, при которой соседние слои

волокон смещают на 30°. Максимальной прочностью в продольном направлении ($\sigma_{\mathrm{B}}=280 \mathrm{MПа}$) обладает ДСП-А. Пластик марки ДСП-Б имеет прочность, одинаковую во взаимно-перпендикулярных направлениях (140 МПа).

Пластики на основе хлопчатобумажных тканей - текстолиты (ГОСТ 2910-74) - применяют для изготовления конструкционных деталей, электроизоляционного материала, вкладышей подшипников прокатного оборудования, прокладок, герметизирующих фланцевые соединения. Текстолитовые детали могут работать в воздушной среде, в масле, керосине или бензине и т.д. Текстолит производят в виде листов, плит, стержней и трубок.

Стеклотекстолитами (ГОСТ 10292-74, ГОСТ 12652-74) называют слоистые пластики на основе тканых стекловолокнистых материалов. Стеклотекстолиты характеризуются высокой тепло- и хладостойкостью, стойкостью к действию окислителей и других химически активных реагентов, высокими механическими свойствами. Стеклотекстолиты применяют для изготовления крупногабаритных изделий, радиотехнических и электроизоляционных деталей, длительное время работающих при температуре $200^{\circ} \mathrm{C}$ и кратковременно - при $250^{\circ} \mathrm{C}$. Стеклопластики являются конструкционными материалами, применяемыми для изготовления силовых изделий в различных отраслях техники (несущие детали летательных аппаратов, кузова и кабины машин, железнодорожные вагоны, корпуса лодок, судов и т.п.).

В табл. 13.2 приведены свойства и области применения некоторых реактопластов.

Для работы в криогенных условиях применяют стеклопластики, представляющие собой высокопрочные композиты на основе эпоксидной смолы и высокомодульных стеклянных волокон различного плетения.

В качестве армирующего материала при производстве хладостойких стеклопластиков применяют волокно диаметром $6 . . .7$ мкм из бесщелочного алюмоборосиликатного стекла, имеющето высокие механическую прочность и модуль упругости, хорошие адгезионные свойства и малую плотность.

Связующее вещество пропитывает стеклянный каркас и после отверждения склеивает между собой отдельные волокна и слои наполнителя, обеспечивая их монолитность и совместную работу в изделии. Высокие физико-механические свойства стеклопластиков обусловлены прочным сцеплением между стеклянными волокнами и полимерным связующим веществом. Эпоксидные смолы, обладая высокой адгезией к стеклянным волокнам и малой усадкой при отверждении, сохраняют монолитность композиции в условиях криогенных температур.

Стеклопластики широко применяют в ракетно-космической технике. Благодаря тому что основные компоненты высокопроч-

Таблица 13.2. Свойства и область применения реактопластов

Вид пластмассы	Плотность, $\mathrm{r} / \mathrm{Cm}^{3}$	$\begin{gathered} \text { Прочность } \\ \text { при } \\ \text { растяже- } \\ \text { нии, МПа } \end{gathered}$	$\begin{array}{\|c} \hline \text { Диапазон } \\ \text { рабочих } \\ \text { температур, } \\ { }^{\circ} \mathrm{C} \end{array}$	Область применения
Фенопласт	1,7	30	$-60 \ldots+140$	Малонагруженные детали, корпуса приборов, панели, электроизоляционные детали
Аминопласт	1,8	80	$-60 \ldots+130$	Детали осветительной аппаратуры, электротехнические и электроизоляционные детали, изделия бытового назначения
Волокнит	1,6	50	$-60 \ldots+200$	Шкивы, маховики, втулки, диски, кожухи, детали с повышенными антифрикционными свойствами
Текстолит	1,3	95	$-40 \ldots+160$	Шестерни, втулки, подшипники скольжения, конструкционные и электроизоляционные детали
Асбо-текстолит	1,6	90	$-60 \ldots+250$	Тормозные и фрикционные устройства, лопатки ротационных бензонасосов, детали теплозащиты и теплоизоляции

ных стеклопластиков - эпоксидная смола и стекло - не реагируют с жидким водородом, их применяют для изготовления топливных баков.

Стеклопластиковые трубопроводы незаменимы в случаях, когда необходима хорошая теплоизоляция в сочетании с высокой коррозионной стойкостью.

Контрольные вопросы

1. Из чего состоят пластмассы?
2. Каковы основные недостатки пластмасс?
3. Что такое термопласт?
4. Как ведут себя реактопласты при нагревании?
5. Перечислите основные виды термопластов.
6. Почему реактопласты не подвергают повторной переработке?

14.1. Общие сведения

Резинотехнические изделия получают при специальной термической обработке (вулканизации) прессованных деталей из сырой резины, являющейся смесью каучука с серой и другими добавками.

Резина состоит из смеси основы (каучука), наполнителя (сажа, оксид кремния, оксид титана, мел, барит, тальк), мягчителя (канифоль, вазелин), противостарителя (парафин, воск), агентов вулканизации (сера, оксид цинка) и красителей.

Главным исходным компонентом резины, придающим ей высокие эластические свойства, является каучук. Каучуки бывают натуральные (НК) и синтетические (СК). Натуральный каучук получают коагуляцией латекса (млечного сока) каучуконосных деревьев, растущих в Бразилии, Юго-Восточной Азии, на Малайском архипелаге. Синтетические каучуки (бутадиеновые, бутади-ен-стирольные и др.) получают методами полимеризации. Впервые синтез бутадиенового каучука полимеризацией бутадиена, полученного из этилового спирта, осуществлен в 1921 г. русским ученым С. В. Лебедевым. Разработаны методы получения синтетических каучуков на основе более дешевого сырья, например нефти и ацетилена.

Каучуки являются полимерами с линейной структурой и при вулканизации превращаются в высокоэластичные редкосетчатые материалы - резины. Вулканизирующими добавками служат сера и другие вещества. С увеличением содержания вулканизатора (серы) сетчатая структура резины становится более частой и менее эластичной. При максимальном насыщении серой ($30 . . .50 \%$) получают твердую резину (эбонит), при насыщении серой $10 \ldots 15 \%$ - полутвердую резину. Обычно в резине содержится $5 \ldots 8 \%$ серы.

Для ускорения вулканизации вводят ускорители, например оксид цинка.

Введение различных компонентов позволяет существенно менять специальные свойства резины, увеличивая ее износо-, моро-зо-, масло- и бензостойкость. Резиновые изделия часто армируют тканью или металлической сеткой. Для улучшения адгезии металлической арматуры к резине на поверхность металла наносят клесвую пленку.

14.2. Основные свойства резин и каучуков

Резина имеет высокие эластические свойства, высокую упругость и сопротивляемость разрыву. Кроме того, резина обладает малой плотностью, высокой стойкостью против истирания, химической стойкостью, хорошими электроизоляционными свойствами. Свойства основных типов резин и каучуков приведены в табл. 14.1.

Совокупность химических, физических и механических свойств позволяет использовать резиновые материалы для амортизации, демпфирования, уплотнения, герметизации, химической защиты деталей машин, при производстве тары для хранения масла и горючего, различных трубопроводов (шлангов), для изготовления покрышек и камер колес транспортных средств, декоративных изделий и т.д. Номенклатура резиновых изделий чрезвычайно разнообразна.

В зависимости от условий эксплуатации различают резины общего и специального назначения. Резины общего назначения применяют для изготовления камер и шин, ремней, транспортных лент, рукавов, изоляции кабелей и проводов, производства товаров народного потребления и т. п. Из резин специального назначения различают резины бензомасло-, морозо-, теплостойкие, стойкие к действию агрессивных сред. Нижней границей рабочих температур резин специального назначения является температура $-80^{\circ} \mathrm{C}$, резин общего назначения $--50^{\circ} \mathrm{C}$.

Рис. 14.1. Разновидности резиновых деталей:
$a-\partial-$ уллотнительные профили; e - чашечная манжета; жс- $a-$ уплотнительные прокладки; м - втулка

Таблица 14.1. Основные типы резин н характерғстики каучухов

Тип резины	Вид каучука	Плотность, r/cm ${ }^{3}$	Предел прочности, МПа	Относительное удлинение, \%	Удлинение после разрыва, $\%$	Диапазон рабочих температyp, ${ }^{\circ} \mathrm{C}$
Общего назначения	Натуральный (HK)	0,91	29	650	32	$-50 \ldots+130$
	Бутадиеновый синтетический (CKБ)	0,91	17	470	60	$-50 \ldots+150$
	Изопреновый синтетический (СКИ)	0,91	30	700	28	$-50 \ldots+130$
Специального назначения:						
бензомаслостойкая	Бутадиен-нитрильный (CKH)	0,96	26	600	20	$-40 \ldots+170$
теплостойкая	Силоксановый (CKT)	1,85	6	250	4	$-70 \ldots+300$
теплохимическистойкая	Фторкаучук (СКФ)	1,85	17	200	8	$-40 \ldots+300$
морозостойкая	Бутадиен-метилстирольный (СКМС) и бутадиенстирольный (CKC)	0,94	31	800	16	$-80 \ldots+130$

Рис. 14.2. Резинометаллические детали:
a - подшипник; б - пластинчатый амортизатор; в амортизатор «ферма»

Рис. 14.3. Конструкция рукава высокого давления с металлической оплеткой:
1 - внутренний резиновый слой; 2 - хлопчатобумажная оплетка; 3 - металлическая оплетка; 4 - резиновый слой; 5 - наружный резиновый слой

Рис. 14.4. Разрез камерной пневматической шины:
1- брекер; 2 - протектор; 3-каркас; 4 - резинокордная покрышка; 5 - резино вая покрышка; 6 - обод; 7 - борт; 8 - ободная лента

На рис. 14.1 - 14.4 показаны некоторые резиновые и резинометаллические изделия.

Контрольные вопросы

1. Перечислите составляющие резины.
2. Как принято классифицировать резины?
3. Какую структуру имеют резины?
4. Как влияет содержание вулканизирующих добавок на свойства резин?
5. Какими основными свойствами обладают резины?
6. Какие изделия изготавливают из резины?

ГЛАВА 15
КЛЕЯЩИЕ МАТЕРИАЛЫ

15.1. Общая характеристика клеящих материалов

Клеями называют сложные вещества на основе полимеров, способные при затвердевании образовывать прочные пленки, хорошо прилипающие к различным материалам. По сравнению с другими видами соединений (клепка, сварка, механическое крепление) клеевые соединения имеют ряд преимуществ. Клеи позволяют соединять разнородные материалы (металл, керамика, пластмасса, дерево) в различных сочетаниях.

Клеевые швы атмосферостойки, не подвержены коррозии, позволяют обеспечивать герметичность соединений. Масса конструкции при клеевой сборке почти не увеличивается, отсутствуют снижающие прочность и являющиеся концентраторами напряжений отверстия под болты, заклепки, гвозди. Во многих случаях клеевое соединение металлических и неметаллических материалов является единственно возможным решением, обеспечивающим высокую прочность конструкции. Клеи могут выдерживать высокие и низкие температуры, сохраняя достаточную прочность соединения.

Недостатки клеевых соединений - сравнительно невысокая теплостойкость при длительной эксплуатации и низкая прочность при несимметричном нагружении и неравномерном отрыве.

Работоспособность клеевых соединений зависит прежде всего от процессов адгезии и когезии. Адгезия характеризует прочность сцепления клеевой пленки со склеиваемой поверхностью, когезия - прочность собственно клеевого слоя.

15.2. Состав и свойства клеящих материалов

Для приготовления клеев используют термопластичные или термореактивные полимеры. Клеи на основе термопластичных полимеров дают менее прочные соединения и используются ограниченно, обычно для склеивания материалов, не подвергающихся тепловому воздействию (бумага, ткани). С повышением температуры клеевой слой размягчается и склеенные поверхности разъединяются. Клеи на основе термореактивных полимеров, содержащие также отвердители и ускорители процессов отверждения, наполнители и пластификаторы, дают более прочные соединения. Клеи этой группы могут быть холодного и горячего отверждения.

Клеи холодного отверждения смешиваются с отвердителями и ускорителями непосредственно перед процессом склеивания. Клеи горячего отверждения приготавливаются на заводе-изготовителе, поставляются потребителю в готовом виде и могут храниться несколько месяцев.

K группе клеев на основе термореактивных смол относятся фенолформальдегидные клеи. При наличии в их составе ускорителей процесса (например, сульфоконтакта) эти клеи отверждаются даже при комнатной температуре за несколько часов (клеи Б-3, Ф-9 и др.).

Для склеивания изделий из древесины, работающих в условиях умеренной влажности, применяют клеи на основе водных растворов мочевиноформальдегидных смол, например клей КМ-12. В качестве ускорителей в этих клеях холодного отверждения используют хлорид аммония или хлорид цинка, а также слабые органические кислоты. Фенолформальдегидные клеевые соединения водостойки.

На основе фенолформальдегидных смол создана гамма универсальньхх клеев. В их число входят следующие: клей БФ (фенолформальдегидная смола, модифицированная бутваром); клей BK-32ЭМ (продукт взаимодействия фенолформальдегидной и эпоксидной смол); клей ВК-32-200 (фенолформальдегидная смола и синтетический каучук); клей ВС-350 (фенолформальдегидная смола, полиацеталь, полисилоксан) и др.

Из перечисленных клеев наибольшую прочность склейки до температуры $140 \ldots 150^{\circ} \mathrm{C}$ обеспечивают фенолформальдегидно-эпоксидные клеи.

Наиболее теплостойкими и достаточно прочными являются соединения, обеспечиваемые клеями ВК-32-250, ВС-350. Такие соединения могут длительное время работать при температуре $250 \ldots 300^{\circ} \mathrm{C}$.

Из клеев на основе термореактивных полимеров наиболее широкое применение находят клеи на основе эпоксидных смол. Их применяют для склеивания различных металлических и неметаллических материалов. Клеи на эпоксидной основе могут работать в широком температурном диапазоне. Отдельнье марки клеев выдерживают воздействие температур от -253 до $+1000^{\circ} \mathrm{C}$. Клеи на эпоксидной основе длительно сохраняют прочность в условиях эксплуатации, обеспечивают вакуумную плотность соединений и стойкость к циклическому температурному воздействию. Их существенными достоинствами являются низкая (до 2%) усадка при отверждении, высокая адгезия к большинству конструкционных материалов и небольшой объем газовыделений в вакууме. Эти свойства позволяют широко использовать клеи на основе эпоксидных смол при склеивании холодильного и криогенного оборудования.

Эпоксидные клеи холодного отверждения применяют для склеивания древесины, многих пластмасс, керамики и резины с металлом.

Эпоксидные клеи горячего отверждения применяют для склеивания металлических конструкций и изделий из стеклопластика.

Эпоксидные клеи с наполнителем применяют в качестве шпатлевки, устраняющей дефекты металлического литья, а также неровности металлических, керамических и деревянных изделий.

По внешнему виду клеи обычно могут быть в жидком состоянии, в виде паст или пленок (фольги), часто армированных полиамидной тканью или другим синтетическим материалом. Широкое распространение получили пленочные клеи на эпоксидной основе, использование которых позволяет получать не только прочные клеевые соединения, но и дает существенные технологические преимущества.

Для склеивания резиновых изделий между собой, а также металла с резиной применяют резиновые (каучуковые) клеи.

Резиновый клей удобен для употребления тем, что он вулканизируется на холоде, полученное клеевое соединение обладает удовлетворительной прочностью и мало набухает в масле и бензине.

Склеиваемые поверхности должны быть механически очищены, например наждачной бумагой, пескоструйной обработкой, и обезжирены (спиртом, ацетоном). Толщина пленки клея должна составлять $0,1 \ldots 0,6$ мм. Меньшая толщина грозит нарушением спџошности пленки, бо́льшая - уменьшением прочности соединения.

Клеевые соединения используют как при низких климатических температурах, так и•в условиях плубокого холода. Их применяют в строительных конструкциях в судостроении, в автомобильной и авиационной промышленности, ракетно-космической технике и др.
' Эпоксидные клеи используют для получения сборного железобетона в гидротехническом строительстве, мостостроении, промышленном и гражданском строительстве. При монтаже пролетов мостов клеи наносят на стыкуемые поверхности, элементы соединяют, и дается натяжение сквозной металлической арматуры. После отверждения клея производят монтаж очередного элемента. Хотя несущая способность моста обеспечивается в основном за счет предварительно напряженной арматуры, использование клея вместо так называемого сухого стыка или стыка на цементном растворе дает существенные преимущества. Темпы монтажа возрастают на $30 \ldots 40 \%$, трудоемкость снижается в $1,8-2$ раза, значительно повышается качество стыков. С применением клеевой технологии изготовлены мосты через такие крупные реки, как Днепр, Ока, Москва и др.

Эпоксидные клеи вводят в трещины железобетонных конструкций, что позволяет отказаться от их полной замены, например

при восстановительных работах в районах землетрясений. Сочетание клеев и традиционных способов крепления - болтами, винтами и сваркой - перспективно для металлических ферм и вантовых конструкций. При этом улучшается работа соединения на неравномерный отрыв и повышается надежность в случае пожара.

Авиационная техника широко использует различные клеи для склеивания элементов конструкций из стеклотекстолитов, органических и силикатных стекол, для крепления к металлу теплоизоляционных материалов, резины, пластмасс и других материалов.

В самолетостроении применяют композиты - преимущественно угле- и боропластики с эпоксидным связующим в клееных конструкциях, повышающих прочность и снижающих массу изделий.

В качестве конструкционных клеев в авиационной технике обычно используют пленочные, а также жидкие клеи на основе модифицированных эпоксидных и фенолкаучуковых полимеров.

Большое применение находят клеи в ракетной технике. В настоящее время не существует ни одной ракеты, ни одного космического летательного аппарата, где бы не использовались клеевые соединения. Клеи выдерживают очень высокие температуры и глубокое охлаждение, сохраняя при этом достаточную прочность. Их применяют для крепления теплоизоляции резервуаров криогенных жидкостей, топливных баков ракет и космических летательных апппаратов.

Клеевые составы используют для крепления слоя теплоизолирующего пенопласта $к$ џистернам для хранения и транспортирования природного газа. Их эффективно применяют в клеевых теплообменниках с перфорированными пластинами.

Прочность и вакуумная плотность клеевых соединений сохраняется после воздействия десятков циклов перепада температур от 77 до 433 K (табл. 15.1).

При криогенных температурах применяют также эпоксидные армированные пленочные клеи, позволяющие получать клеевые соединения с высокими прочностными показателями. В качестве армирующих материалов обычно используют различные синтети-

Табли и а 15.1. Прочность влеевих соеданений ва основе эпогсндннх смол

Марка клея	Предел прочности при сдвиге, МПа			
	293 K	213 K	77 K	После100 циклов воздействия перепада температур от 77 до 433 K BK-1 16,5
15,2	11,9	14,3		
BK-36	33	30,5	25,5	23,5
BK-37	25,5	22,1	19,5	19,8
BK-39	19,9	18,5	13,8	15,6

ческие ткани - полиамидные, стеклянные и др. Армирующие материалы позволяют уменьшить усадку клея при охлаждении и выровнять напряжения в соединении.

Прочность и модуль упругости эпоксидного клея значительно ниже, а коэффициент термического расширения на порядок выше соответствующих показателей конструкционных материалов.

Из-за различия физико-механических характеристик клея и склеиваемых материалов в клеевой прослойке при колебании температуры могут возникать опасные термические напряжения, способные привести к ее разрушению. Напряженное состояние можно уменьшить подбором наполнителей, от которых зависят коэффициент термического напряжения и модуль упругости клея.

Контрольные вопросы

1. Что представляют собой клеи?
2. Какие материалы можно склеивать между собой?
3. Какие требования предъявляют к клеевым соединениям?
4. Как ведут себя клеи по отношению к тепловому воздействию?
5. Что такое адгезия?
6. Перечислите основные операции технологического склеивания.

ГЛАВА 16
 ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ

16.1. Общая характеристика лакокрасочных материалов

Лакокрасочные материалы представляют собой многокомпонентные составы, в жидком состоянии наносимые на поверхность изделий и высыхающие с образованием пленок, удерживаемых силами адгезии. Высохшие пленки называют лакокрасочными покрытиями.

Назначение лакокрасочных покрытий - защита металлов от коррозии, дерева и тканей - от гниения и набухания. Кроме того, они служат декоративным целям, придавая изделиям желаемый внешний вид. В некоторых случаях покрытия могут иметь специальные свойства: электроизоляционные, теплозащитные, светостойкие и др. Защитные покрытия в несколько раз увеличивают срок службы аппаратуры, металлоконструкций и оборудования.

Основными требованиями, предъявляемыми к лакокрасочным покрытиям, являются высокая адгезия к защищаемым поверхностям; близкие значения ТКЛР покрытия и металла; высокая плотность, беспористость, водо- и газонепроницаемость; высокая эластичность пленки при достаточной твердости и механической прочности; теплостойкость, химическая стойкость и светостойкость.

16.2. Свойства лакокрасочных материалов

Качество и срок службы лакокрасочных покрытий зависят от их состава, природы окрашиваемого материала, подготовки поверхности, технологии и качества нанесения покрытия. Характеристики и области применения некоторых лакокрасочных материалов приведены в табл. 16.1.

Основные компоненты лакокрасочных материалов - пленкообразователи, растворители и пигменты.

Пленкообразователи сообщают лакокрасочным материалам способность к образованию пленки и определяют ее основные свойства. Пленкообразующими веществами могут быть высыхающие растительные масла, синтетические смолы и эфиры целлюлозы. Разииают неотверждаемые термопластичные и отверждаемые термореактивные пленкообразователи.

Растворителями лакокрасочных материалов служат скипидар, уайт-спирит, ацетон, спирты. Растворители подбирают в зависи-

Таблица 16.1. Характеристики н области применения векоторых лакокрасочных материалов

Лакокрасочные материалы	Обозначение	Основные пленкообразующие вешества	Характеристика	Область применения
Масляные	MA	Масла растительные, олифы натуральные и комбинированные, оксоль	Атмосферостойкие. Для внутренних и внешних работ	Деревянные и металлические конструкции, вагоны, апппараты
Глифталевые	ГФ	Смолы алкидные глицерофталатные (глифтали)	Атмосферо- и маслостойкие	Сельскохозяйственные машины, тракторы, подъемнотранспортные машины
Нитроцеллюлозные	HL	Нитроглифтали, смолы нитроцеллюлозоуретановые, нитроаминоформальдегидные	Атмосферо-, масло- и бензостойкие	Металлические детали, кузова автомобилей и тракторов
Эпоксидные	ЭП	Смолы эпоксидные, ал-кидно-эпоксидные, нитроцеллюлозоэпоксидные	Атмосферостойкие. Стойкие к воздействию масла, бензина и воды. Для внутренних и внешних работ	Tо же
Перхлорвиниловые	XB	Смолы перхлорвиниловые и винилхлоридные	Атмосферостойкие и химически стойкие. Выдерживают кратковременное воздействие масла, воды	Металлические поверхности химической аппаратуры
Кремний-органические	KO	Смолы кремнийорганические	Термостойкие до $200 \ldots 300^{\circ} \mathrm{C}$, химически стойкие и водостойкие	Машины и оборудование

мости от пленкообразующего вещества: для масел используют скипидар, уайт-спирит; для смол - спирты, ацетон, ароматические углеводороды типа бензола и толуола; для эфиров целлюлозы ацетон. Растворители при сушке полностью улетучиваются. Для ускорения высыхания покрытий применяют каталитически действующие сиккативы, представляющие собой растворы оксидов или солей кобальта, цинка, свинца, марганца в растительном масле.

Пиементы (или красители) применяют для получения определенного цвета лакокрасочного материала. Одновременно пигменты улучшают адгезию, повышают антикоррозионные свойства и водостойкость пленок. По химическому составу они представляют собой оксиды или соли металлов (охра, железный сурик, цинковые и титановые белила), порошки алюминия, цинка и элементарного углерода (графит, сажа). Используют также пигменты органического происхождения (пигмент алый и др.), придающие покрытиям красивые яркие тона.

Для удешевления лакокрасочных материалов в них добавляют наполнители. Наполнителями служат мел, каолин, тальк и другие вещества. Применение в качестве наполнителей слюды и асбеста способствует повышению термостойкости покрытий.

В зависимости от состава и назначения лакокрасочные материалы подразделяют на лаки, краски (в том числе эмали), грунты и шпаклевки.

Лаком называют раствор пленкообразуюших веществ в органических растворителях или в воде, образующий после высыхания твердую прозрачную однородную пленку. Лаки используют для получения прозрачных покрытий, защищающих поверхность от внешней среды. Иногда лаки наносят на слой краски для большего блеска покрытия.

Грунтами, шпаклевками и красками называют пигментированные лаки и олифы (высьхающие масла с добавкой сиккатива, яв-

Рис. 16.1. Схема системы лакокрасочного покрытия:
1-- грунт; 2 - шпаклевка; 3 эмаль; 4 - покрывной лак; 5 металя ляющегося катализатором высњхания). Краски, изготовленные на лаках, называют эмалями, а на олифах - масляными красками.

Грунты являются нижними слоями покрытия и обеспечинают прочную адгезию с окрашиваемой поверхностью. В качестве пигмента в грунтах применяют соли хромовой кислоты, свинцовый или железный сурик, цинковые белила и др.

Шпаклевкой называют густую и вязкую массу, состоящую из смеси пигментов с наполнителями в связующем веществе. Шпаклевки применяют для сглаживания неровно-

стей поверхности изделий. Шпаклевки имеют значительно бо́льшую вязкость, чем остальные лакокрасочные материалы за счет более высокой концентрации пигмента и наполнителя.

Надежность защиты поверхности изделий обычно достигается использованием многослойных покрытий. Сочетание слоев последовательно нанесенных лакокрасочных материалов различного целевого назначения (грунта, шпаклевки, краски, лака) называется системой покрытия (рис. 16.1). Общее число слоев составляет 2-14. Толцина каждого слоя грунта, эмали, лака составляет $10 \ldots 26$ мкм, шпаклевки - до 1 мм. Выбор грунта производится с учетом окрашиваемого материала и покрывного материала. Покрывной материал выбирают в зависимости от условий эксплуатации и требуемого внешнего вида изделия.

Контрольныө вопросы

1. С какой целью используют лакокрасочные материалы?
2. Какими специальными свойствами обладают лакокрасочные материалы?
3. Из чего состоят лаки и краски?
4. Что такое растворители?
5. Что такое шпаклевка?
6. Какова последовательность операций при нанесении лакокрасочного покрытия?

ГЛАВА 17

СТЕКЛО

17.1. Общие сведения

Стекло - это однородное аморфное вещество, получаемое при затвердевании расплава оксидов. В составе стекла могут присутствовать оксиды трех типов: стеклообразующие, модифицирующие и промежуточные. Стеклообразуюшими являются оксиды кремния, бора, фосфора, германия, мышьяка. К модифицирующим оксидам, введение которых понижает температуру плавления стекла и существенно меняет его свойства, относятся оксиды щелочных (Na , K) и щелочноземельных ($\mathrm{Ca}, \mathrm{Mg}, \mathrm{Ba}$) металлов. Промежуточными являются оксиды алюминия, свинца, титана, железа, которые могут замещать часть стеклообразующих оксидов. Стеклообразующий каркас стекла представляет собой непрерывную пространственную сетку, в узлах которой расположены ионы, атомы или группировки атомов (рис. 17.1)

Химический состав стекла можно изменять в широких пределах, поэтому и свойства стекла могут быгть различными. По химическому составу в зависимости от природы стеклообразующих оксидов различают силикатное, алюмосиликатное, боросиликатное, алюмоборосиликатное и другие виды стекла.

В зависимости от содержания модификаторов стекло может быть щелочным и бесщелочным.

По назначению различают строительное (оконное, стеклоблоки), бытовое (стеклотара, посуда) и техническое (оптическое, электротехническое, химическое и др.) стекло

a

6

Рис. 17.1. Схема непрерывной структурной сетки стекла:
$a-$ кварцевого; σ - натрийсиликатного

17.2. Основные свойства стекла

Структура и свойства стекла определяются его химическим составом, условиями варки, охлаждения и обработки.

Стекло - термопластичный материал, при нагреве стекло постепенно размягчается и переходит в жидкость. Плавление происходит в некотором температурном интервале, величина которого зависит от химического состава стекла. Ниже температуры стеклования t_{c} стекло приобретает хрупкость. Для обычного силикатного стекла $t_{\mathrm{c}}=425 \ldots 60{ }^{\circ} \mathrm{C}$. Выше температуры плавления стекло становится жидкостью, и стекломассу перерабатывают в изделия. Плотность стекла составляет $2,2 \ldots 8$ г/см ${ }^{3}$. Стекло высокой плотности содержит значительные количества оксидов свинца и бария.

Стекло - жесткий, твердый, но очень хрупкий материал. Стекло хорошо сопротивляется сжатию ($\sigma_{\mathrm{ck}}=400 \ldots 600 \mathrm{M}$ Па) , но характеризуется низким временным согротивлением при испытаниях на растяжение ($30 \ldots 90 \mathrm{MПа}$) и изгиб ($50 \ldots 150 \mathrm{MПа}$). Более прочным является бесщелочное и кварцевое стекло.

Механические свойства стекла повышаются при термической и химической обработке. Термическая закалка стекла заключается в нагреве до температур, близких к точке размягчения, и быстром равномерном охлаждении поверхности в потоке воздуха или в масле. При этом в поверхностньх слоях возникают напряжения сжатия, и прочность стекла возрастает в $2-4$ раза. Для изготовления приборов, работающих при повышенном давлении, применяют безосколочное стекло - триплекс.

Триплекс представляет собой комбинированное стекло, состоящее из двух и более закаленных слоев, склеенньх прозрачной эластичной пленкой. Химическая обработка состоит в травлении поверхностного слоя раствором плавиковой кислоты с уничтожением поверхностных дефектов.

Важнейшим свойством стекла является прозрачность в диапазоне длин волн видимого света. Обычное листовое стекло пропускает до 90%, отражает примерно 8% и поглощает приблизительно 1% видимого света. Ультрафиолетовые лучи почти полностью поглощаются оконным стеклом.

Стекло имеет высокую химическую стойкость в агрессивных средах (за исключением плавиковой кислоты и щелочей). Вода постепенно разрушает стекло вследствие образования щелочньх растворов. Чем выпе температура и концентрация щелочных оксидов в стекле, тем сильнее проявляется действие воды. Стекло как 'ехнический материал широко используют в разных отраслях промышленности. Это объясняется благоприятным сочетанием физи-ко-химических и механических свойств, возможностью изменять эти свойства в широких пределах в зависимости от состава стекла и способов термического воздействия.

Стекло	Плотность, r/cm ${ }^{3}$	Прочность, МПа			Температура размягчения, ${ }^{\circ} \mathrm{C}$	$\underset{{ }^{\circ} \mathrm{C}}{\text { Теплостйкость, }}$
		при сжатии	при растяжения	при изгибе		
Силикатное	2,5...2,6	500... 200	$30 \ldots 90$	25... 80	-	40... 80
Кварцевое:						
прозрачное	2,2	$650 \ldots 180$	$49 . . .65$	110... 120	1250... 1300	1100
непрозрачное	2,02	$310 \ldots 900$	23... 40	$45 . .90$	1200	1000
Пеностекло	0,15...0,4	80... 100	50... 100	50... 100	$300 . . .400$	110... 170
Ситалл	2,4...2,7	1000... 2000	110... 160	70... 350	$1200 \ldots 1350$	-

Примечание. Светопропускаемость силикатного стекла $82 \ldots 90 \%$, кварцевого прозрачного 90%.

Кварцевое стекло, состоящее практически из чистого кремнезема $\left(99 \% \mathrm{SiO}_{2}\right)$, в зависимости от способа получения бывает двух типов: оптически прозрачное и непрозрачное. Кварцевое стекло отличается от всех известных стекол высокими физико-химическими свойствами: высокой жаростойкостью ($1400^{\circ} \mathrm{C}$), низким ТКЛР $\left((0,5 \ldots 0,55) \cdot 10^{-6} \mathrm{~K}^{-1}\right)$, высокой термической стойкостью (выдерживает перепад температур $800 \ldots 1000^{\circ} \mathrm{C}$), химической стойкостью, особенно к действию кислот (кроме плавиковой) и воды. Кварцевое стекло имеет высокие диэлектрические характеристики, прозрачно в видимой, ультрафиолетовой и частично инфракрасной областях. Кварцевое стекло, имеюшее особенно высокую термическую и химическую стойкость в сочетании с низким ТКЛР, применяют для изготовления тиглей, термопар, электровакуумных изделий, химически стойкой тары, труб, лабораторной посуды. Для защиты деталей от коррозии при температуре до $600^{\circ} \mathrm{C}$ в машиностроении применяют стеклоэмали.

Стеклокристаллические материалы (ситаллы) получают из стекла полной или частичной его кристаллизацией. Название «ситаллы» образовано из слов «стекло» и «кристаллы». Ситаллы иногда называют стеклокерамикой. Содержание кристаллической фазы в ситаллах может составлять до 95%. Размер кристаллов обычно не превышает $1 . . .2$ мкм. Ситаллы - плотные, непрозрачные, газонепроницаемые, жесткие и твердые материалы. Их механическая прочность в 2-3 раза выше, чем прочность стекла. Ситаллы хорошо сопротивляются абразивному изнашиванию. Сочетание низкого ТКЛР и высокой механической прочности придает им высокую термостойкость. Ситаллы характеризуются высокой химической стойкостью к действию кислот и щелочей, не подвержены коррозии при нагреве до высоких температур и совершенно не поглощают влагу.

Благодаря сочетанию легкости, прочности, твердости и технологичности ситаллы находят широкое применение в машиностроении. Из них изготавливают подшипники скольжения, работающие без добавления смазочного материала при температуре до $550^{\circ} \mathrm{C}$, поршни и детали выхлопа двигателей внутреннего сгорания, химическую аппаратуру, фильеры для вытягивания синтетических волокон, рабочие колеса и лопатки насосов, перекачиваюших агрессивные жидкости с абразивами. Ситаллы используют в качестве жарои износостойких эмалей для защиты металлических деталей. Ситалловые эмали могут работать при температуре до $900^{\circ} \mathrm{C}$.

Свойства основных видов стекла приведены в табл. 17.1.

Контрольные вопросы

1. Какое строение имеет стекло? Что входит в состав стекла?
2. Как классифицируют стекло по химическому составу и назначению? Какими свойствами обладает стекло?
3. Что такое ситалл, триплекс?

ГЛАВА 18
ДРЕВЕСИНА

18.1. Строение и химический состав древесины

Древесина - ценнейшее промышленное сырье. Большая потребность в древесине во многих областях техники объясняется ее свойствами, которые характеризуют древесину как важный конструкционный материал для строительства, горнодобывающей промышленности, железнодорожного транспорта, энергетики и т.д. Благодаря таким технологическим свойствам, как легкость обработки резанием и окончательной доводки поверхности изделия, а также натуральным декоративным достоинствам древесина - незаменимый материал, особенно в мебельной промышленности и столярном деле. Химический состав древесины делает ее необходимым химическим сырьем для целлюлозно-бумажной промышленности и производства древесных пластиков.

В процессе роста дерева по периметру ствола ежегодно возникают слои клеток, образующих годовые слои, причем слой, нарастающий раньше (весенний), более мягкий и более светлый, чем последующие слои, нарастающие летом и осенью, - более твердые и темные. С течением времени внутренние слои утолщаются и твердеют, образуя ядро - наиболее ценную часть дерева. Наружные годовые слои остаются большей частью мягкими, образуя заболонь (рис. 18.1). Процесс роста ствола происходит главным образом в находящемся непосредственно за корой тонком слое, назы-

Рис. 18.1. Сечение пня ваемом мезгой. Кора образует наружный, защитный слой дерева. Остальная часть ствола исполняет главные механические функции, а именно удерживает дерево в вертикальном положении, противодействует естественным нагрузкам (ветер, снег).

Главный элемент структуры древесины - клетки. Длина клеток составляет обычно $2 \ldots 4$ мм, размер в поперечнике 20 ... 40 мкм. Стенки клеток являются композитом со сложной структурой. Микроволокна композита, характеризующиеся высокой прочностью, построены из кристаллической целлюлозы и составляют пример-

но 45% массы стенок клетки. Целлюлоза является полимером $\left[\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]_{n}$ со степенью полимеризации $n \approx 10^{4}$.

Очень существенным компонентом древесины является вода. Различают связанную и свободную воду. Примерно $25 . .30 \%$ влаги содержится в древесине в связанном виде и очень трудно поддается удалению. Остальная влага, заполняющая межклеточное пространство, легко выпаривается во время сушки.

Дерево, насыщенное водой, отдает ее воздуху, пересушенное дерево поглощает влагу из воздуха. Высыхание и увлажнение особенно интенсивно происходит в основных сечениях древесины. Растушее дерево очень быстро впитывает воду, причем количество ее зависит не только от вида дерева, но и от времени года. Например, оптимальное содержание воды в растущей сосне или ели составляет 80%, в березе -70%. При транспортировании по воде (сплав) влажность дерева повышается. Такую древесину называют мокрой.

При длительном хранении на складе насыщение древесины водой стабилизируется, достигая определенного содержания в условиях окружающего воздуха. В зависимости от климата и времени года влажность древесины, находящейся на воздухе, составляет $15 \ldots 20 \%$. Высушенная древесина носит название воздушно-сухой.

18.2. Физические и механические свойства древесины

Одним из важнейших свойств древесины является ее усадка. Линейные размеры древесины уменьшаются в процессе сушки, а противоположньй процесс - так называемое растрескивание идет при поглощении влаги из воздуха. Эти явления происходят при изменении содержания связанной воды (насыщающей), а содержание свободной (капиллярной) воды не влияет на изменение объема древесины. Величина объемной усадки приблизительно равна объему связанной (насыщающей) воды, отданной древесиной при сушке. Линейная усадка различных пород древесины приведена в табл. 18.1.

Плотность древесины (собственная масса) зависит от степени ее влажности и пористости. В связи с этим различают плотность свежесрубленной, воздушно-сухой и полностью сухой древесины.

В зависимости от плотности древесины в воздушно-сухом состоянии различают шесть классов древесины (табл. 18.2).

Механические свойства древесины зависят от направления действия силы по отношению к волокнам. Различают прочность древесины вдоль и поперек волокон. Наиболее сушественными являются прочность при сжатии, изгибе и растяжении. Разница в прочности отдельных пород древесины является следствием их различ-

Т аблица 18.1. Физические свойства древесины разных пород деревьев

Породы деревьев	Плотность, г/см	Линейная усадка древесины, \%, ваправлении		
		0,2	7,79	11,5
Пихта	0,45	0,12	2,91	6,72
Ель	0,45	0,14	2,41	6,18
Ольха	0,54	0,36	2,91	5,07
Сосна	0,5	0,12	3,04	5,72
Береза	0,65	0,27	-	-
Бук	0,65	0,16	-	-
Дуб	0,7	0,16	-	-
Орех	0,66	0,21	3,82	10,5
Груша	0,725	0,22	3,94	12,7
Ясень	0,74	0,19	3,35	6,5
Клен	0,7	0,21	-	-
Акация	0,77	-	-	-
Эбеновое дерево	1,16	-	-	-
Гваяковое дерево	1,23	-	-	-

Таблица 18.2. Классификация древесины по плотности

Класс плотности	$\begin{gathered} \text { Плотность, } \\ \Gamma / \mathrm{cm}^{3} \end{gathered}$	Породы деревьев
Очень тяжелая	Более 0,8	Граб, тис, гваяковое дерево, эбеновое дерево, эвкалипт
Тяжелая	0,71 ...0,8	Белая акация (акация), бук, дуб, ясень, орех, груша, слива
Умеренно тяжелая	0,61 ... 0,7	Береза, клен, явор (белый клен), лиственница, вяз
Легкая	0,51 ...0,6	Каштан, красное дерево
Умеренно легкая	0,41 .. 0,5	Сосна обыкновенная, ель, пихта, липа, ольха, осина, кедр, тик
Очень легкая	Менее 0,4	Тополь, белая сосна

Таблица 18.3. Классификация древесины по твердости

Класс твердости	Породы деревьев	Твердость НВ	Прочность при растяжении вдоль волокон, МПа
Очень мягкая	Верба, бальза, тополь, осина, пикта, ель, белая сосна	До 3,5	$80 \ldots 100$
Мягкая	Береза, ольха, явор (белый клен), липа, листвнница, обыкновенная сосна, красное дерево, платан	$3,6 \ldots 4,9$	$90 \ldots 140$
Средней твердости	Вяз, орех, черная сосна	$5 \ldots 5,9$	$90 \ldots 140$
Твердая	Дуб, ясень, яблоня, груша, вишня, тик	$6 \ldots 6,5$	$100 \ldots 140$
Очень твердая	Дуб, граб, бук, тис, белая акация (акация), палисандр	$6,6 \ldots 14,6$	$120 \ldots 160$
Твердая, как кость	Эбеновое дерево, гваяковое дерево, кокос	Более 15	-

ной плотности. Несмотря на то, что прочность при растяжении древесины значительна, близка к прочности цветных металлов, например некоторых бронз и латуней, на практике избегают применять деревянные элементы, работающие на растяжение, учитывая малую прочность древесины, вызванную напряжениями среза и сжатия в месте закрепления. Прочность древесины при сжатии вдоль волокон в 3 раза меньше, чем при растяжении.

Одной из важных характеристик, определяющих пригодность древесины для использования в промышленности, является ее твердость. Твердость древесины увеличивается по мере роста ее плотности. На основе определения твердости по методу Бринелля древесина разделена на шесть классов твердости (табл. 18.3).

18.4. Изделия из древесины

Торговую древесину подразделяют:
на круглую необработанную (окоренную), наппример кругляки лесопилки, строительные, шахтные столбы, балансовая древесина; круглую обработанную, например пиломатериалы (доски, бревна, брусы), паркет, клепки, шпалы и др.;

дровяную.

Из древесины производят следующие группы материалов:

- фанеры - тонкие древесные плиты (толщиной $0,4 \ldots 3$ мм), полученные при внецентренном или окружном срезании различных пород круглой древесины, благодаря чему обычно получают материалы с эффектными послойными узорами, цветом и блеском;
- клееные фанеры - плиты, склеенные из нечетного числа фанерных листов, причем волокна в прилегающих слоях находятся под прямым углом. Физические и механические свойства клееной фанеры зависят от породы древесины, качества фанерных слоев, толщины и состава фанеры, вида клея и способа склеивания. По стандарту различают сухостойкие, полуводостойкие и водостойкие фанеры. Толшина клееной фанеры $4 ; 5 ; 6 ; 8 ; 9 ; 10 ; 12 ; 15 ; 18$ и 20 мм; длина 1120... 2440 мм; ширина 650... 2440 мм;
- древесноволокнистые плиты - плиты, изготовленные из древесных волокон с добавлением или без добавления химических веществ; подразделяют на мягкие (пористые) плотностью менее 0,4 г/cм ${ }^{3}$, полутвердые плотностью $0,4 \ldots 0,8$ г $/ \mathrm{cm}^{3}$, твердые плотностью более $0,8 \mathrm{r} / \mathrm{cm}^{3}$ и очень твердые плотностью более $0,9 г / \mathrm{cm}^{3}$. Мягкие плиты имеют толщину $9,5 \ldots 25$ мм, остальные - $2,4 \ldots 6,4$ мм . Различают древесноволокнистые плиты общего назначения и специального назначения (водостойкие, грибостойкие, насекомостойкие и негорючие); применяют также как декоративные или звукозащитные материалы;
- древесностружечные плиты - плиты из мелкой древесной стружки, полученной из округлой древесины или еловых, пихтовых, сосновых, тополиных, осиновых и липовых щепок. Размеры плит: толщина $0,05 \ldots 0,6$ мм; ширина $1 . . .6$ мм; длина $200 \ldots 500$ мм . Древесностружечные плиты характеризуются легкостью, мягкостью, эластичностью, воздухопроницаемостью, имеют хорошие теплоизоляционные свойства. В зависимости от назначения плиты подразделяют на упаковочные и строительные, применяют также в качестве обоев;
- другие материалы, например лигнофол (слоистый материал в виде плит, изготовленный из водостойкой фанеры, склеенной синтетическим клеем под давлением), лигностон (древесина, упрочненная прессованием под давлением до 40 МПа при температуре $70 \ldots 160^{\circ} \mathrm{C}$), щепки (размельченная древесина или отходы лесопильного производства) и мягкая древесина, применяемые в производстве пластмасс и взрывчатых материалов.

18.5. Долговечность и консервация древесины

Древесина независимо от породы имеет в основном высокую долговечность (интервал времени, в течение которого древесина сохраняет свои физические и механические свойства), если нахо-

дится в сухом, проветриваемом помещении с незначительным перепадом температур и влажности воздуха. На долговечность древесины большое влияние оказывают условия, в которых она находится, и внешние факторы:

- биологические (паразитирующие грибки, насекомые и микроорганизмы);
- физические (перепады температур, влажность воздуха, удары);
- химические (концентрированные растворы кислот, спиртов).

По естественной долговечности древесину подразделяют на три основные группы:

- очень долговечная древесина (лиственница, вяз, дуб, тис, кипарис, кедр, белая акация, каштан, орех, эбеновое дерево, эвкалипт);
- среднедолговечная древесина (пихта, сосна, ель, бук, ясень);
- недолговечная древесина (береза, явор, липа, ольха, осина, тополь, верба).

Долговечность древесины можно повысить сушкой, насыщением противогнилостными веществами, насыщением сухой древесины пропитывающими растворами и нанесением покрытия (защитных пленок).

Консерванты древесины можно подразделить:
на химические вещества, защищающие древесину от биологических вредителей (столярный дистиллированный ксиламит, парусный ксиламит, интокс S, антокс, импрекс В и \mathbf{W}, солтекс R-12 и др.);

химические огнезащитные и водостойкие вещества (пиролак W-1 и W-10, игносол DX и др.).

Химические вещества, защищающие и консервирующие древесину, токсичны и легкогорючи, поэтому при их использовании и хранении требуется особая осторожность.

Контрольные вопросы

1. Какое строение имеет древесина?
2. Как различаются свойства древесины при испытании вдоль и поперек волокна?
3. Что такое усадка древесины и какое влияние на свойства она оказынает?
4. Как принято различать древесину по твердости?
5. Как классифицируют древесину по плотности?
6. Какие изделия можно изготавливать из древесины?

РАЗДЕЛ IV
 ИЗНОС И ИЗНОСОСТОЙКИЕ МАТЕРИАЛЫ

ГЛАВА 19
КЛАССИФИКАЦИЯ И ВИДЫ ИЗНОСА

19.1. Общие сведения

Трение - явление сопротивления относительному перемещению, возникающее между двумя телами в зонах соприкосновения поверхностей. Трение сопровождается физическими, химическими и механическими процессами.

Сила трения направлена тангенциально к контакту и характеризует сопротивление относительному перемещению трущихся тел. Коэффициент трения - отношение силы трения к силе нормального давления. Коэффициент сиепления является отношением силы трения к силе нормального давления. По виду взаимодействия поверхностей и состоянию смазочного слоя трение классифицируют по следуюшим признакам: трение ювенильных поверхностей и трение при граничной, гидродинамической, гидростатической, контактно(эласто)-гидродинамической смазке.

Изнашивание - процесс поверхностного разрушения и изменения размеров тела при трении вследствие отделения материала с поверхности твердого тела, накопления необратимых остаточных деформаций поверхностных слоев трущихся тел. Износ - результат изнашивания, определяемый в единицах длины, объема, массы и др. Износостойкость - свойство материала оказывать сопротивление изнашиванию, оцениваемое величиной, обратной скорости или интенсивности изнашивания. Скорость изнашивания - отношение значения износа к интервалу времени, в течение которого он происходил. Интенсивность изнашивания - отношение значения износа к пути трения или к работе сил трения.

19.2. Классификация и виды изнашивания

К износу относятся трение металла о горные породы, резание и бурение грунтов, шлифование, царапание, трение шероховатого вала о более мяткий подшипник, процессы опескоструивания и т.І. Износ обычно является чисто механическим процессом, хотя часто он сопровождается коррозией и адсорбнией. В зависимости от соотношения механического и коррозионного воздействия воз-

можны все промежуточные случаи от чисто абразивного износа до коррозионно-механического.

Износ характеризуется потерей массы детали, уменышением ее объема или линейных размеров.

Различают допустимый и предельный износ. При допустимом износе сохраняется работоспособность детали. Предельный износ характеризуется такими изменениями формы и размеров, при которых дальнейшая эксплуатация детали становится невозможной.

В соответствии с ГОСТ 27574-88 различают следующие виды изнашивания: механическое, коррозионно-механическое и электроэрозионное.

Наиболее общим видом изнашивания является механическое изнашивание в результате механических воздействий. Различают следующие виды механического изнашивания в зависимости от характера механического воздействия:

- абразивное - результат режущего или царапающего действия свободных или закрепленных твердых частиц. Износостойкость при абразивном изнашивании чистых металлов пропорциональна их твердости: $\varepsilon=b \cdot \mathrm{HB}$ (ε - сравнительная износостойкость, определяемая в сравнении с образцом-эталоном; b - коэффициент пропорциональности). В сплавах эта зависимость может не соблюдаться;
- усталостное - результат многократного повторного деформирования участков поверхности контакта твердых тел. Количественная оценка контактной усталости выражается в числе циклов нагружения или в часах работы до возникновения усталостных разрушений поверхности;
- эрозионное - под действием потоков жидкости или газа, твердых частиц, движущихся с большими скоростями;
- кавитационное - результат многочисленных микрогидравлических ударов, воспринимаемых поверхностью твердого тела, когда вблизи нее схлопываются пузырьки пара жидкости. Кавитационный износ типичен для деталей машин, работающих в жидких средах. Кавитационное разрушение имеет вид выдавленных кратеров.

Потоки жидкости или газа со взвешенными абразивными частицами являются причиной гидро- или газоабразивного изнашивания.

Коррозионно-механическое изнашивание происходит при одновременном механическом и химическом воздействии окислительной среды (например, фреттинг-коррозия при колебательном перемещении двух трущихся поверхностей стальных деталей).

Электроэрозионное изнашивание проявляется в разрушении поверхности контакта и переносе массы материала под действием электрических разрядов.

Различные виды изнашивания по закономерностям протекания существенно различаются между собой.

Рис. 19.1. Зависимость износа от времени

Многообразие причин изнашивания, одновременное воздействие многих факторов, определяющих скорость изнашивания, быстрая смена условий трения на шероховатых соприкасаюшихся поверхностях значительно осложняют выбор конструкционных материалов и вид их обработки для обеспечения надежной работы узлов трения и рабочих органов машин.

Скорость изнашивания и износ зависят от времени. Существуют три периода износа (рис. 19.1): I - начальный период, или период приработки, при котором изнашивание протекает с постоянно замедляющейся скоростью; II - период установившегося (нормального) износа, для которого характерна небольшая и постоянная скорость изнашивания; III - период катастрофического износа.

Приработка происходит в течение непродолжительного времени, наблюдается быстрое изнашивание выступов на поверхности контакта, выделяется теплота, происходят физико-химические изменения поверхностных блоков и уменьшается шероховатость. В результате приработки трибосистема переходит в состояние, для которого характерны максимальная несущая способность и замедленное изнашивание

Катастрофический износ наступает при схватывании трушихся поверхностей, т.е. при сварке в твердом состоянии и разрушении мест сварки, которое сопровождается образованием наростов, задирами и заеданиями и значительным повреждением трушихся поверхностей. Обеспечение износостойкости связано с предупреждением катастрофического износа, уменьшением скоростей начального и установившегося изнашивания. Изнашивание развивается под влиянием многих факторов, которые разделяют на две группы:

- внутренние, определяемые свойствами материала твердого тела;
- внешние, характеризующие вид трения (качения или скольжения), условия в зоне взаимодействия твердых тел (температура, давление, скорость относительного перемешения, шероховатость поверхности, свойства рабочей поверхности или смазочного материала), характер приложения нагрузки (статическая, динамическая, постоянная, переменная, реверсивная).

Несмотря на разнообразные условия взаимодействия трушихся поверхностей повышение износостойкости стальных деталей для

большинства видов механического изнашивания обеспечивается, как правило, сочетанием высокой прочности и твердости поверхности контакта. Для повышения износостойкости деталей, изготовленных из конструкционных сталей универсального применения, используют:

- термическое упрочнение с помошью объемной или поверхностной закалки;
- химико-термическую обработку для упрочнения поверхностного слоя или изменения условий трения на контактной поверхности;
- осаждение износостойких покрытий без оплавления самих деталей;
- наплавку износостойких слоев с частичным оплавлением деталей.

Оценка износостойкости материалов при взаимодействии с нежестко закрепленными абразивными частицами производится в соответствии с ГОСТ 23.208-79. Образцы из исследуемого и эталонного материалов изнашивают абразивными частицами, подаваемыми в зону трения и прижимаемыми к образцу вращающимся резиновым роликом. Измеряют и сравнивают износ образцов исследуемого и эталонного материалов.

На рис. 19.2 исследуемый образец 1 , закрепленный в держателе 2 , прижимается к вращающемуся резиновому ролику 6 . Нагрузка передается через рычаг 3. Из дозатора 5 по направляющему лотку 4 в зону трения подается абразив. Условия испытаний: усилие прижатия ролика $44,1 \mathrm{H}$, частота вращения ролика $1 \mathrm{c}^{-1}$, продолжительность испытаний образца из эталонного материала - 600 оборотов ролика от момента подачи абразива, продолжительность испьтаний образца из исследуемого материала - в зависимости от твердости от 600 до 3600 оборотов.

В качестве абразива используют материал, соответствующий условиям эксплуатации, но с размером зерен не более 1 мм. При общей сравнительной оценке износостойкости применяют зернистый электрокорунд.

Рис. 19.2. Схема испытаний при трении о незакрепленную абразивную прослойку:
1- испьтуемый образец; 2 - держатель; 3 рычаг; 4 - направляющий лоток; 5 - дозатор; 6 - резиновый ролик

Образцы из исследуемых и эталонных материалов изготовляют в виде пластин шириной $30 \mathrm{mм}$, длиной $30 \ldots 50 \mathrm{mм}$, толщиной $h \geq$ ≥ 1 мм и шероховатостью рабочей поверхности $R a \leq 2,5$ мкм. Эталонные образцы изготовляют из стали 45 по ГОСТ 1050-74 в отожженном состоянии с твердостью $190 \ldots 200 \mathrm{HV}$. Резиновый прижимной ролик выполняют диаметром 50 мм. Износ испытываемых и эталонных образцов определяют взвешиванием до и после испытаний с погрешностью $\leq 0,1$ мг. Потеря массы образца вследствие изнашивания при испытаниях должна составлять не менее 5 Mr .

19.3. Износ сопряженных деталей, образующих пары трения

Изнашивание сопряженных деталей обусловлено работой сил трения, которые многократно деформируют участки контакта, упрочняют и разупрочняют их, способствуют выцелению теплоты и повышению температуры, меняют структуру, приводят к развитию усталости.

Силовое взаимодействие твердых тел объясняет молекулярномеханическая или, другими словами, адгезионно-деформационная теория. Из-за шероховатости и волнистости трущихся поверхностей контакт осуществляется в отдельных пятнах касания диаметром от 0,1 до $20 \ldots 30$ мкм, расположенных на вершинах волн.

Взаимодействие скользящих поверхностей в этих пятнах имеет двойственную природу - деформационную и адгезионную. Деформационное взаимодействие обусловлено многократным деформированием михрообъемов поверхностного слоя внедрившимися неровностями. Сопротивление этому деформированию называют ∂e формационной составляющей силы трения $F_{\text {д }}$.

Адгезионное взаимодействие связано с образованием на участках контакта адгезионных мостиков сварки. Сопротивление срезу этих мостиков и формирование новьх определяет адгезионную составляющую силы трения ($F_{\text {ап }}$). Таким образом, сила трения, так же, как и другая важная фрикционная характеристика - коэффициент трения (f), определяется как сумма двух составляющих:

$$
\begin{gathered}
F=F_{\text {д }}+F_{\text {aд }} ; \\
f=f_{\text {д }}+f_{\text {aд }} .
\end{gathered}
$$

Деформационная составляющая трения возрастает пропорционально величине относительного внедрения неровностей $h / R(h-$ глубина внедрения, R - радиус внедрившейся неровности). Величина h / R и соответственно $F_{\text {д }}$ и $f_{\text {д }}$ возрастают с увеличением шероховатости поверхности, нагрузки и снижаются с увеличением твер-

дости и модуля упругости материала. Различают три вида механического взаимодействия: упругое контактирование (рис. 19.3, а); пластическое деформирование (рис. 19.3, б); микрорезание (рис. 19.3, e).

Интенсивность износа минимальна при упругом контакте.
При пластическом деформировании интенсивность износа резко возрастает. В результате пластической деформации происходит упрочнение участков, что способствует хрупкому разрушению.

Микрорезание относится к недопустимым процессам изнашивания, так как вызывает интенсивное разрушение поверхностного слоя. Микрорезание возможно не только внедрившимися неровностями, но и посторонними твердыми частицами.

Возможны два вида адгезионного взаимодействия: схватывание и разрушение поверхностных пленок (рис. 19.3, z); схватывание металлических поверхностей, сопровождающееся заеданием и срезом менее прочного материала (рис. 19.3, д).

При первом виде взаимодействия срез адгезионных связей происходит по оксидным пленкам, которыми всегда покрыты трущиеся поверхности. Скорость образования оксидных пленок обычно высока, чему способствуют высокие температуры, развиваюииеся на поверхности трения. Разрушение поверхности путем среза оксидньх пленок называется окислительным изнашиванием. Это наиболее благоприятный вид адгезионного изнашивания, при котором процессы разрушения локализуются в тончайших поверхностных слоях.

Сцепление металлических поверхностей возникает между чистыми от пленок (ювенильными) поверхностями трения, например, в условиях вакуума или при разрушении пленок пластической деформацией в местах контакта. Атомы контактирующих материалов сближаются настолько, что начинают действовать межатомные силы сцепления. Этот процесс иногда называют холодной сваркой. Между очищенными участками образуются адгезионные связи, которые по прочности превосходят прочность одного из материалов пары трения. Срез происходит в менее прочном мате-

\boldsymbol{a}

σ

B

\boldsymbol{r}

g

Рис. 19.3. Виды взаимодействия поверхностей трения:
a - упругое контактирование; 6 - пластическое деформирование; в - микрорезание; z - схватывание и разрушение поверхностных пленок; ∂ - схватывание и глубинное вырывание

риале в глубине от места схватывания. На одной поверхности трения образуются углубления, на другой - вырванные частицы, которые повторно схватываются и бороздят трущиеся поверхности, вызывая их интенсивное разрушение (рис. 19.4).

Если процесс адгезионного износа проходит интенсивно и имеет место перенос значительного количества металла, это явление называется заеданием металла. Если оно очень интенсивно, то поверхности могут слипаться на значительном участке и в этом случае внешние силы уже не смогут вызвать смещения их относительно друг друга; это явление называется схватыөанием. Однако, если принять меры, скорость адгезионного износа можно сделать малой или самоограничивающейся, благодаря чему износ часто используется для притирки и улучшения качества контактирующих поверхностей с целью эффективного использования смазочных материалов.

Молекулярно-механическая теория трения определяет два основных пути повышения износостойкости материала: увеличение твердости трущейся поверхности и снижение прочности адгезионной связи.

Повышение твердости направлено на то, чтобы затруднить пластическую деформацию и исключить микрорезание поверхностей трения, обеспечив по возможности упругое деформирование участков контакта.

Рис. 19.4. Контакт между двумя твердыми телами и перенос частиц при адгезионном износе:
a - контакт ненагруженных поверхностей; б - приложенная нагрузка P приводит к пластическому течению и холодному свариванию; в - скольжение и действие нагрузки приводит \mathbf{x} деформационному упрочнению; z - перенос частиц в результате разрушения шероховатостей в месте сварки

Снижение прочности адгезионной связи необходимо для предупреждения схватывания металлических поверхностей. Наиболее эффективно эта цель достигается разделением поверхностей трения жидким, твердым (иногда газовым) смазочным материалом. При использовании жидкой смазки, которая разделяет поверхности деталей несущим гидродинамическим слоем, коэффициент трения минимален ($0,005 \ldots 0,01$), а износ практически отсутствует.

Адгезионное изнашивание часто возникает при недостаточном количестве смазочного материала или его отсутствии, а также в случаях разрушения адсорбированных пленок и т.п. В практике встречается во многих узлах трения - в опорах скольжения и качения, зубчатых передачах, муфтах, направляющих, кулачковых механизмах. Особенно адгезионный износ опасен для космической техники, вакуумного оборудования, механизмов атомных реакторов и других высоконагруженных узлов, функционирующих в газовых и жидких агрессивных средах.

Однако смазочные материалы постепенно расходуются и не гарантируют схватывание. В этих условиях решаюшее значение приобретает обеспечение совместимости трущейся пары. Под совместимостью понимают свойство материалов предотвращать схватывание при работе без смазочного материала или в условиях нарушения сплошности масляного слоя. Совместимость достигается несколькими способами.

Одним из способов является использование защитных свойств оксидных пленок. Защитные свойства оксидных пленок зависят от их состава, толщины, а также от свойств металлической подложки, увеличиваясь с ростом ее твердости. Если оксид тверд и прочен, а нижележащий металл мягок, то пленка легко разрушается и схватывание развивается при малой нагрузке. Иногда твердость оксидных пленок больше твердости самих металлов. Наиболышую твердость по шкале Мооса (9) имеет оксид алюминия $\mathrm{Al}_{2} \mathrm{O}_{3}$, твердость самого алюминия невелика (≈ 2). Вследствие этого при трении алюминия по стали оксидные пленки, а также продукты разрушения этих пленок могут вызвать сильный износ даже самых твердых сталей.

Магний образует очень мягкий гидроксид $\mathrm{Mg}(\mathrm{OH})_{2}$, поэтому износ магнием более твердых металлов невелик. Это обстоятельство частично объясняет, почему поршни из магниевьх сплавов меньше царапают и задирают стенки цилиндров, чем поршни из алюминиевых сплавов. Чисто абразивное изнашивание оксидами алюминия встречается в трущихся парах сталь, покрытая хромом, алюминиевый сплав, применяемых в некоторых узлах самолетов, из-за стремления снизить массу конструкции.

Тонкие прочные пленки, способные деформироваться вместе с металлом при большой нагрузке, образуют хром, коррозионно-

стойкую сталь, а также медь, хотя допустимая нагрузка ($N<N_{\text {кр }}$) для нее меныше, чем у первых двух материалов.

Закаленные стали и стали, упрочненные химико-термической обработкой, имеют более высокую стойкость против схватывания по сравнению с отожженными и нормализованными сталями. Более прочные стали являются основным материалом для одной из сопряженных деталей пары трения.

Важную роль играет подбор материалов пары трения.
Схватывание особо опасно для контакта из двух твердых материалов. В случае разрушения защитных оксидных пленок оно приводит к значительному повреждению обеих поверхностей трения. При сочетании твердого и мягкого материалов схватывание проявляется в менее опасной форме.

Для сталей и чугунов наиболее благоприятным является изготовление сопряженной детали из цветных металлов и сплавов с мягкой структурой. Такая структура допускает скольжение на участках контакта и предотвращает схватывание. В червячных передачах червяк изготавливают из твердой стали, а червячное колесо из оловянной бронзы, имеющей в структуре мягкую составляющую. Олово и свинец являются мягкой структурной составляющей в подшипниках скольжения.

Схватывание может быть предотвращено разделением поверхностей трения пленками полимеров (фторопласта, полиамида).

Контрольные вопросы

1. Что называют износом?
2. Какие процессы сопровождают трение?
3. По каким признакам классифицируют трение?
4. Перечислите виды изнашивания.
5. В каких условиях происходит коррозионно-механическое изнашивание?
6. Назовите три основных периода износа.
7. Что понимают под внешними факторами, приводящими к изнашиванию?
8. Какие испытания проводят при оценке износостойкости?
9. Чем обусловлено изнашивание сопряженных деталей?
10. Какова интенсивность износа при упругом контакте?
11. Почему микрорезание относится к недопустимым процессам изнашивания?
12. Какое явление называется заеданием металла?

ГЛАВА 20

СМАЗОЧНЫЕ МАТЕРИАЛЫ

Смазочный материал - материал, вводимый на поверхность трения, в контакт трущихся тел для уменьшения силы трения и интенсивности изнашивания. Во фрикционных передачах и устройствах смазочный материал вводят для одновременного увеличения силы трения и уменьшения интенсивности изнашивания. Смазка - действие смазочного материала в контакте трущихся тел, приводяцее к уменьшению интенсивности (скорости) изнашивания и силы трения. Смазывание - подведение смазочного материала к поверхности трения.

Трибология - наука о явлениях, закономерностях и процессах трения, изнашивания и смазки. Триботехника - включает в себя прикладную часть трибологии, методы и средства обеспечения работоспособности узлов трения.

Виды смазки различаются по физическому состоянию смазочного материала (газовая, жидкостная, твердая) и по условиям разделения поверхностей трения смазочным слоем: гидродинамическая (газодинамическая), гидростатическая (газостатическая), контакто (эластно)-гидродинамическая, граничная, полужидкостная (смешанная). Гидродинамическая (газодинамическая) смазка приводит к полному разделению поверхностей под действием давлений, самовозникающих в слое жидкости (газа) при относительном движении тел. В условиях гидростатической (газостатической) смазки полное разделение поверхностей трения осуществляется в результате действия жидкости (газа) в зазоре между поверхностями трения путем подвода ее под внешним давлением. При эластогидродинамической смазке на процессы в контакте трущихся тел влияют не только реологические свойства смазочного материала, но и упругие свойства материалов твердых тел. Граничный вид смазки относится к случаю, при котором трение и износ определяются свойствами поверхностей твердых тел и физико-химическими свойствами смазочного материала. Смешанньй режим смазки характеризует существование в контакте одновременно нескольких указанных ранее видов смазки. Используются различные методы смазывания: непрерывное, периодическое, циркуляционное, ресурсное, под давлением, погружением, масляным туманом, капельное.

Магнитопорошковый метод смазывания применяется при использовании магнитных полей для непрерывной подачи на поверхности трения смазочного материала и циркуляции его внутри механизма. Смазочная пленка не только прочно соединяется с основным материалом, но и постоянно восстанавливается в процессе работы узла трения. Порошкообразные магнитоактивные смазочные материалы получаются путем введения в твердосмазочную

основу ферромагнитных компонентов, например, эффективны материалы на основе дисульфида молибдена, диселенида молибдена с добавлением никеля, кобальта, железа и др. Применение магнитопорошкового метода смазывания позволило увеличить ресурс зубчатых передач в 10 раз по сравнению с самосмазывающимися материалами и покрытиями.

Существуют смазочные материалы жидкие, пластичные, газообразные, твердые. По своему происхождению масла разделяются на минеральные, нефтяные, растительные, животные, синтетические. Применяются с присадками (легированные) и без присадок (нелегированные). Присадки представляют собой жидкие или твердые вещества, добавляемые к смазочному материалу для улучшения его качества. Используются различные виды присадок: противоизносные, противозадирные, антикоррозионные, антиокислительные, депрессорные, понижающие температуру застывания смазочного материала, противопенные и др.

Вязкость смазочного материала определяет объемное свойство оказывать сопротивление относительному перемещению его слоев Безразмерная величина, характеризующая по стандартной шкале чувствительность масла к температуре, называется индексом вязко сти. Высокому индексу соответствует меньшее изменение вязкости с температурой. Применяют смазочные масла моторные, газотурбинные (реактивные), трансмиссионные, индустриальные и др Смазочные масла уменьшают трение, износ, предотвращают задир поверхностей, отводят теплоту от трущихся узлов, защищают детали от коррозионного воздействия внешней среды, удаляют продукты изнашивания

Наиболышее распространение получили нефтяные масла. Для низких и высоких температур все большее применение находят синтетические масла, например кремнийорганические жидкости (полисилоксаны), сложные эфиры, полигликоли, фтор- и хлорорганические жидкости

Антифрикционные, противоизносные, противозадирные присадки к смазочным маслам содержат различные активные элементы: серу, фосфор, хлор и др. Эффективность действия присадок зависит от физико-химических свойств и состава базового масла

Пластичные смазки представляют собой трехкомпонентные коллоидные системы, содержащие дисперсионную среду ($70 \ldots 90 \%$, жидкая основа), дисперсную фазу ($10 \ldots 15 \%$, загуститель), модификаторы структуры, добавки, присадки, наполнители (1... 15%)

В качестве дисперсионной среды используют нефтяные, синтетические масла. Загустителями служат соли высокомолекулярных жирных кислот - мыла, твердые углеводороды и др.

По разнообразию объектов и узлов трения, в которых они применяются, пластичные смазки превосходят жидкие смазочные материалы. Пластичные смазки снижают трение, износ, предот-

вращают задир, защищают от коррозии, уплотняют зазоры, снижают вибрацию, шум, удары.

Для фрикционных передач и высокоскоростных опор качения создают специальные жидкости (масла), позволяющие получить повышенное значение коэффициента трения скольжения и уменьшить износ. Широкое распространение получили опоры с газовой смазкой, минимальными потерями на трение и повышенной износостойкостью - в турбокомпрессорах, турбодетандерах, гироскопах, быстроходных шпиндельных узлах металлорежущих станков, вентиляторах, приборном и специальном оборудовании. На практике используют различные газовые среды: воздух, аргон, гелий, углекислый газ и др. Возможность применения опор с газовой смазкой в широком диапазоне изменения скоростей ($0 \ldots 100 \mathrm{~m} / \mathrm{c}$), температур, в различных газовых средах, практическая безызносность обеспечивает широкую перспективу их промышленного использования.

Для различных узлов машин эффективно применение магнитного подвеса, который открывает возможность создания механизмов, работающих без взаимного механического контакта, бесшумно, с минимальными потерями на трение, практически неограниченно во времени. В качестве подшипниковых наиболее распространены металлические антифрикционные материалы (оловянистые, свинцовые, медные, алюминиевые и цинковые сплавы, антифрикционные чугуны и др).

В экстремальных условиях работы пар трения широко используются антифрикционные износостойкие покрытия и самосмазывающиеся композиционные материалы. Такими условиями являются, например, трение деталей машин без жидкого смазочного материала в вакууме, при криогенньх температурах, при низких (ниже $-60^{\circ} \mathrm{C}$) и высоких (выше $+300^{\circ} \mathrm{C}$) температурах, при действии радиации, в коррозионных средах, в среде жидкометаллических теплоносителей, при смазывании водой и различными растворами

Твердые смазочные материалы имеют высокую прочность сцепления с основой и низкое сопротивление на сдвиг, радиационно стойки, слабо испаряются в глубоком вакууме. Они не загрязняют другие детали механизмов, просто наносятся на трущиеся поверхности, обладают высокой несуцей способностью, особенно для стационарных контактов. Однако в процессе изнашивания твердые смазочные материалы не восстанавливаются, поэтому обладают ограниченным ресурсом, зависящим от толщины смазочной пленки и условий эксплуатации. Применяются при низких, криогенных и высоких (превышаюших $1000^{\circ} \mathrm{C}$) температурах, в низкоскоростных узлах трения, в режимах пуска и останова механизмов, когда жидкие и пластичные смазочные материалы не обладают необходимой несущей способностью, защищают поверхности трения от схватывания. К твердым смазочным материалам относят графит,

дисульфид молибдена, нитрид бора, сульфиды, селениды, хлориды, фториды, иодиды, оксиды металлов, мягкие металлы (Au , $\mathrm{Ag}, \mathrm{Pb}, \mathrm{In}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Co}$ и др.), органические вещества (пластмассы, полиамиды, полиимиды и др.). Применяют их в виде пленок, наносимых натиранием, твердых смазочных покрытий, прессованных таблеток и брикетов для использования в качестве смазывающих карандашей в ротапринтных узлах трения, в составе композиционных самосмазываюшихся материалов.

Антифрикционные самосмазывающиеся материалы находят широкое применение в различных узлах трения: в подшипниковых опорах, шарнирах, зубчатых передачах, направляющих и др. Используют антифрикционные самосмазываюшиеся пластмассы, полимеры, содержащие в своем составе антифрикционные, армирующие и другие наполнители. Широко используют металлофторопластовые ленточные материалы, тканевые антифрикционные материалы, покрываюшиеся трущиеся поверхности. Металлофторопластовая лента имеет высокие несушую способность и антифрикционные характеристики. Детали, изготовленные из ленты (с малым объемом и массой), устойчивы к коррозии при действии растворителей, работают в широком диапазоне температур (от -200 до $+280^{\circ}$ С). Ленты на основе антифрикционных тканей из химических волокон (фторопластовых, полиамидных нитей и др.) получают путем пропитки их клеевым связующим с наполнителями. Толщина ткани ленты $0,08 \ldots 1,5$ мм. После крепления непосредственно на поверхность трения узел выдерживает давление $500 \ldots 600 \mathrm{M}$ Ма и работает в широком диапазоне температур от -200 до $+250^{\circ} \mathrm{C}$. Композиционные порошковые антифрикционные материалы имеют высокую износостойкость, жаропрочность, твердость и коррозионную стойкость. Применяют железографитовые, бронзографитовые материалы, железоникелевые сплавы, сульфидированные, сульфоборированные, коррозионно-стойкие стали.

Выбор оптимального вида смазочного материала - сложная задача, не менее ответственная, чем выбор конструкционных материалов для деталей машин. Неправильный выбор смазки может привести к аварийным ситуацииям и катастрофам.

Контрольные вопросы

1. Что изучает трибология?
2. Ках принято различать виды смазки?
3. В каких случаях применяют магнитопорошковый метод смазывания?
4. В каком агрегатном состоянии могут находиться смазочные материалы?
5. С какой целью используют присадки к смазочным материалам?
6. Какими особенностями обладают твердые смазочные материалы?
7. Где применяют антифрикционные самосмазывающиеся материалы?

ГЛАВА 21

ИЗНОСОСТОЙКИЕ СТАЛИ

21.1. Влияние химического состава на износостойкость стали

Растворенный при температуре закалки углерод определяет тверцость закаленной стали и количество остаточного аустенита. Нерастворившаяся часть углерода в закаленной или незакаленной матрице присутствует в износостойких сталях в виде карбидов. Поэтому увеличение содержания углерода способствует улучшению износостойкости сталей за счет как упрочнения матрицы, так и увеличения содержания карбидов. Обычно при этом прочность и вязкость стали снижаются.

При повышении содержания легирующих элементов прокаливаемость стали, твердость карбидов и теплостойкость улучшаются. В отличие от никеля и кремния, карбидообразующие элементы ($\mathrm{Cr}, \mathrm{Mo}, \mathrm{V}$) улучшают прокаливаемость сталей только при условии растворения карбидов при повышенной температуре закалки При определенном соотношении концентраций углерода и карбидообразующего элемента последний может растворяться в карбиде железа $\mathrm{Fe}_{3} \mathrm{C}$, который в этом случае называют карбидом типа $\mathrm{M}_{3} \mathrm{C}$.

При превышении некоторого порогового значения соотношения концентраций легирующих элементов и утлерода происходит образование специальных карбидов. Увеличение твердости карбидов от $\mathrm{Fe}_{3} \mathrm{C}$ в нелегированных сталях до $\mathrm{M}_{7} \mathrm{C}_{3}$ в хромистых сталях и далее до МС в ниобий- или ванадийсодержащих сталях сопровождается повышением износостойкости, особенно в контакте с твердыми минералами (кварцем, корундом).

Помимо воздействия на структуру и свойства износостойких сталей карбидообразующие элементы (молибден, вольфрам и ванадий) при отпуске закаленной стали в области $500 \ldots 60{ }^{\circ} \mathrm{C}$ вызывают выделение дисперсных специальньх карбидов. Это явление, известное под названием вторичного твердения мартенсита, обеспечивает повышенную отпускную стойкость и теплостойкость при температурах эксплуатации до $500^{\circ} \mathrm{C}$.

Эти карбиды, наряду с теплостойкостью, повышают сопротивление стали износу при повышенных температурах. При мокром истирании и других коррозионных воздействиях благоприятное влияние на износостойкость оказывает высокое содержание хрома в матрице.

В аустенитных марганцовистых сталях кремний, хром и молибден повышают предел текучести, марганец и никель - относительное удлинение при разрушении. Способность к деформацион-

ному упрочнению стали возрастает при снижении содержания углерода. Стабильность аустенита при этом, как и при снижении содержания марганца, снижается.

21.2. Подшипниковые стали

Для изготовления шариков, роликов, колец подшипников качения и других деталей, от которых требуются высокие износостойкость и выносливость при контактном циклическом нагружении (плунжеры, втулки, корпуса распределителей, нагнетательные клапаны и т.д.), используют стали четырех типов: 1) хромистые с высоким содержанием углерода; 2) цементируемые низкоуглеродистые; 3) коррозионно-стойкие высокоуглеродистые с высоким содержанием хрома; 4) теплостойкие (хромовольфрамовые).

Работоспособность многих узлов трения зависит от скорости развития поверхностного усталостного выкрашивания (питтинга).

Поверхностное выкрашивание характерно для материалов, используемых в узлах трения качения (зубчатые передачи, шари-ко- и роликоподшипники), которые подвержены высоким циклическим контактным нагрузкам. Эти нагрузки, действующие на малых участках поверхности, обусловливают процессы зарождения в приповерхностном слое усталостных трешин, их развитие в глубь слоя и отделение частиц с образованием ямок выкрашивания (рис. 21.1).

Сопротивление материала поверхностному выкрашиванию называют контактной выносливостью. Она характеризуется пределом контактной выносливости

По условиям работы подшипники должны выдерживать высокие контактные нагрузки в течение длительного времени, что обусловливает жесткие требования к металлургическому качеству стали. Особенно важным является минимальное количество дефектов, выходящих на поверхность.

Рис. 21.1. Схема образования поверхностного выкрашивания (питтинга) на рабочей дорожке подшипника качения:
A - место зарождения усталостной трещины; 1,2 - стадии ее развития; 3 ямха выкрашивания

Подшипниковые стали должны иметь следующие свойства:

- способность выдерживать высокие нагрузки без остаточной деформации ($\varepsilon=0,01 \%$). Так как давление в области контакта при работе может достигать $2000 \ldots 4000 \mathrm{M}$ Ма, это свойство обеспечивается применением в качестве материала для подшипников эаэвтектоидных, легированных хромом сталей, обработанных на высокую твердость ($\mathrm{HRC}>60$);
- сопротивление контактной усталости достигается высокой прочностью и повышенным металлургическим качеством стали. Чем меньше в стали неметаллических включений, дисперснее частицы оксидов и сульфидов, меньше содержание водорода, чем ниже пористость, меныше других металлургических дефектов, тем выше долговечность подшипников. В связи с этим при производстве подшипниковых сталей применяют электрошлаковый и вакуумно-дуговой переплавы, а также обработку синтетическими шлаками.

Химический состав сталей для подшипников общего назначения приведен в ГОСТ 801-78 (аабл. 21.1), а для подшипников специального назначения в соответствующих технических условий. После электрошлакового переплава стали отличаются наиболее высокой однородностью структуры и чистотой от включений. Эти стали используют для изготовления высокоскоростньх подшипников, а также высокоточных приборных подшипников, детали которых полируют для уменьшения коэффициента трения. Уменьшение количества включений в сталях имеет большое значение в этом случае.

Детали подшипников подвергают закалке при $820 \ldots 850^{\circ} \mathrm{C}$ и низкому отпуску при $150 \ldots 170^{\circ} \mathrm{C}$. Особенностью термической обработки деталей подшипников является необходимость стабилизации их размеров на период эксплуатации. После захалки в структуре сталей сохраняется $8 \ldots 15 \%$ остаточного аустенита. Он стабили-

Таблица 21.1
Химический состав высокоуглеродистых парикоподшииниковых сталей (ГОСТ 801-78)

Марка стали	Массовая доля, $\%^{*}$			
	C	Si	Mn	Cr
ШХ15	$0,95 \ldots 1,05$	$0,17 \ldots 0,37$	$0,2 \ldots 0,4$	$1,3 \ldots 1,65$
ШХ15СГ	$0,95 \ldots 1,05$	$0,40 \ldots 0,65$	$0,9 \ldots 1,2$	$1,3 \ldots 1,65$
ШХ4	$0,95 \ldots 1,05$	$0,15 \ldots 0,3$	$0,15 \ldots 0,30$	$0,35 \ldots 0,5$
ШХ20СГ	$0,9 \ldots 1$	$0,55 \ldots 0,85$	$1,40 \ldots 1,70$	$1,4 \ldots 1,7$

[^5]
Химический состав коррознонно-стойкнх и теплостойких

подыпинниковых сталей

Марка стали	Массовая доля, \%								
	C	Cr	Mn	Si	Ni	Cu	S	P	ГІрочие элементы
95X18-III	0,9 .. 1, 0	17... 19	$\leq 0,7$	$\leq 0,8$	0,3	0,25	0,025	0,03	Mo $=0,5 \ldots 0,8$
11X18M-ШД	1,0.. 1,2	16,5...18,0	0,5...1,0	0,53...0,93	0,3	0,3	0,025	0,015	$\mathrm{Mo}=0,5 \ldots 0,8$
8Х4В9Ф2-Ш	0,7...0,8	4,0...4,6	$\leq 0,25$	$\leq 0,25$	0,3	0,25	0,03	0,03	$\begin{gathered} \mathrm{Mo} \leq 0,3 \\ \mathrm{~W}=8,5 \ldots 9,5 \\ \mathrm{~V}=1,4 \ldots 1,7 \\ \mathrm{Co} \leq 0,25 \end{gathered}$
8X4M4B2Ф1-Ш	0,75 ..0,85	3,9...4,4	$\leq 0,4$	$\leq 0,4$	0,35	-	0,03	0,015	$\begin{gathered} \mathrm{Mo}=3,9 \ldots 4,4 \\ \mathrm{~W}=1,5 \ldots 2 \\ \mathrm{~V}=0,9 \ldots 1,2 \end{gathered}$

зируется после низкого отпуска при $150 \ldots 170^{\circ} \mathrm{C}$, и его присутствие в стали не отражается на размерах детали.

Для дополнительной стабилизации прецизионные подшипники после закалки обрабатывают холодом ($-70 \ldots 80^{\circ} \mathrm{C}$). В результате подшипниковая сталь имеет структуру мартенсита с включениями мелких карбидов и высокую твердость ($60 . . .64$ HRC).

Для подшипников, нагревающихся при эксплуатации выше $200^{\circ} \mathrm{C}$, применяют теплостойкие стали с высокой износостойкостью. Подшипники, работающие в условиях агрессивных сред, изготавливают из высокохромистых сталей, содержащих примерно 1% углерода. Эти стали после закалки и низкого отпуска имеют и коррозионную стойкость, и высокую твердость. Их обычно подвергают электрошлаковому переплаву. Сталь 95X18-Ш мартенситного класса используется для подшипников средних и крупных размеров.

Молибденсодержащая коррозионно-стойкая сталь 11X18M-ШД предназначена для малогабаритных и миниатюрных подшипников, эксплуатируемых при температурах до $350^{\circ} \mathrm{C}$.

Состав коррозионно-стойких и теплостойких подшипниковых сталей, приведен в табл. 21.2.

Высокая теплостойкость достигается в сталях $8 \mathrm{X} 4 \mathrm{~B} 9 \Phi 2$-Ш и 8Х4М4В2Ф1-Ш одновременным легированием вольфрамом и молибденом $\sum(\mathrm{W}+2 \mathrm{Mo}) \geq 7 \ldots 10 \%$. Нагрев колец и тел качения под закалку проводят в два этапа: предварительный нагрев до $800^{\circ} \mathrm{C}$, окончательный - до $1220 \ldots 1240^{\circ} \mathrm{C}$ (до $1130 \ldots 1160^{\circ} \mathrm{C}$ для стали $8 \mathrm{X} 4 \mathrm{M} 4 \mathrm{~B} 2 \Phi 1-Ш$), охлаждение в масле при температуре $80 \ldots 130^{\circ} \mathrm{C}$. Сталь 8Х4В9Ф2-ІІ является дисперсионно-твердеющей, поэтому отпуск колец и тел качения проводят при температуре $560 \ldots 580^{\circ} \mathrm{C}$ 3 раза по 2 ч каждый раз с охлаждением на воздухе. Окончательная твердость 59... 64 HRC.

Подшипники, работающие при температуре свыше $500^{\circ} \mathrm{C}$, отпускают при $580 \ldots 600^{\circ} \mathrm{C}$ (для рабочей температуры до $550^{\circ} \mathrm{C}$) или при $650^{\circ} \mathrm{C}$ (для рабочей температуры $600 \ldots 650^{\circ} \mathrm{C}$). Экономнолегированная вольфрамом сталь $8 \mathrm{X} 4 \mathrm{M} 4 \mathrm{~B} 2 \Phi 1$-Ш не уступает стали 8Х4В9Ф2-III по износостойкости, контактной усталости, теплостойкости до $500^{\circ} \mathrm{C}$, а по вязкости превосходит ее в 1,5 раза.

21.3. Графитизированные стали

Графитизированные стали имеют характерные включения графита. Несмотря на некоторое снижение твердости и прочности включения графита выполняют роль смазочного материала, тем самым повышая износостойкость.

Графитизированные заэвтектоидные стали обычно содержат примерно $1,5 \%$ углерода, а также кремний в количестве от 0,7 до

Механические свойства охлажденных графитизнрованных сталей

Структура	$\sigma_{0,2}$	σ_{B}	δ	ψ	KCU, $\mathrm{Ax} / \mathrm{cm}^{2}$	HB
	МПа		\%			HB
Феррит + графит	200... 210	360... 420	14... 24	19... 36	0,25...0,4	100... 110
Зернистый перлит + графит	280... 340	540... 590	$14 . .17$	16... 25	0,2 ...0,3	220... 230
Пластинчатый перлит + графит	490... 550	830... 940	3... 5	$5 . . .8$	0,06 ..0,15	220... 235

2%. Кремний выполняет роль основного графитизатора при отжиге. Хром препятствует графитизации, поэтому его наличие в этих сталях нежелательно. Механические свойства графитизированных сталей зависят от их структуры (табл. 21.3).

Графитизированные стали обладают хорошими литейными свойствами: высокой жидкотекучестью, небольшой линейной усадкой и малой склонностью к образованию горячих и холодных трещин. Стали обладают хорошей деформационной способностью, поэтому их используют как в литом, так и в деформированном состоянии. Термическая обработка графитизированных сталей состоит из графитизирующего отжига, который обычно проводится в два этапа. Первый этап включает в себя нагрев до $850 \ldots 950^{\circ} \mathrm{C}$ с выдержкой от 2 до 12 ч и в зависимости от химического состава, второй выдержку при $700 \ldots 780^{\circ} \mathrm{C}$. Во время первого отжига проходит графитизация вторичного цементита, в процессе второго - формируется структура металлической основы стали.

Графитизированные стали подвергают операции улучшения, состоящей из закалки и отпуска при $680 \ldots 700^{\circ} \mathrm{C}$. В результате стали получают структуру зернистого перлита (или феррита) и графита.

Графитизированные стали в закаленном состоянии применяют для изготовления формообразующих штампов для холодной штамповки, волочильного инструмента, ножей, бил, шаров и бронефутеровочных плит угольных мельниц, кожухов и лопастей дробеструйных аппаратов, сопел пескоструйных аппаратов. После отжига эти стали используют для производства вкладышей подшипников скольжения, поршневых колец, тормозных колодок и барабанов.

21.4. Высокомарганцовистые аустенитные стали

Высокомарганцовистые аустенитные стали используются в условиях ударно-абразивного изнашивания и повышенного давления. Ранее отмечалось, что основным условием повышенной износостойкости является высокая поверхностная твердость. Однако существует группа сталей, которые при низкой твердости ($200 \ldots 250 \mathrm{HB}$) при воздействии ударной нагрузки или высокого удельного давления приобретают высокую износостойкость.

Первооткрывателем этой группы сталей был Р.Э. Гадфильд. Он разработал и в 1883 г. запатентовал сталь, названную его именем, содержащую $1,2 \%$ С и $13 \% \mathrm{Mn}$. Химический состав высокомарганповистых аустенитных сталей приведен в табл. 21.4.

Благодаря высокому содержанию углерода и марганца стали обладают относительно стабильной аустенитной структурой. Их обычно применяют в литом, реже в деформированном состоянии. Структура стали 110 Г13Л после литья состоит из аустенита и избыточных карбидов марганца и железа ($\mathrm{Fe}, \mathrm{Mn})_{3} \mathrm{C}$. При нагреве

Таблица 21.4

Химический состав высокомарганцовистых аустенитных сталей

(ГОСТ 977-88, ГОСТ 21337-87)

Марка стали	Массовая доля, $\%$					
	C	Si	Mn	Cr	Ni	Мо
110 Г13Л	$0,9 \ldots 1,5$	$0,3 \ldots 0,9$	$11,5 \ldots 15$	$\leq 1,0$	≤ 1	-
110 Г13Х2БРЛ	$0,9 \ldots 1,5$	$0,3 \ldots 1$	$11,5 \ldots 14,5$	$1 \ldots 2,0$	$\leq 0,5$	-
110 Г13ХБРЛ	$0,9 \ldots 1,3$	$0,3 \ldots 0,9$	$11,5 \ldots 14,5$	$0,8 \ldots 1,5$	$\leq 0,3$	-
$110 Г 13 Ф Т Л$	$0,9 \ldots 1,3$	$0,4 \ldots 0,9$	$11,5 \ldots 14,5$	-	-	-
130 Г14ХМФАЛ	$1,2 \ldots 1,4$	$\leq 0,60$	$12,5 \ldots 15$	$1 \ldots 1,5$	≤ 1	$0,2 \ldots 0,3$
120 Г10ФЛ	$0,9 \ldots 1,4$	$0,2 \ldots 0,9$	$8,5 \ldots 12$	≤ 1	≤ 1	-

карбиды растворяются в аустените, поэтому после закалки от температуры $1100^{\circ} \mathrm{C}$ в воде сталь получает чисто аустенитную структуру с малой твердостью (200 HB).

Примерные механические свойства закаленной на аустенит стали 110 Г13Л следующие: $\sigma_{\text {в }}=780 \ldots 980 \mathrm{M}$ Ма; $\sigma_{0,2}=255 \ldots 390 \mathrm{M}$ Па; $\delta=$ $=40 \ldots 50 \% ; \psi=40 \ldots 50 \%$, твердость $180 \ldots 220$ НВ. Марганцевый аустенит хорошо наклепывается, особенно при ударных нагрузках, и после деформации в процессе эксплуатации приобретает твердость до $50 \ldots 55$ HRC. При чисто абразивном износе (например, трении по песку) эффективного наклепа стали 110Г13Л не происходит, что приводит к повышенному износу изготовленных из нее деталей Кроме того, недостатком стали 110Г13Л является плохая обрабатываемость резанием, поэтому детали из нее чаще всего изготавливают литъем без механической обработки. В случае необходимости обработки резанием используют твердосплавный инструмент.

Высокомарганцовистые аустенитные стали используют для изготовления крестовин железнодорожных стрелок, зубьев ковшей экскаваторов, конусов и щек дробилок, звеньев гусекичных лент, бронефутеровочных плит различных мельниц.

21.5. Метастабильные хромомарганцевые аустенитнbе стали

Метастабильные $\mathrm{Cr}-\mathrm{Mn}$ аустенитные стали характеризуются стойкостью в условиях кавитации и контактного ударного воздействия. Хромомарганцевые стали со структурой метастабильного аустенита, работающие в интервале температур $\mathbf{M}_{\mathbf{H}}-\mathbf{M}_{\text {д }}$, облада-

Режимы термической обработхи, механические свойства в кованом состоянии и кавитадионная стойкостъ аустенитных сталей

Марка стали, режим термической обработки	$\sigma_{0,2}$	σ_{8}	δ	ψ	KCU,	Потеря массы, мг, за 10 ч испыттаний
	МПа		\%		Дж/с	в условиях кавитации
$\begin{aligned} & \text { 12X18H10T, закалка } \\ & 1100^{\circ} \mathrm{C} \end{aligned}$	330	620	44	52	2,4	1250
$\begin{aligned} & 30 \times 10 \text { Г10, закалка } \\ & 1070^{\circ} \mathrm{C} \end{aligned}$	340	790	16	9	1,2	15
03X14AГ12M, закалка $1070^{\circ} \mathrm{C}$	450	955	45	49	2,8	150
03X13H3Г4, нормализация $950^{\circ} \mathrm{C}$	900	1430	17	56	1,15	160
$\begin{aligned} & 20 \mathrm{X} 13 \mathrm{H} 3 \Gamma 4, \text { закалка } \\ & 1070^{\circ} \mathrm{C} \end{aligned}$	320	1530	24	14	2,3	40

ют высокой износостойкостью в условиях динамического контактного нагружения (кавитационного, циклического, контактноударного). Благодаря низкой энергии дефектов упаковки в них интенсивно развиваются мартенситные превращения, сопровождающиеся релаксацией напряжений. Их рабочая поверхность упрочняется значительно сильнее, чем у хромоникелевых сталей типа 12 X 18 H 10 T .

По кавитационной стойкости метастабильные аустенитные стали значительно превосходят сталь 12 X 18 H 10 T . Аналогичная зависимость характерна для стойкости при гидроабразивном изнашивании (табл. 21.5).

Кавитационно-стойкие метастабильные аустенитные стали используют для изготовления литых деталей гидромашин (лопасти гидротурбин и гидронасосов, гребных винтов) и других деталей, работающих в условиях изнашивания при кавитации. Из них изготавливают электроды для защитной облицовки или наплавки деталей из углеродистыхх сталей.

Контрольные вопросы

1. Какое влияние оказывает содержание углерода на износостойкость стали?
2. Ках влияют легирующие элементы на прокаливаемость и теплостойкость износостойкой стали?
3. Перечислите основные групाы сталей, используемых для изготовления подшипников.

МЕТАЛЛОКЕРАМИЧЕСКИЕ ТВЕРДЫЕ СПЛАВЫ

Износостойкость металлокерамических твердых сплавов зависит от их твердости, предела прочности при изгибе и сжатии, горячей твердости, а также в ряде случаев от сопротивления коррозии и окалиностойкости.

В волоках для чистового волочения алмаз превосходит все остальные материалы. Однако при больших диаметрах волок он не выдерживает высокого давления на поверхность и легко раскалывается. Для ударного бурения алмаз менее пригоден, чем металлокерамические твердые сплавы. Карбид бора из-за низкой прочности не пригоден для волочения, а для сопел пескоструйных аппаратов превосходит все остальные материалы.

В табл. 22.1 приведены данные по твердости, пределы прочности при изгибе и сжатии различных твердых сплавов. Очень твердые алмаз и карбид бора обладают в то же время относительно низкими прочностными характеристиками. С увеличением содержания кобальта прочность при изгибе возрастает при одновременном уменьшении твердости.

Таблица 22.1

Твердость, предел прочности при изгибе и предел прочности при сжатии

 твердых материалов п твердых сплавов| Твердый материал,
 твердый сплав | Твердость
 по Виккерсу НV | Предел прочности
 при изгибе, МПа | Предел прочности
 при сжатии, МПа |
| :--- | :---: | :---: | :---: |
| Алмаз | $\approx 8000^{*}$ | 300 | 2000 |
| Карбид бора** | 3700^{*} | $150 \ldots 300$ | 1800 |
| Карбид кремния | 3500^{*} | 100 | 1000 |
| Зинтеркорунд*** | 2800^{*} | $250 \ldots 400$ | 3000 |
| Литой карбид
 вольфрама | 3000^{*} | $300 \ldots 400$ | 2000 |
| Спеченый моно-
 карбид вольфрама | 2200^{*} | $400 \ldots 500$ | 3000 |
| ХС с 6\% Со
 (крупнозернистый) | $1500 \ldots 1600$ | $1600 \ldots 1800$ | 5000 |
| WС с 6\% Со
 (мелкозернистый) | $1600 \ldots 1700$ | $1400 \ldots 1600$ | 5500 |
| WС с 11% Со | $1300 \ldots 1400$ | $1600 \ldots 2000$ | 4600 |
| WС с 13% Со | $1250 \ldots 1350$ | $1700 \ldots 2100$ | 4500 |

Окончание табл. 22.1

Твердый материал, твердый сплав	Твердость по Виккерсу НV	Предел прочности при изгибе, мПа	Предел прочности при сжатии, МПа
WC с 20% Co	$1050 \ldots 1150$	$2000 \ldots 2400$	3400
WC с 25% Co	$900 \ldots 1000$	$1800 \ldots 2300$	3200
WC с 16% TiC + $+6 \%$ Co	$1600 \ldots 1700$	$1100 \ldots 1200$	4300
WC c 14\% TiC + $+8 \%$ Co	$1550 \ldots 1650$	$1300 \ldots 1400$	4200
WC c 5\% TiC + $+9 \%$ Co	$1450 \ldots 1550$	$1500 \ldots 1600$	4600

[^6]Таким образом, твердость, предел прочности при изгибе, жаропрочность и микроструктура являются определяющими факторами в отношении износа. Твердость можно регулировать, изменяя количество связки или степень дисперсности карбидной и связующей фаз. Предел прочности при изгибе, подобно твердости, в болышей степени зависит от содержания связки.

Таблица 22.2
Области применения твердых сплавов в качестве износостойиих материалов

Отрасль промышленности	Область применения
Волочильное производство	Волоки для круглого и профильного материала, матрицы и стержни для протягивания труб, волочильные плашки и фильеры, губки, захваты, прави́льные валки, волочильные клеши, валки проволочно-прокатньх станов, щеки молотов, штампы для холодной высадки, отрезные ножи и патроны
Прокатка и обработка листового металла	Режущие инструменты, штамповочные инструменты, штампы для глубокой вытяжки, чеканные щтампт, ножницы для резки металла, кромкозагибочные валки, фальцовочные валки, гибочные планки, прецизионные валки для холодной прокатки, охлаждающие планки для закалки бритвенных лезвий

Окончание табл. 22.2

Отрасль промышленности	Область применения
Производство измерительных инструментов	Шарики Бринелля, пирамиды Виккерса, толщиномеры, калибры, контактные оправкй измерительные колесики для планиметров
Химическая промышленность	Клапаны для высоких давлений, корпуса, кольца и седла клапанов для корродирующих жидкостей и мокрого шлама, выгружатели и скребки для центрифуг, сопла для высоких давлений
Горное дело	Буровые колонки, инструменты для ударного бурения, буры типа «рыбий хвост», размольные шары, долота для бурения по камню, молоты для щебня, ролики для резки камня
Производство керамики	Матрицы для прессования керамических масс, пресс-формы длія кирпичей, матрицы для ленточных прессов, стеклопрядильные волоки, захваты стекла
Порошковая металлургия	Пресс-формы и пуансоны для металлических порошков, калибровые втулки и стержни, мельницы с твердосплавной футеровкой

Жаропрочность можно увеличить путем снижения содержания связки или путем образования твердого раствора в карбидной или связуюшей фазе. K WC добавляются преимущественно $\mathrm{TiC}, \mathrm{TaC}$, $\mathrm{TaC}-\mathrm{NbC}, \mathrm{VC}, \mathrm{Mo}_{2} \mathrm{C}$, а к кобальту - небольшое количество Fe , Ni, Cr или Mo.

Рис. 22.1. Армированный твердыми сплавами штамп для вырубки деталей из листовой стали для статоров и роторов электродвигателей

Высокая твердость и износостойкость металлокерамических твердых сплавов открыли для них многочисленные области применения (табл. 22.2).

На рис. 22.1 представлен армированный твердыми сплавами штамп.

Контрольные вопросы

1. От чего зависит износостойкость металлокерамических твердых сплавов?
2. Из чего состоят металлокерамические твердые сплавы?
3. Какой элемент используют для связки частиц карбидов в твердых сплавах?
4. Каким образом можно регулировать твердость твердых сплавов?
5. Какое влияние оказывает содержание кобальта на характеристики прочности и твердости металлокерамических твердых сплавов?
6. Назовите основные области применения твердых сплавов.

ГЛАВА 23

АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ

В машиностроении применяют как подшипники качения, так и подшипники скольжения. Для их изготовления используют антифрикционные сплавы.

Подшипники скольжения устойчивы к вибрациям, бесшумно работают и отличаются небольшими габаритными размерами. Основные требования к подшипникам скольжения состоят в способности материала обеспечивать низкий коэффициент трения скольжения и тем самым низкие потери на трение и малую скорость изнашивания сопряженной детати.

Для удовлетворения этим требованиям материалы для подшипников скольжения должны хорошо прирабатываться к валу, смачиваться смазочным материалом и иметь высокую теплопроводность. Хорошая прирабатываемость может быть обусловлена способностью материала при трении легко пластически деформироваться и увеличивать площадь фактического контакта. Это приводит к снижению местного давления и температуры на поверхности подшипника.

Критериями для оценки подшипникового материала служат коэффициент трения и допустимые нагрузочно-скоростные характеристики: давление p, действующее на опору, скорость скольжения v, параметр $p v$, определяющий удельную мощность трения. Допустимое значение параметра $p v$ тем больше, чем выше способность материала снижать температуру нагрева и нагруженность контакта, сохранять граничную смазку.

Для подшипников скольжения используют металлические материалы, неметаллы, комбинированные материалы и минералы (полу- и драгоценные камни). Выбор зависит от режима смазки и условий работы опор скольжения.

23.1. Металлические материалы

Высокие антифрикционные свойства обеспечиваются гетерогенной структурой металлического сплава. Металлические материалы по своей структуре подразделяются на два типа:

- сплавы с мягкой матрицей и твердыми включениями;
- сплавы с твердой матрицей и мягкими включениями.

К сплавам первого типа относятся баббиты и сплавы на основе меди - бронзы и латуни. Мягкая матрица в них обеспечивает не только защитную реакцию подшипникового материала на усиление трения и хорошую прирабатываемость, но и особый микрорельеф поверхности, улучшающий снабжение смазочным материа-

Химнческий состав и назначение баббитов (ГОСТ 1320-74)

Марка баббита	Содержание, \%					Условия работы и назначение
	Sn	Sb	Cu	Pb	Прочие	
588	Основа	7,3...7,8	2,5 ...3,5	-	-	Большие скорости и высокие динамические нагрузки. Подшипники для быстроходных и среднеоборотных дизелей
583	Основа	10... 12	5,5...6,5	-	-	Большие скорости и средние нагрузки. Подшипники турбин, малооборотных дизелей, гребных валов
E83C	Основа	$9 . . .11$	5...6	1...1,5	-	Большие скорости и средние нагрузки. Подшипники турбин, малооборотных двигателей, гребньх валов
6H	$9 . . .11$	$5 . . .6$	1,5... 2	1... 1,5	$\begin{aligned} & 0,1 \ldots 0,7 \mathrm{Cd} \\ & 0,1 \ldots 0,5 \mathrm{Ni} \\ & 0,5 \ldots 0,9 \mathrm{As} \end{aligned}$	Средние скорости и средние нагрузки. Подшипники компрессоров
516	15... 17	15... 17	1,5... 2	Остальное	-	Моторно-осевые подшипники электровозов, путевых машин
БС6	5,5 ...6,5	5,5...6,5	0,1...0,3	То же	-	Подшипники автотракторных двигателей

лом участков трения и теплоотвод с них. Твердые включения, на которые опирается вал, обеспечивают высокую износостойкость. Создается оптимальный антифрикционный микрорельеф с пространством для удержания смазочных материалов (так называемый принцип Шарпи).

Баббиты - мягкие (300 HB) антифрикционные материалы на основе олова или свинца. По антифрикционным свойствам они превосходят все остальные сплавы, но уступают им по сопротивлению усталости. Благодаря вязкой основе баббиты легко поглощают посторонние твердые частицы, не допуская задиров вала. В табл. 23.1 приведены состав и основное назначение баббитов.

Из-за высокой стоимости олова используют тонкий слой баббитов и применяют их только для подшипников особо ответственного назначения, работающих при больших скоростях и нагрузках.

Для более легких условий работы применяют баббиты, у которых значительная часть олова заменена свинцом. Например, баббит Б16 имеет меньшую пластичность и как более хрупкий материал не может использоваться для высоконагруженных машин.

На рис. 23.1, a приведена микроструктура баббита Б83. В мягкой основе твердого α-раствора Sb и Cu в олове темно-серого цвета распределены более твердые светлые крушные квадратные кристаллы β-фазы SnSb и дисперсные включения соединения $\mathrm{Cu}_{2} \mathrm{Sn}$.

Антифрикционные и механические свойства баббитов можно повысить за счет введения добавок никеля, кадмия и мышьяка.

Для подшипников подвижного состава железнодорожного транспорта (подшипники вагонов, коленчатьх валов дизелей) широко применяют кальциевые баббиты типа БК. Сплав БКА на основе свинца содержит $0,95 \ldots 1,15 \% \mathrm{Ca}, 0,7 \ldots 0,9 \% \mathrm{Na}$. Мягкой составляюшей такого баббита является твердый α-раствор Са и Nа в свин-

Рис. 23.1. Микроструктура баббитов Б83 (a) и БКА (б)

це, а твердой - кристаллы $\mathrm{Pb}_{3} \mathrm{Ca}$. Дополнительно вводимые в сплав небольшие добавки Al, Mg и Sn способствуют упрочнению твердого раствора.

Микроструктура кальциевых баббитов состоит из темной основы твердого α-раствора и светлых твердых включений кристаллов $\mathrm{Pb}_{3} \mathrm{Ca}$ (рис. 23.1, б).

Подшипниковые вкладыши из-за низкой прочности баббита изготавливают либо штамповкой из биметаллической ленты баб~ бит-сталь, либо заливкой центробежным способом или литьем под давлением в более прочный стальной, чугунный или бронзовый корпус.

Бронзовые вкладыши применяют для подшипников ответственного назначения, используемых в быстроходных двигателях, при высоких удельных давлениях и значительных динамических нагрузках.

Для изготовления бронзовых вкладышей применяют оловянные и свинцовые бронзы, например, марок БрОС8-12 ($8 \% \mathrm{Sn}$, $12 \% \mathrm{~Pb})$, БрОС5-25 ($5 \% \mathrm{Sn}, 25 \% \mathrm{~Pb}$), БрС30 ($30 \% \mathrm{~Pb}$). В оловянных бронзах твердый раствор применяется в качестве мягкой основы (на шлифе он имеет вид темных овальных дендритов), а ($\alpha+$ + b)-эвтектоид (светлые участки) - твердых включений.

В чисто свинцовой бронзе БрС30 ($70 \% \mathrm{Cu}, 30 \% \mathrm{~Pb}$) получают мягкую медную основу с еще более мягкими включениями свинца, так как свинец совершенно нерастворим в меди. Такие антифрикционные сплавы характеризуются высокими значениями предела выносливости, пластичности и теплопроводности. Недостатком является их высокая стоимость и сравнительно невысокая механическая прочность. Поэтому бронзы иногда наплавляют на стальную ленту. Наплавку производят в защитной атмосфере

В последнее время бронзы широко используют как компоненты порошковых антифрикционных материалов или тонкостенных пористых покрытий, пропитанных твердыми смазочными материалами.

Латуни используют в качестве заменителей бронз для опор трения. Однако по антифрикционным свойствам они уступают бронзам. Двухфазные латуни ЛЦ16К4, ЛЦ38Мц2С2, ЛЦ40Мц3А и др. (ГОСТ 17711-93) применяют при малых скоростях скольжения (менее $2 \mathrm{~m} / \mathrm{c}$) и невысоких нагрузках. Их часто используют для опор трения приборов. Свойства бронз и латуней приведены в табл. 23.2

K сплавам второго типа относятся также серые чугуны, роль мягкой составляющей в которых выполняют включения графита. Для работы при значительных давлениях и мальх скоростях скольжения используют серые чугуны СЧ15, СЧ20 и легированные антифрикционные чугуны: серые АЧС-1, АЧС-2, АЧС-3; высокопрочные АЧВ-1, АЧВ-2; ковкие АЧК-1, АЧК-2. С целью уменьшения износа сопряженной детали марку чугуна выбирают так, что-

Т абли ца 23.2. Характеристикн антифрикционных бронз и латуней

Материал	HB	Коэффициент трения по стали		Допустимый режим работы		
		Без смазочного материала	Со смазочным материалом	$\begin{gathered} p, \\ \text { мпа } \end{gathered}$	$\begin{gathered} v, \\ \mathrm{~m} / \mathrm{c} \end{gathered}$	$\begin{gathered} p v, \\ \mathrm{M} \Pi \mathrm{a} \cdot \mathrm{~m} / \mathrm{c} \end{gathered}$
Бронзы:						
БpO1091	1000	0,1...0,2	0,004 ...0,009	15	10	150
БрО5Ц5С5	600	0,1...0,2	0,004 ...0,009	8	3	24
БрС30	250	0,1...0,2	0,004 ...0,009	25	12	300
Латуни:						
ЛЦ16ЛК4	1000	0,15 ...0,24	0,009 ...0,016	12	2	24
ЛЦ38Мц2С2	800	0,15 ...0,24	0,009 ...0,016	10,6	1	10,6

бы его твердость была ниже твердости стальной цапфы. Достоинства чугунов: минимальная склонность к схватыванию и невысокая стоимость. Недостатки: плохая прирабатываемость и пониженная стойкость к воздействию ударной нагрузки. Антифрикционные чугуны предназначены для изготовления деталей, работающих в узлах трения со смазкой. Марки антифрикционных чугунов, их свойства и назначение представлены в табл. 23.3.

> Таблица 23.3. Марки антнфрикционньх чугунов, их свойства м вазначение (ГОСТ 1585-85)

Марка чугуна	Свойства и назначение
AYC-1	Перлитный чугун, легированный хромом ($0,2 \ldots 0,5 \%$) и медью ($0,8 \ldots 1,6 \%$); предназначен для изготовления деталей, работающих в паре с закаленным или нормализованным валом
АЧС-2	Перлитный чугун, легированный хромом ($0,2 \ldots 0,5 \%$), никелем $(0,2 \ldots 0,5 \%)$, титаном ($0,03 \ldots 0,1 \%$) и медью $(0,2 \ldots 0,5 \%$); назначение - то же, что и чугуна марки АЧС-1
AYC-3	Ферритно-перлитный чугун, легированный титаном $(0,03 \ldots 0,1 \%)$ и медью $(0,2 \ldots 0,5 \%)$; детали из такого чугуна могут работать в паре как с «сырым», так и с термически обработанным валом
AЧC-4	Перлитный чугун, легированный сурьмой ($0,04 \ldots 0,4 \%$); используется для изготовления деталей, работаюших в паре с закаленным или нормализованным валом
AЧC-5	Аустенитный чугун, легированный марганцем ($7,5 \ldots 12,5 \%$) и алюминием ($0,4 \ldots 0,8 \%$); из этого чутуна изготавливают детали, работающие в особо нагруженных узлах трения в паре с закаленным или нормализованным валом

Ококчание табл. 23.3

Марка чугуна	Свойства и назначение
AYC-6	Перлитный пористый чутун, легированный свинцом ($0,5 \ldots 1 \%$) и фосфором ($0,5 \ldots 1 \%$); рекомендуется для производства деталей, работающих в узлах трения с температурой до $300^{\circ} \mathrm{C}$ в паре с «сырым» валом
AYB-1	Перлитный чугун с шаровидным графитом; детали из такого чугуна могут работать в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом
АЧВ-2	Ферритно-перлитный чугун с шаровидным графитом; изготовленнье из этого чутуна детали хорошо работают в условиях трения с повышенными окружными скоростями в паре с «сырым» валом
AYK-1	Перлитный чугун с хлопьевидным графитом, легированный медью ($1 . .1,5 \%$); предназначен для изготовления деталей, работающих в паре с термически обработанным валом
AYK-2	Ферритно-перлитный чугун с хлопьевидным графитом; детали из этого чугуна работают в паре с «сыгрым» валом

Характерной структурой антифрикционного чугуна является перлитная или перлитно-ферритная основа без свободного цементита с небольшими включениями фосфидной эвтектики. Пористость чугуна способствует впитыванию масла, графит служит смазочным материалом.

Буквы в обозначениях марок чугунов означают: АЧ - антифрикционный чугун, С - серый чутун с пластинчатым графитом, В - высокопрочный чугун с шаровидным графитом, K - ковкий чугун с хлопьевидным графитом. Твердость отливок из антифрикционных чугунов (от 100 до 290 HB) зависит от содержания элементов и условий термической обработки. Предельные режимы работы деталей из этих чугунов в узлах трения: удельное давление ($50 \ldots 300$) $\cdot 10^{4}$ Па ($5 \ldots 300 \mathrm{kTc} / \mathrm{cm}^{2}$), окружная скорость $0,3 \ldots 10 \mathrm{~m} / \mathrm{c}$.

23.2. Неметаллические и комбинированные материалы

Для изготовления подшипников скольжения применяют пласт массы - термореактивные и термопластичные. Текстолит относится к термореактивным пластмассам. Из него изготавливают под-

шипники прокатных станов, гидравлических машин, гребных винтов. Такие подшипники допускают тяжелые режимы работы, смазываются водой, которая хорошо их охлаждает и размягчает поверхностный слой.

Из полимеров наиболее широко применяют ПС10, капрон и фторопласт. Достоинства полимеров - низкий коэффициент трения, высокие износостойкость и коррозионная стойкость.

Исключительными антифрикционными свойствами обладает фторопласт, коэффициент трения которого без смазочного материала по стали составляет $0,04 \ldots 0,06$. Однако фторопласт «течет» под нагрузкой и, как все полимеры, плохо отводит теплоту. Он может применяться лишь при ограниченньх нагрузках и скоростях Поэтому высокие антифрикционные свойства фторопласта реализуют в комбинации с другими материалами, используя его в виде тонких пленок либо как наполнитель.

Металлофторопластовые подшипники имеют высокие антифрикционные свойства (в диапазоне температур $200 . .280^{\circ} \mathrm{C}$; $f=$ $=0,03 \ldots 0,1 ; p v=150 \mathrm{M}$ а. $\cdot \mathrm{m} / \mathrm{c}$). Их используют в узлах трения, работающих без смазочного материала, хотя его введение оказывает благоприятное действие. Они могут работать в вакууме, жидких средах, не обладающих смазочным действием, а также при наличии абразивных частиц, которые легко «утапливаются» в мягкой составляюшей материала. Такие подшипники применяют в машиностроении и авиации.

Смазывающиеся подшипники получают методом порошковой металлургии. Особенностью таких антифрикционных материалов является наличие пор ($8 . .27 \%$ объема), которые пропитываются жидкой смазкой. Металлическая основа таких материалов - железо, сталь, медь, бронза, никель. Кроме того, спеченные материалы содержат компоненты (графит, сульфиды, селениды и др.), служащие твердой смазкой. Эти и другие особенности в значительной степени обусловливают эксплуатационные свойства спеченных материалов. Износостойкость спеченных материалов иногда в $1,5-$ 3 раза выше (при одинаковом значении коэффициента трения) износостойкости бронз, латуней и баббитов. Спеченные материалы можно эксплуатировать в контакте с поверхностями из закаленной и незакаленной стали. Замена литых антифрикционных материалов на основе цветных металлов спеченными материалами на железной основе дает экономию в $3-3,5$ млн руб. на каждой тысяче тонн изделий. Различают спеченные антифрикционные материалы железографитовые, металлографитовые и бронзографитовые.

Спеченные материалы на основе железа (табл. 23.4) имеют структуру перлита (иногда с ферритом) с включениями структурносвободного графита, сульфидов и содержат поры.

Железографитовыми материалами марок ЖГр3Цс4 и ЖГр(12)Дс3,5, содержацими сульфид цинка (рис. 23.2) или сульфид меди,

Таблица 23.4. Химический состав, пористость в михроструктура спеченных антифрикцнонных матерналов на основе железа

Марка материала	Содержание, \%			Пористость, \%	Микроструктура
	железа	графита	сульфидов		
※	100	-	-	12... 15	$\Phi+$ поры
WIpl	99	1	-	12... 25	$\Phi+\Pi+$ поры
KГp2	98	2	-	15... 25	$\begin{aligned} & \Pi+\Phi+\Gamma p+ \\ & + \text { поры } \end{aligned}$
ЖГр3	97	3	-	15... 25	$\begin{aligned} & \Pi+\Gamma р+Ц+ \\ & + \text { поры } \end{aligned}$
ЖГр3K1	96	3	1	15... 25	$\begin{aligned} & \Pi+\Gamma p+\text { суль- } \\ & \text { фиды + поры } \end{aligned}$
ЖГр2Д2,5	95,5	2	2,5	15... 20	$\begin{aligned} & \Pi+\Gamma р+Ц+ \\ & + \text { поры } \end{aligned}$
ЖГр1,5Д5	93,5	1,5	5	20... 25	$\begin{aligned} & \Pi+\Gamma p+\text { поры } \\ & + \text { медь } \end{aligned}$
ЖГр2Д10	88,2	1,8		20... 27	$\begin{aligned} & \Pi+\Gamma p+\text { медь } \\ & + \text { поры } \end{aligned}$
ЖГр1Цс4	95	1	4	15... 20	$\begin{aligned} & \Pi+\Gamma р+\text { суль- } \\ & \text { фиды + поры } \end{aligned}$
ЖГр3Цс4	93	3	4	15... 20	$\begin{aligned} & \Pi+\Gamma р+\text { суль- } \\ & \text { фиды + поры } \end{aligned}$
$\begin{aligned} & \text { ЖГр(1-2) } \\ & \text { Дс3,5 } \end{aligned}$	94,9...95,5	$1 . . .2$	3,5	15... 25	$\begin{aligned} & \Pi+\Gamma р+\text { суль- } \\ & \text { фиды + поры } \end{aligned}$
ЖГр3M15	82	3	15\% Mo	15... 25	$\Pi+Г р+$ поры
MГ103H1K	$\begin{gathered} \text { Основа - } \\ \text { сплав } \\ \mathrm{Fe}-\mathrm{Ni} \\ (1: 1) \\ \hline \end{gathered}$	10	2,5	8... 15	Твердый раствор железо + + никель + Гр + + сульфиды
X23H18KБ	$\begin{gathered} \text { Основа - } \\ \text { сталь } \\ \mathrm{X} 23 \mathrm{H} 18 \end{gathered}$	-	10... 25	20... 25	$\begin{aligned} & \Phi+\text { бориды + } \\ & + \text { сульфиды + } \\ & + \text { поры } \end{aligned}$
X18H15K.	$\begin{gathered} \text { Основа - } \\ \text { сталь } \\ \text { X18H15 } \end{gathered}$	-	10... 25	20... 25	$\begin{aligned} & \Phi+\text { бориды + } \\ & + \text { сульфиды + } \\ & + \text { поры } \end{aligned}$

Примечание. Ж - железо; Гр - графит; К - сера; Д - медь; Н - никель; Цс - сульфид цинка; Дс - сульфид меди; М - молибден; МГ - металлографит; Х - хром; Б - бор; Ф - феррит; П - перлит; Ц - цементит.

Рис. 23.2. Структура спеченного железографитового антифрикционного материала марки ЖГр3Цс4, содержащего сульфид шинка, увеличение в 500 раз

Рис. 24.3. Структура спеченного антифрикционного материала марки МГ10ЖН1К (на основе железоникелевого сплава), содержащего графит и сульфид цинка, увеличение в 100 раз

заменяют антифрикционные сплавы на основе цветных металлов; используют их также для уплотнения быстровращающихся деталей. Железографитовый материал марки ЖГр3М15 применяют при температуре до $400^{\circ} \mathrm{C}$. Если скорости скольжения высоки, его износостойкость почти в два раза превышает износостойкость материала марки ЖГр3Цс4.

Металлографитовый материал марки МГ10ЖН1K (на основе железоникелевого сплава), содержащий графит и сульфид цинка (рис. 23.3), более износостоек (в $2-5$ раз), чем текстолит, графитопласт, углеграфит.

Он предназначен для эксплуаташии в воде (например, в узах трения опор моечных и красильных ванн) и в некоторых несмазывающих жидкостях. Сульфидированные и сульфоборированные материалы на основе коррозионно-стойких сталей марок X23H18 и Х 18 H 15 , отличающиеся высокой коррозионной стойкостью, прочностью и жаропрочностью, можно использовать в химическом и металлургическом машиностроении.

23.3. Минералы

Минералы - естественные (агат) и искусственные (рубин, корунд), а также их заменители - ситаллы (стеклокристаллические материалы) используют для камневых опор - миниатюрных подшипников скольжения в прецизионньх приборах (часах, гироскопах, тахометрах и т.д.). Главное достоинство таких опор - низкий и стабильный момент трения. Низкое трение достигается малыми размерами опор, что уменьшает плечо действия силы трения, а также низким коэффициентом трения вследствие слабой адгезии

минералов к металлу цапфы. Постоянство момента трения обусловлено высокой износостойкостью минералов, способньх из-за высокой твердости выдерживать' высокие контактные давления.

23.4. Керамические материалы

Использование керамики в качестве материала пар трения связано с уникальным комплексом их свойств: высокой твердостью, химической инертностью, низкой плотностью, невысоким коэффициентом термического расширения, способностью сохранять свою прочность при нагреве. Основными их недостатками являются высокая хрупкость и трудоемкость механической обработки.

Поверхности трения в основном изнашиваются за счет хрупкого разрушения и усталостных процессов. Кроме того, на трибохимические характеристики пары трения существенно влияет окружающая среда, действие которой усиливается влиянием нагрева.

Перспективными для использования в узлах трения при высоких температурах, в том числе в вакууме, являются керамики систем $\mathrm{Ti}_{1-x} \mathrm{Nb}_{x} \mathrm{Co}_{0,5} \mathrm{~N}_{0,5}$ и $\mathrm{TiB}_{2} \mathrm{TiN}_{x}$. В качестве металлической связки используют $\mathrm{Co}, \mathrm{Ni}, \mathrm{Mo}, \mathrm{Cr}$. Увеличение содержания связки повышает вязкость и прочность, но при этом снижается предельная температура использования керамики и ее износостойкость.

Из неметаллических безкислородных тугоплавких соединений в качестве триботехнических керамик обычно используют $\mathrm{Si}_{3} \mathrm{~N}_{4}, \mathrm{SiC}$, $\mathrm{B}_{4} \mathrm{C}, \mathrm{AlN}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$. Высокими свойствами обладает карбид бора $\mathrm{B}_{4} \mathrm{C}$, который во многих случаях является основой для триботехнических керамик. Карбид бора является соединением с преимущественно ковалентными связями, отличающимися высокой твердостью, химической инертностью, малой плотностью и высокой теплостойкостью вплоть до температур, близких к температуре плавления. Перспективны керамические триботехнические материалы, содержащие карбид бора, типа $\mathrm{B}_{4} \mathrm{C}-\mathrm{BN}, \mathrm{B}_{4} \mathrm{C}-\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{B}_{4} \mathrm{C}-\mathrm{SiC}$. При температурах $1000 \ldots 1500^{\circ} \mathrm{C}$ коэффициент трения спеченной смеси порошков карбида и нитрида бора находится на уровне $f=0,2$.

Керамические подшипники скольжения и качения работают в условиях высоких скоростей, нагрузок и температур, в агрессивных средах, содержащих абразивные частицы. Высокие характеристики позволяют использовать их в особенно сложных и напряженных условиях.

Контрольные вопросы

1. Для каких подшипников используют антифрикционные материалы?
2. Какие требования предъявляют к подшипникам скольжения?
3. Что обеспечивает хорошую прирабатываемость к валу материалов подшипников скольжения?
4. Перечислите основные критерии для оценки материалов подшитников скольжения.
5. Назовите основные группы антифрикционных материалов.
6. Как различают по структуре металлические антифрикционные материалы?
7. Что такое баббит?
8. Какие легирующие элементы вводят в баббиты для повышения их антифрикционных и механических свойств?
9. В чем состоит особенность применения для подшипников скольжения бронз, латуней, чугунов?
10. Какие пластмассы применяют для изготовления подшипников скольжения?
11. В чем состоит особенность подшипников скольжения, получаемых методом порошковой металлургии?
12. Какие материалы применяют в камневых опорах?
13. Какими свойствами обладают керамические материалы, используемые в узлах трения?
14. Перечислите основные достоинства керамических подшипников скольжения и качения

ГЛАВА 24

НАНОСТРУКТУРНЫЕ ПОКРЫТИЯ

24.1. Технологии нанесения нанопленок и нанопокрытий

К объектам нанотехнологии относятся материалы с размерами зерен от 1 до 100 нм. Синтез наноструктур на поверхности твердофазных тел (матриц) обычно осуществляют следующими методами:

- молекулярно-лучевой эпитаксией;
- химическим или физическим осаждением из газовой фазы;
- технологией пленок Ленгмюра-Блоджетт;
- молекулярным наслаиванием.

Молекулярно-лучевая эпитаксия (МЛЭ) обеспечивает выращивание сверхтонких пленок осаждением молекулярного или атомного пучка, испаряемого в глубоком вакууме вещества при его соударении с поверхностью подложки, нагретой до требуемой температуры. Толщина образуемой пленки при выбранной температуре и концентрации испаряемого вещества определяется временем пропускания реагента. Для прекращения процесса выращивания пленки на пути пучка испаряемого материала устанавливают механическую заслонку. По существу МЛЭ представляет собой известный метод получения тонких пленок в процессах вакуумного испарения, но только реализуемый в условиях очень глубокого вакуума.

Методом МЛЭ были синтезированы структуры из монослоев арсенида галлия и алюминия для изделий электронной промышленности.

Тонкие пленки могут быть получены на основе CVD- и PVDпроцессов (химического парофазного осаждения или физического парофазного осаждения), когда после термического или ионного испарения происходит осаждение вещества на подложку. При осаждении компонентов плазмы толщина пленки и размеры составляющих ее нанокластеров регулируются изменением давления газа и параметров разряда. Так, широко известные и необходимые в практике пленки нитрида и карбида титана получаются путем ионоплазменного осаждения, что приводит к формированию нанокристаллической структуры пленок. Магнетронное распыление позволяет снизить температуру подложки на несколько сотен градусов.

Преимуществом технологии магнетронного распыления является незначительный нагрев подложки до $50 \ldots 250^{\circ} \mathrm{C}$. Это позволяет осаждать покрытия практически на любые материалы. Кроме того, данная технология поэволяет наносить твердые и сверхтвер-

дые наноструктурные покрытия с различным уровнем упругопластических характеристик. Твердость покрытйя системы $\mathrm{Ti}-\mathrm{Si}-\mathrm{B}-\mathrm{N}$ при магнетронном распылении возрастает с 20 до 40 ГПа.

Пленки Ленгмюра - Блоджетт формируются с помощью ПАВ на поверхности жидкости, обычно воды. В слой ПАВ могут вводиться нанокластеры, молекулы и комплексы металлов, после чего происходит их перенос на твердую подложку. Данный метод позволяет получать сверхрешетки и нанослои молекул и нанокластеров с заданным порядком чередования слоев.

Метод молекулярного наслаивания состоит в организации нанопленки методами химической сборки слоев вещества путем пространственного и временно́го разделения элементарных актов хемосорбции на поверхности подложки, например SiO_{2} или $\mathrm{Al}_{2} \mathrm{O}_{3}$. Вначале поверхность подложки модифицируется, например, группами ОН или О, а затем проводится реакция хемосорбции с участием комплексов металлов.

Азотирование и гидрирование, а также обработка атомами бора, титана поверхности твердых тел давно служит методом создания прочных тонких пленок на поверхности металлов, например железа, что находит многочисленное применение в практике.

Инженерия поверхности является одним из наиболее перспективных и бурно развивающихся направлений современного материаловедения, обслуживающим различные области науки и техники: физику, химию, медицину, машиностроение, металлургию и т.д. В настояшее время развивается новая отрасль трибологии - нанотрибология, объединившая экспериментальное и теоретическое изучение трения, износа, смазки, химической активности и трибоэлектромагнетизма поверхности на наноструктурном уровне. Подобный комплексный подход полезен для решения важной задачи современного материаловедения - создания наноструктурированных металлических материалов, поверхность которьх обладает одновременно смазочными и противокоррозионными свойствами.

Первыми покрытиями, освоенными в промышленньх масштабах, были карбид и нитрид титана. К середине 1980-х гт. появились покрытия на основе $\mathrm{Ti}(\mathrm{C}, \mathrm{N})$, к началу 1990 -х гг. - углеродные пленки, а к середине 1990 -х гг. - алмазные и многослойные покрытия. Многокомпонентные наноструктурные покрытия обладают высокими физико-механическими свойствами.

В наноструктурньх материалах существенную рољ играют поверхности границ зерен вследствие значительного увеличения их объемной доли. Это приводит к новым физическим явлениям и уникальным свойствам, присущим наноразмеру. Работы в области получения сверхтвердых ($\mathrm{H} \geq 40$ ГПа) и ультратвердых ($\mathrm{H} \geq 70$ ГПа) наноструктурных тонких пленок показали, что твердость материала может практически достигать твердости природного алмаза при условии получения материала, состоящего из нескольких фазовых

компонентов с размером зерен до 5 нм и прочными энергиями связи на их границах.

Износостойкость пленок на порядок превосходит износостойкость быстрорежущих сталей и в 2-3 раза выше используемых в промышленности покрытий из нитрида титана.

Ультратвердые трех- и четырехкомпонентные тонкопленочные композиции типа $\mathrm{Ti}-\mathrm{B}-\mathrm{N}, \mathrm{Ti}-\mathrm{Si}-\mathrm{B}, \mathrm{Ti}-\mathrm{B}-\mathrm{C}-\mathrm{N}, \mathrm{Ti}-\mathrm{Al}-\mathrm{Si}-\mathrm{N}$ помимо высокой твердости и износостойкости характеризуются высоким сопротивлением коррозии.

Тонкие многокомпонентные пленки наносятся либо за счет использования реактивной среды, либо различными методами физического распьления и осаждения.

Формирование в поверхностных слоях конструкционных и инструментальных материалов наноструктурных пленок повышает статическую и усталостную прочность деталей.

Функционально-градиентные покрытия состоят из внутреннего твердого слоя, обеспечивающего низкое давление на поверхность со стороны трущейся пары, стойкость к истиранию и царапанию, и внешнего самосмазывающегося слоя, обеспечивающего низкий коэффициент трения. Самосмазывающиеся покрытия нашли широкое применение в узлах трения различных космических аппаратов. Однако низкая стойкость к окислению на воздухе ограничивает применение таких материалов, как $\mathrm{MoS}_{2}, \mathrm{MoSe}_{2}$, для режущего и обрабатывающего инструмента. Для повышения коррозионной стойкости используют осаждение твердых многофазных покрытий с низким коэффициентом трения на основе диборида титана TiB_{2} и дисульфида молибдена MoS_{2}. Такие покрытия имеют твердость 20 ГПа и коэффициент трения 0,05 .

Чаще других полимеров для износостойких покрытий используют полиуретаны, пентапласт, политетрафторэтилен, полиамиды, эпоксидные композиции. Хорошо противостоят абразивному износу, например, трубы, покрытые изнутри полиуретаном.

Покрытия на основе ненаполненньх полиуретановых эластомеров по стойкости к абразивной эрозии превосходят ряд марок коррозионно-стойких сталей.

Одним из перспективных износостойких материалов является поливинилденфторид (ПВДФ). Он применяется как в качестве покрытий и футеровок элементов насосных агрегатов, так и для изготовления насосов для перекачивания агрессивных сред.

Одним из рациональных способов повышения износостойкости покрытий является модифицирование полимерных композиций неорганическими и минеральными наполнителями, например дисульфидом молибдена, тальком, аморфным бором, корундом, оксидом цинка, карбидом кремния и др.

Снижению износа покрытий способствует наполнение полимерных композиций стекловолокном, графитом, цементом, асбе-

стом, маршаллитом, повышающим прочность, теплостойкость и другие характеристики полимеров.

Перспективно использование полимерного износостойкого покрытия на основе эпоксидной смолы и шламов - отходов предприятий черной металлургии с содержанием общего железа более 60%. Использование шламов расширяет сырьевую базу, удешевляет стоимость покрытия и повышает его физико-механические свойства в условиях воздействия коррозионно-эрозионньх сред.

24.2. Строение и свойства наноструктурных покрытий

Наноструктурные покрытия обладают комплексом уникальных характеристик: высокой объемной долей границ раздела отдельных зерен, отсутствием внутризеренных дислокаций, присутствием межкристаллитных аморфных прослоек.

Термическое напыление наноструктурных покрытий представляет собой перспективный подход, позволяющий использовать необычные механические и физические свойства наноструктурных материалов (прочность, ударную вязкость и коррозионную стойкость). Число атомов на границе наноразмерного кристаллического зерна сравнимо с числом атомов внутри самого зерна. Из-за увеличения удельной площади границы количество примесей на единицу площади границы уменьшается по сравнению с крупнозернистым материалом того же состава при той же объемной концентрации примесей. Более чистая поверхность зерен обеспечивает более однородную коррозионную морфологию и более высокую коррозионную стойкость вдоль границ по сравнению с крупнозернистым кристаллическим материалом.

Исследования показали, что у наноструктурных покрытий с размером зерен менее 100 нм происходит резкое улучшение физических характеристик. Наноразмерные кристаллические зерна не только обладают высокой термической стабильностью, но и эффективно тормозят движение дислокаций, что придает покрытиям высокую ударную вязкость и сверхвысокую прочность. Кроме того, важным преимуществом покрытий с наноразмерной зернистой структурой является уменьшение остаточных напряжений, что позволяет создать значительно более толстые покрытия (в отдельных случаях их толщина в четыре раза больше, чем у покрытий из обычных материалов). Термическое напыление при использовании высокоскоростных кислородсодержаших струй позволяет получать разнообразные наноструктурные покрытия (никель, суперсплавы Ni и коррозионно-стойкой стали; $\mathrm{Cr}_{3} \mathrm{C}_{2} / \mathrm{NiCr}$; $\mathrm{WC} / \mathrm{Co}$), которые обладают значительно большей (примерно на 60%) микротвердостью, чем покрытия из обычных материалов.

Потенциальные применения рассмотренных методов включают в себя широкий спектр технологий - от термозащитных покрытий лопаток газовых турбин до износостойких деталей вращения.

По американским данным, прибыль от внедрения наноструктурных покрытий в промышленность США может составить несколько миллиардов долларов в год. Развитие этой технологии наверняка коснется таких крупных и важных отраслей, как аэрокосмическая промышленность, производство реактивных двигателей и автомобильная промышленность.

Нанесение на внутренние полости сопел жидкостных ракетных двигателей покрытий с низкой теплопроводностью улучшает их эксплуатационные характеристики.

Система тугоплавкое покрытие - подложка является многоуровневой. При сопряжении покрытия с подложкой различие их упругих характеристик и коэффишиента термического расширения может приводить в процессе циклического нагружения к развитию сетки трещин в покрытиях. Процессом можно управлять, если подавить образование трещин нормального отрыва и инициировать развитие трещин сдвига по сопряженным направлениям максимальных касательных напряжений, при этом несущая способность конструкции во внешнем поле не снижается. В результате исследований, выполненных сотрудниками Томского политехнического университета под руководством В.Е.Панина, выяснено, что этого можно достичь при следуюших условиях:

- тугоплавкое покрытие должно иметь нанокристаллическую структуру и высокую адгезию к подложке;
- толщина покрытия не должна превышать определенную критическую величину, чтобы характер распределения напряжений на поверхности раздела оказывал определяющее влияние на развитие трещин сдвига в покрытии;
- на поверхности раздела покрытие - подложка должно быть создано распределение напряжений типа «шахматная доска»;
- под поверхностью раздела теплозащитного покрытия должен быть сформирован наноструктурированный подслой с высокой релаксационной способностью и разветвленной поверхностью сопряжения с подложкой.

Эффективным способом направленного изменения структуры и состава покрьгтий может служить бомбардировка пучками ионов высокой энергии, синтезирующими покрытия с изменяющимся ло глубине структурно-фазовым составом.

Осаждение покрытий проводилось на установке вакуумного напыления с помощью магнетрона с мишенью из сплава $\mathrm{Ti}-\mathrm{Al}$ или $\mathrm{Si}-\mathrm{Al}$, работающего от импульсов биполярного источника питания. Покрытия на основе SiAlN и TiAlN получали в реактивной среде смеси газов аргона и азота. В качестве подложек применялись образцы из листовой меди.

Наноструктурирование поверхностного слоя подложек проводилось путем:

- бомбардировки ионами меди с помощью вакуумно-дугового ионного источника, встроенного в рабочую камеру установки напыления;
- ультразвуковой ударной обработки с частотой и амплитудой колебания бойхов инструмента соответственно 27 кГц и 20 мкм и статической силой прижима инструмента к поверхности образца 100 H .

В результате происходит сильная фрагментация зерен поверхностного слоя, которые разбиваются на блоки размером $50 \ldots 200$ нм с углом разориентировки до $10 \ldots 15^{\circ}$.

Проведение испытаний двухуровневой системы тугоплавкое покрытие - металлическая подложка в условиях термоциклирования в интервале температур $20 \ldots 1000^{\circ} \mathrm{C}$ со скоростью нагрева-охлаждения $20^{\circ} /$ с показало, что стойкость покрытий определяется распределением напряжений на интерфейсе. Покрытия из SiAlN при несколько меньшей твердости обладают более высокой термоциклической стойкостью.

Наноструктурирование поверхностного слоя методом ионной бомбардировки повышает термоциклическую стойкость тонкого (2 мКм) покрытия в $1,5-2$ раза, а также может повышать усталостную прочность конструкционных сталей.

Наиболее эффективным способом изменения состояния поверхностного слоя являются его наноструктурирование методами ионной имплантации ионами AlB^{+}и N^{+}и ультразвуковой ковки. Толщина наноструктурированного слоя составляет $5 . .8$ мкм. При имплантации ионов AlB^{+}и N^{+}микротвердость стали 1X15H4AM3-Ш возрастает с 4,4 ГПа до 5,6 ГПа и 4,8 ГПа соответственно. При ультразвуковой обработке стали 1X15H4AM3-Ш микротвердость поверхностного слоя повышается до 5,2 ГПа, а стали 30ХГСН2А с 4 до 5,1 ГПа.

Механические свойства стали при растяжении образцов исследуемых материалов с наноструктурированныы поверхностным слоем приведены в табл. 24.1.

Анализ приведенных данньх показывает, что формирование наноструктурированного поверхностного слоя оказывает наиболее значительное влияние на предел упругости σ_{0} и предел текучести $\sigma_{0,2}$ исследуемых материалов.

В условиях циклического нагружения формирование таких наноструктурированных слоев положительно сказывается на усталостных характеристиках исследуемых материалов. Усталостная прочность стали 1X15H4AM3-ІІ при имплантации ионов А1B ${ }^{+}$повышается с 700 МПа до $880 \mathrm{MПа} \mathrm{на} \mathrm{базе} 10^{6}$ циклов.

Наноструктурированная поверхность слоя подавляет развитие пластической деформации на мезоуровне и повышает напряжение

Таблица 24.1. Механические свонства стали 1X15H4АМ3-III с наноструктурированным поверхностным слоем

Обработка	Предел упругости σ_{0}, МПа	Предел текучести $\sigma_{0,2}$, МПа	Предел текучести σ_{a}, МПа	Остаточное удлинение, \%
Стандартная (СТ)	300	350	1530	18
СТ + ионная имплантация А1В	300	400	1410	20
СТ + ионная имплантация азотом	420	450	1430	21
СТ + УФО	470	555	1520	17

зарождения и развития трещин в поверхностных слоях высокопрочных сталей.

Работоспособность конструкций ограничивается изнашиванием их поверхности толщиной в несколько десятых миллиметра. В этом случае экономически выгодным является восстановление изношенных поверхностей нанесением покрытий газотермическим способом.

Износостойкие покрытия, упрочненные наноразмерными фазами, имеют следующие достоинства:

- в 20 раз меньший износ контртела по сравнению с покрытиями, упрочненными микроразмерными фазами;
- минимальный износ материала покрытия (при расстояниях между упрочняющими фазами покрытий меньшими, чем размер изнашивающих покрытие частиц);
- коэффициент трения керметных покрытий с наноразмерными фазами WC на 20% меньше, чем у покрытий, упрочненных микроразмерными фазами WC.

Защитные покрытия для металлообрабатывающего инструмента должны обладать сочетанием высокой твердости и износостойкости с высокой термической стабильностью и жаростойкостью. В работах сотрудников МИСиСа применяли наноструктурные покрытия на основе $\mathrm{Me}-\mathrm{N}$ (металлы: $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Al}$; неметаллы: Si, B, C), которые осаждали путем магнетронного распыления многофазньгх мишеней в аргоне и газовых смесях аргона с азотом.

Установлено, что покрытия оптимального состава сохраняют твердость $30 \ldots 40$ ГПа, адгезионную прочность $40 \ldots 50 \mathrm{H}$ после вакуумного отжига при $600 \ldots 1000^{\circ} \mathrm{C}$. Покрытия продемонстрировали стабильный коэффициент трения на уровне $0,75 \ldots 0,85$ и сравнительно низкую скорость износа в паре с оксидной керамикой при температурах $20 \ldots 700^{\circ} \mathrm{C}$.

24.3. Наноструктурньіе покрытия для машиностроения

Наноструктурные покрытия широко используются в машиностроении. Благодаря высокой твердости и износостойкости в сочетании с теплостойкостью их применяют для режущих инструментов и деталей узлов трения. Многослойные наноструктурные покрытия $\mathrm{Ti}-\mathrm{B}-\mathrm{C} / \mathrm{Ti}-\mathrm{C}-\mathrm{N}$ сочетают в себе высокую износостойкость с коррозионной стойкостьо. Их производство освоено в промышленных масштабах.

По химическому составу наноструктурированные покрытия могут быть металлическими, керамическими, полимерными или металлополимерными, металлокерамикополимерными.

По функциональным характеристикам различают износостойкие, антифрикционные, коррозионно-стойкие, жаростойкие покрытия.

Износостойкие покрытия. Для сопротивления абразивному и адгезионному изнашиванию покрытия должны обладать высокой твердостью (Н). Кроме того, они должны иметь низкий модуль упругости (E) и высокое упругое восстановление (W), что особенно важно в условиях ударных абразивных воздействий. Для оценки износостойкости может использоваться соотношение твердости и упрутости (H / E), характеризуюшее стойкость материала к упругой деформации разрушения. Покрытия должны обладать высоким сопротивлением пластической деформации.

Широкое распространение получили покрытия нитрида титана TiN. Для формирования наноструктурного состояния в систему $\mathrm{Ti}-\mathrm{N}$ вводят дополнительные элементы, например кремний и/или бор. В результате размер кристаллитов уменьшается с сотен до единиц нанометров. Такой эффект связан с тем, что при осаждении покрытий $\mathrm{T}-\mathrm{Si}-\mathrm{N}$ и $\mathrm{Ti}-\mathrm{B}-\mathrm{N}$ формируются кристаллические фазы на основе $\mathrm{TiN}, \mathrm{TiB}_{2}$ или TiB , имеющие ограниченную растворимость третьего элемента (Si, B или N). Происходит сегрегация этих элементов по границам кристаллитов, торможение процесса рекристаллизации и формирование аморфной фазы.

Наноструктурные покрытия $\mathrm{Ti}-\mathrm{Si}-\mathrm{N}$ имеют высокую твердость ($30 \ldots 45$ ГПа) и достаточно низкий модуль упругости (200... 250 ГПа). Механические свойства их зависят от содержания кремния и при $5 \ldots 10$ ат. \% Si достигают максимальных значений. Покрытия $\mathrm{Ti}-\mathrm{Si}-\mathrm{N}$ характеризуются высоким сопротивлением абразивному износу. Максимальная твердость достигается за счет формирования структуры, состоящей из нанокристаллитов твердой фазы, разделенных тонкими прослойками аморфной фазы.

Наноструктурные покрытия $\mathrm{Ti}-\mathrm{B}-\mathrm{N}$ характеризуются высокой твердостью ($30 \ldots 55$ ГПа), устойчивостью к ударным воздействиям и абразивному износу.

Сверхвысокую твердесть (примержо 70 ГПа) имеют покрытия состава $\mathrm{Ti}-\mathrm{Si}-\mathrm{B}-\mathrm{N}$. Хорошие резулытаты это покрытие показало при испвганиях режушепе инструмента.

Добввка алюминия в боронитридные покрытия способствует получению ультрамелкозернистой структуры. Покрытия $\mathrm{Ti}-\mathrm{Al}-$ $\mathrm{B}-\mathrm{N}$ содержатжристалиты размером 0,3 $. .0,8$ нм. Такие покрытия превосходят по износостойкости пожрытия $\mathrm{Ti}-\mathrm{B}-\mathrm{N}$, синтезированнқге путем электронно-лучевого нспарения:

Введеғиеуглярода в покрытия $\mathrm{Ti}-\mathrm{B}-\mathrm{C}-\mathrm{N}$ и $\mathrm{Ti}-\mathrm{Si}-\mathrm{C}-\mathrm{N}$ способствует скижению коэффициента трения до $0,2 \ldots 0,3$, что объясняется положительным влиянием углерода, играющего роль твердой смазки.

Антифрикушоннне покрытии. Для деталей космических аппаратов используют наноструктурные покрытия типа «хамелеон». В процессе трения хнмический состав трибологических слоев на поверхности покрытий изменяется в зависимости от состава и температуры окружаюұей среды, поэтому покрытия и получили такое название. Твердые фазы WC, TiC, $\mathrm{Al}_{2} \mathrm{O}_{3}$ обеспечивают высокую износостойкость, а смазывающие фазы (С, $\mathrm{WS}_{2}, \mathrm{BN}$ и др.) снижают коэффициент трения в контактной паре.

Наиболее часто в нанокомпозитах, как и в слоистых покрытиsx, в качестве смазывающей фазы используется дисульфид молибдена MoS_{2}. Известны похрытия $\mathrm{Ti}-\mathrm{MoS}_{2}, \mathrm{TiN}-\mathrm{MoS}_{2}, \mathrm{Ti}-\mathrm{SiN}-$ $\mathrm{MoS}_{2}, \mathrm{TiB}_{2}-\mathrm{MoS}_{2}$ и др.

Селениды вольфрама характеризуются стабильно низким коэффициентом трения и высокой стойкостью к окислению при повышенной влажности воздуха.

Двухслойные покрытия $\mathrm{WSe}_{x} / \mathrm{TiC}, \mathrm{WSe}_{x} / \mathrm{Ti}-\mathrm{C}-\mathrm{N}$ и $\mathrm{WSe}_{x} / \mathrm{Ti}-$ $\mathrm{Si}-\mathrm{N}$, в которых верхние слои состоят из нанокристаллических фаз WSe_{x} и $\mathrm{W}_{3} 0$, включенных в аморфную матрицу WSe_{x}, характеризуются стабильно низким коэффициентом трения как на воздуxe $(0,015 \ldots 0,05)$, так и в воде $(0,06 \ldots 0,07)$.

Коррозионно-стойкие и жсаростойкие покрытия. Коррозионная стойкость покрытий определяется их химическим составом, структурой и в меньшей степени зависит от размеров кристаллитов.

Покрытия $\mathrm{Ti}-\mathrm{Cr}-\mathrm{B}-\mathrm{N}$ характеризуются более высокими положительными значениями потенциала свободной коррозии и скоростью коррозии, в 4 раза меньшей, чем в покрытиях $\mathrm{Ti}-\mathrm{B}-\mathrm{N}$. Іри увеличении содержания хрома в покрытиях $\mathrm{Ti}-\mathrm{Cr}-\mathrm{B}-\mathrm{N}$ коррозионная стойкость увеличивается. Перспективным коррозион-но-стойким материалом является диборид хрома. Покрытия на основе CrB_{2} обладают высоким сопротивлением износу в условиях ноздействия коррозионных сред. Наноструктурные покрытия в системе $\mathrm{Cr}-\mathrm{B}-\mathrm{N}$, состоящие из кристаллитов CrB_{2} и аморфных областей на основе нитрида бора, обладают высокой коррозионной стойкостью в сочетании с износостойкостью.

Термическая стабильность и жаростойкость определяют долговечность покрытий, работающих при высоких температурах. В отличие от микрокристаллических покрытий твердость наноструктурных не снижается вплоть до $1000^{\circ} \mathrm{C}$. При этом в диапазоне температур от 20 до $1000^{\circ} \mathrm{C}$ покрытия имеют стабильную структуру со средним размером кристаллитов $2 \ldots 5$ нм. Аморфные межзеренные прослойки препятствуют процессу их рекристаллизации. Высокотемпературный отжиг ($800 \ldots 900^{\circ} \mathrm{C}$) покрытий $\mathrm{Al}-\mathrm{Ti}-\mathrm{Si}-\mathrm{N}$ и $\mathrm{W}-\mathrm{Si}-\mathrm{N}$ способствует увеличению их твердости.

Твердость покрытий $\mathrm{Ti}-\mathrm{B}-\mathrm{N}$ и $\mathrm{Ti}-\mathrm{Cr}-\mathrm{B}-\mathrm{N}$ при нагреве до $1000^{\circ} \mathrm{C}$ сохраняется на уровне $25 \ldots 30$ ГПа.

Жаростойкость покрытий возрастает при введении в их состав элементов, образующих на поверхности защитные оксидные слои (A1, Cr, Si).

Исследование устойчивости наноструктур при высокотемпературном отпуске пленок $\mathrm{Ti}-\mathrm{Si}-\mathrm{N}$ и $\mathrm{Ti}-\mathrm{Al}-\mathrm{Si}-\mathrm{N}$ показало, что температура рекристаллизации увеличивается с $850^{\circ} \mathrm{C}$ при размере нанокристаллов $d \geq 5$ нм до $1150^{\circ} \mathrm{C}$ при $d \leq 3$ нм, что связывалось со стабилизацией границ раздела в результате сегрегации. Пленки $\mathrm{Ti}-\mathrm{Si}-\mathrm{N}$ такке обладают повышенной стойкостью к высокотемпературному окислению по сравнению с TiC и TiN. Известно положительное влияние алюминия на устойчивость покрытий к высокотемпературному окислению. При низких температурах отпуска благодаря присутствию алюминия кислород растворяется в ГЦКрешетке ($\mathrm{Ti}, \mathrm{Al})_{1-x}(\mathrm{C}, \mathrm{N})_{x}$. При более высоких температурах алюминий диффундирует к поверхности покрытия, что приводит к образованию защитного слоя $\mathrm{Al}_{2} \mathrm{O}_{3}$, препятствующего дальнейшему окислению.

Структура нанопокрытий $\mathrm{Al}-\mathrm{Ti}-\mathrm{B}-\mathrm{N}$ состоит из кристаллических и аморфных участков размером несколько ангстрем. Фотографии, полученные с помощью электронного микроскопа, позволяют идентифицировать отдельные фазы нанокристаллических размеров в составе анализируемых покрытий.

Сравнительные данные по коррозионно-электрохимическому поведению наноразмерных материалов и аналогичных по составу тонких пленок со средним размером кристаллитов $2 . .5$ нм указывают на существенное понижение скорости коррозии пленок (примерно до 1000 раз), что связано с их наноструктурным состоянием. Кроме того, коррозия пленок на основе $\mathrm{TiC}-\mathrm{Fe}-\mathrm{S}-\mathrm{Mo}$ имеет ярко выраженный селективный характер. Преимущественное растворение менее стойкого компонента, прежде всего железа, приводило к обогашению поверхности кремнием и образованию защитной пленки SiO_{2}. К обшим рекомендациям можно отнести увеличение толщины покрытий, уменьшение шероховатости поверхности, получение плотной структуры с отсутствием пор и микроотверстий.

Композитные наноструктурнье полимернье покрытия. Твердофазный механохимический метод позволяет получать новые материалы - металл - фторполимерные и металл - керамика - фторполимерные композиты, обладаюшие высокой электропроводностью, устойчивостью к электроэрозии, низким коэффициентом трения и устойчивостью к механическому истирающему воздействию. При механохимической обработке смесей порошков несмешивающихся металлов - вольфрама и меди с добавкой политетрафторэтилена (до 1 мас. \%) образуются композитные частицы размером $30 \ldots 60$ нм. Добавки политетрафторэтилена улучшают прессуемость материала, увеличивая плотность спрессованных заготовок. Коэффициент трения композитного покрытия $\mathrm{W}-\mathrm{Cu}-П Т Ф Э$ близок к коэффициенту трения массивного фторопласта. Механическая обработка в присутствии политетрафторэтилена композитов $\mathrm{WC}-\mathrm{Cu}, \mathrm{TiB}_{2}-\mathrm{Cu}$ и $\left(\mathrm{TiB}_{2}-\mathrm{Cu}\right)-\mathrm{W}$, керамические частицы в которых получены твердофазными реакциями, позволяет получать эрозионно-стойкие материалы с низким коэффициентом трения.

Таким методом получают токопроводящие покрытия ($\mathrm{Cu}+$ + ПТФЭ) с низким коэффициентом сухого трения для различньхх система скользящего токосъема. Например, в троллейбусных токосьемниках используются вставки с медь-полимерным покрытием.

Эффективным способом повышения физико-механических характеристих покрьтий на основе сверхвысокомолекулярного полиэтилена (СВМПЭ) является использование в качестве наполнителя ультрадисперсных порошков $\mathrm{Al}_{2} \mathrm{O}_{3}$ и ZrO_{2}, полученных методом плазмохимического синтеза, а также углеродное нановолокно. Модифицирование СВМПЭ ультрадисперсными порошками оксидов алюминия и циркония, прошедших предварительную обработку методами порошковой металлургии, обеспечивает повышение в несколько раз адгезионной прочности, износостойкости; исключает термоусадку.

Неболышие добавки ($0,25 \ldots 0,5$ мас. \%) нанодисперсных порошков металлов в комбинированный наполнитель для шинннхх резин на основе каучуков общего назначения улучшает их физико-механические и эксплуатационные свойства: условную прочность, сопротивление раздиру и прочность связи резины с металлокордом. Нанокристаллические порошки металлов получают методом испарения-конденсации, включающим в себя расплавление и испарение металла, конденсацию пара в среде инертного газа и накопление образовавшегося порошка в холодной части объема аппарата.

24.4. Сверхтвердые покрытия из нанокомпозитов

Сверхтвердые покрытия из нанокомпозитов имеют большие потенциальные возможности для улучшения характеристик различ-

ных рабочих поверхностей (например, режунего инструменпа) Обычно сверхсвериввпи считаюпся материалы, имеющие микротвердость в диапазоне между 40 и 80 ГПа. Еольшинство наноспруктурньх покрытий различного назначения'имеют микротверцосвв ближе к нижней гранкце, в интервале: 35 ... 40 ГПа. Покрыпня с твердоствн бопее 80 IПа классифицируются: как ультратвердрие.

Наноструктурные покрытия не являются просто поликристаллическими покрытыями с уменьшенным размером зерен. Свойства наноструктурных покрытий радикадьно отличаются от евойств микрокристаллических покрытий такого же состава. Межзеренные и межфазные гранпнны кристаллической саруктуры являнолся двумерными (или плюскими) дефектами этой структуры с высокой пиотностью границ. Высокая плотность границ трансф дормирует микрокристалпическую структуру в новый тип структуры - наноструктуру. Наносгруктурные покрытия в противовес кру тнозернистым поликристалическим, имеюшим средний размеןз зерен более 1 мкм, моғут быъь определены как покрытия, имеғ оцие более высокую плотность границ. Чтобы получитн наностру ктурное состояние, размерность структурных элементов (т.е. сред ний диаметр зерен, талцина споев и т.п.) должна находитыся в нєномасштабном диапазоне (менее 100 нм).

Межфазные границы являютап естественными элементами структуры в многофазньхх нанокомпозициюнных пожрытиях. Нанокристаллические структуры мопут быть представл ены как смесь двух структурных комтонентов: нанозерени с кристашнической решеткой и межкристаллитньх границ. Ширмна граныиц зерен в нанокристаллических материалах нвходится:обычно в шределах от 0,5 до 1,2 км. Средняя атомная плонность граннц ниже „чем в атомной решетке. Атомы в границах, расположение которышєварьируется от особо плотного до расположении с широкими интервалами между ними, обусловливают широкре пределн межатом мого пространства. Средняя плотность границ может составлять $70 . .80 \%$ атомной плотности кристаллической решешки. Свойства зерен отливаются от свойств границ, поэтому нанохристаллические покрьтия можно рассматривать как двухкомпонентные струкдуры, т. е. смеси нанокристаллов и границ зерен. Уменњшение разнеров зерна приводит к увеличению объемной доли атомов, размещенных в границах. Было обнаружено, что объемная доля атомов в граиыицах составляет приблизительно $87,5 \%$ для материапов с размеров зерен 2 нм , приблизительно 50% - для зерен размером 3 нм, приблизительно 44% - для зерен размером 5 нм, приблизигельно 30% - для зерен размером 10 нм и только приблизительно 10% для зерен размером 100 HM .

С уменьшением размера зерен межатомные расстояния в нанозернах увеличиваются и, как следствие, плотность нанозерен уменьшается. Было экспериментально показано, что расширение крис-

таллической решетки осуществляется главннм образом вблизи границ зерен.

Итак, главными особенностями наноструктурных покрытий можно считать следуюцие:

- зерна/слои ограничиваются размерами 100 HM , по крайней мере в одном направлении;
- сушественная часть атомов сосредоточена в межфазных границах и тройных сочленениях зерен.

Супертвердые наноструктурные композиционные (или нанокомпозиционные) покрытия могут быть в общем классифицированы по размерности структурных элементов. Если структурный элемент состоит из чередуюцихся слоев двух различных материалов в пределах наномасштабной толщины, покрытие называется нанослоистым. Если структурные элементы представляют собой нанозерна различных фаз, покрытие называется нанокристаллическим композиционным. Общим для обоих типов является термин «наноструктурное композиционное покрытие».

Имеется несколько подходов для объяснения эффекта сверхтвердости в нанослойных композиционных покрытиях, а именно: распределение деформаций; различие модуля упругости; несоответствие решеток и т. п. Такие покрытия обладают высокой твердостью, так как чередующиеся поля напряжений в нанослоях являются барьерами для любого движения дислокаций.

Структура нанослойного композиционного покрытия формируется посредством выстраивания атома за атом (atom-by-atom) с относительно низкой скоростью нанесения. Для нанесения покрытий требуется очень сложное оборудование, имеющее низкую производительность. Например, типичная скорость наращивания покрытия составляет примерно 1 мкм/ч, поэтому синтез нанослойных композиционных покрытий - длительный процесс: нанесение нескольких микронов покрытия занимает несколько часов.

Аморфно-нанокристаллическое композиционное покрытие (рис. 24.1) представляет собой кристаллы наноразмеров, внедренные в аморфную матрицу, которая выглядит как границы зерен, наподобие ферритной или щементитной сетки в сталях. Объемная доля нанозерен сравңима с долей границ.

Нанокристаллические композиционные покрытия могут быть классифицированы следующим образом:

- нанокристаллы твердых материалов, внедренные в аморфную матрицу изначально твердых материалов, таких как $\mathrm{Si}_{3} \mathrm{~N}_{4}$, AlN , алмазоподобный углерод и др.;
- нанокристаллы твердых материалов, внедренные в аморфную матрицу относительно мягких металлов, таких как $\mathrm{Ni}, \mathrm{Cu}, \mathrm{V}$ и др.

Главным принципом, на котором базируется получение супертвсрдости в наноструктурных покрытиях, является создание структуры с нанозернами, свободными от дислокаций, или с неболь-

Рис. 24.1. Схема нанокристаллического композиционного покрытия на примере нанозерен $\mathrm{Me}_{2} \mathrm{~N}$, внедренных в твердую аморфную матрицу $\mathrm{Si}_{3} \mathrm{~N}_{4}:$
$n c$ - нанокристаллическое покрытие; a - аморфное покрытие; $a_{\max }$ - длина нанотрешины

шим их количеством, и этот фактор более важен, чем величина межатомных связей в кристаллической решетке. Источники размножения дислокаций не могут действовать в нанозернах с размерами менее 10 нм; нанозерна с размерами менее 10 нм свободны от дислокаций; имеющиеся дислокации не являются стабильными и выталкиваются, например, в аморфную матрицу и исчезают, т.е. дислокации не могут проходить через аморфную скрепляюшую матрицу, а сама аморфная матрица легче приспосабливается к несоответствиям кристаллических решеток случайно ориентированных нанокристаллов. В таких покрытиях распространение нанотрещины в аморфной матрице ограничивается $2 \ldots 4$ нм, что является максимальным расстоянием между соседними нанокристаллами (см. рис. 24.1). Именно поэтому аморфная матрица должна быть в виде тонкои прослойки между нанозернами. Это один из эффектов, обусловливающих супертвердость композитов.

Таким образом, нанокристаллические композиционные покрытия имеют некоторые преимущества по сравнению с нанослойными покрытиями. Нанокристаллическое композиционное покрытие имеет значительно более изотропную структуру, чем нанослойное. Нанесение нанокристаллического покрытия менее трудоемкое, кроме того, его легче создать для подложек сложной конфигурации.

Основные данные о нанокристаллических композиционных покрытиях приведены в табл. 24.2. Обращает на себя внимание композиционное покрытие $n c-\mathrm{TiN} / n c$ - TiSi_{2} / a - TiSi_{2}, микротвердость которого выходит за границы диапазона супертвердых материалов и переходит в разряд ультратвердых. Супертвердое покрытие пс$\mathrm{W}_{3} \mathrm{C} / n c$ carbines не следует общей схеме формирования покрытий,

таких как $n c-\mathrm{MeN} /$ твердая фаза или $n c-\mathrm{MeN} /$ мягкая фаза. Carbynes 'тто сравнительно малоизвестные углеродные соединения, представляющие собой маломерные цепеподобные структуры. Особенность такого покрытия заключается в том, что оно достигает свосо порога супертвердости при относительно больших размерах на॥окристаллов (примерно 70 нм). Кроме того, при относительно

Таблица 24.2. Нанокристаллические композиционные покрытия

Состав покрытия	Микротвсрдость, ГПа	Размер зерна, нм	Толщина покрытия, мкм
$\begin{aligned} & n c-\mathrm{TiN} / a-\mathrm{Si}_{3} \mathrm{~N} 4(16 \ldots 20 \% \\ & \left.(\mathrm{ar} .) \mathrm{Si}_{3} \mathrm{~N}_{4}\right) \end{aligned}$	≈ 50	9	≈ 2
$n c-\mathrm{TiN} / a-\mathrm{SiN}_{x}(4 \ldots 6 \%$ (arc.) Si) $(0<x<1,3)$	$38 . . .47$	≈ 20	1,2 .. 8
$\begin{aligned} & n c-\mathrm{TiN} / a-\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{a}^{-\mathrm{TiSi}_{2}} \\ & (5 \% \text { (aт.) } \mathrm{Si}) \end{aligned}$	80	10...11	$3 \ldots 11$
$\begin{aligned} & n c-\mathrm{TiN} / n c-\mathrm{TiSi}_{2} / a-\mathrm{TiSi}_{2} \\ & (17 \% \text { (aT.) Si) } \end{aligned}$	$90 \ldots 105$	≈ 3	3... 11
$n \mathrm{c}-\mathrm{W}_{2} \mathrm{~N} / a-\mathrm{Si}_{3} \mathrm{~N}_{4}(7 \%$ (aт.) Si$)$	$=52$	3... 4	2... 4
$n c-\mathrm{VN} / a-\mathrm{Si}_{3} \mathrm{~N}_{4}$	≈ 45	-	-
$n \mathrm{nc} \cdot \mathrm{Ti}_{1-x}$ AlxN $(x=0,562)$	≈ 47	18... 30	$\approx 2,5$
$\mathrm{Nc}-\mathrm{Mos} \mathrm{C}_{2}\left(a-\mathrm{C}+a-\mathrm{Mo}_{2} \mathrm{C}\right)$	≈ 53	≈ 48	2
nc - $\mathrm{TiC} / a-\mathrm{C}: \mathrm{H}$	≈ 35	≈ 5	$\approx 1,5 \ldots 2$
$\mathrm{TlC}-\mathrm{TiB}_{2}$	≈ 71	1...2,5	-
$m \cdot \mathrm{TiN} / a-\mathrm{WN}_{2}$	≈ 60	10... 20	3,5
$m \mathrm{~m}-\mathrm{TiN} / a-\mathrm{MoN}_{2}$	≈ 45	-	-
$m \subset-\operatorname{ZrN} / a-\mathrm{Ni}(4 \%$ (at.) Ni$)$	≈ 57	5... 14	$3 . . .5$
$n \mathrm{c}-\mathrm{CrN} / a-\mathrm{Ni}$	≈ 37	-	≈ 3
$n \mathrm{r}-\mathrm{TrN} / a-\mathrm{Cu}(1 . . .2 \%$ (aт.) Cu$)$	≈ 54	≈ 38	2,5
$n \epsilon-\mathrm{CrN} / a-\mathrm{Cu}(\approx 1 \%$ (ат.) Cu$)$	≈ 35	$70 . .90$	-
nf $\mathrm{AlN} / a-\mathrm{Cu}(\approx 8 \%$ (aт.) Cu$)$	≈ 48	\%9,5	3
nc-Z.rN/a-Y	≈ 45	≈ 20	3
now W, C/nc carbines	≈ 40	50... 100	$2 \ldots 300$
Me corbines	-	5... 50	>300

Іримслание. пс - нанокристаллическое покрытие; a - аморфное покрытие.

Таблица 24.3. Нанокрнсталические однофазные похрытия

Тип покрытия	Микротвердость, ГПа	Размер зерна, нм	Толизина похрытия, мкм
$n c$-алмаз	50	75	$0,6 \ldots 1,5$
$n c$-алмаз	62	$2 \ldots 700$	$0,5 \ldots 3,0$
$\mathrm{~B}_{4} \mathrm{C}$	≈ 35	$100 \ldots 300$	-
c - BN	≈ 43	$5 \ldots 100$	-
$\beta-\mathrm{C}_{3} \mathrm{~N}_{4}$	$40 \ldots 60$	$3 \ldots 100$	-
$\beta-\mathrm{SiC}$	≈ 50	20	-

больших зернах (более 10 нм) покрытие имеет низкие внутренние напряжения ($0,5 \ldots 1$ ГПа).

Однофазные покрытия (алмаз, карбид бора, кубический нитрид бора, карбид кремния) могут суцествовать в монокристаллическо猚, микрокристаллической, нанокристаллической и амофрной формах. Некоторые характеристики наиболее известных суперпвердых нанокристалиических однофазных покрытий приведены в табл. 24.3. Наиболее интересно покрытие из $\beta-\mathrm{C}_{3} \mathrm{~N}_{4}$ - одна из гипотетических форм нитрида углерода с ожидаемой исключительно высокой твердостью ($40 \ldots 60$ ППа).

Методами нанесения нанокристаллических покрытий являются физическое осаждение из пара, включая магнетронное распыление, осаждение с помощью тлеющего разряда, а также химическое осаждение из газовой фазы, включая низкотемпературное химическое осаждение из газа и плазмохимическое осаждение.

Контрольные вопросы

1. Что понимают под нанообъектами?
2. Назовите основные способы получения наноструктур.
3. Какие покрытия относят к наноструктурным?
4. Что представляют собой пленки Ленгмюра-Блоджетт?
5. Как изменяются свойства износостойких покрытий, упрочненньх наноразмерными фазами?
6. Какой химический состав могут иметь наноструктурированные покрытия?
7. Как различают наноструктурированные покрытия по назначению?
8. Какие покрытия используют в качестве наноструктурных износостойких?
9. Какое вещество чаще всего используют в качестве смазывающей фазы в антифрикционных наноструктурных покрытиях?
10. Что оказывает определяюшее влияние на свойства коррозионностойких и жаропрочных наноструктурных покрытий?

СПИСОК ЛИТЕРАТПРРЫ

I. Алехин В. П. Новая нанотехнология поверхностной упрочняющей обриботки инструментальньх сталей // сб. статей по материалам Межд. конф. मोфформация и разрушение материалов». - М., 2006. - С. $197-200$
2. Барбенцов В. Д., Алымов М. И., Белов С.. С. Консолидация нанопорошкон методом газовой экструзии // Нанотехника, 2006. - № 4. - С. 57-64.
3. Волчок И. П. Системы современных техиологий : учебник / И. П. Волヶох, С. Б. Беликов. - 2-е изд. - Запорожве : Изд-во ОАО «МыоторСич», 2(0)4. -352 c .
4. Гуляев А. П. Металловедение : учебник для вузов / А. П. Гуляев. -(1-с изд. - М. : Металлургия, 1986. - 544 с.
5. Гуткин К. Ю. Дефекты имеханизмы пластичности в наноструктурних и некристаллических материалах / М.Ю. Гуткин, И.АА.Овидько. ('II几. : Янус, 2001. - 180 c .
6. Каблов Е. Н. Авиационное материаловедение: итоги и перспективы // Нестиик РАН, 2002. - T. 72. - Ne 1. - C. 3-12.
7. Ларин В. К., Кондаков Ві М\&, Малый Е. Н. Плазмохиммфеский спюсоб инучения ультрадисперснык (щано)поронков оксидов металлов и перснсктивные направления их применения // Известия вузов. Цветная метшнургия, 2003. - № 5. - С. 59-64.
8. Кластеры, структуры и материалы наноразмера: инновационнве и шхиические перспективы / [М.А.Меретуков, М.А. Цешин, С.А. Воробьев, А. Г. Сырков]. - М. : Издательский дом «Руда и металлы*, 2005. - 128 с.
9. Куауаьтинов С. Д. Технология обработки конструкционньхх материалин / С. Д. Кугультинов, А. К. Ковальчук, И. И. Портнов - М. : Изд-во МГТУ им. Баумана, 2008. - 672 с.
10. Машиностроение : Энциклопедия, - T. II-2 : Стали и чугуны / под ьюы. ред. О.А. Банных, Н. Н. Алексаңдрова. - М. : Машиностроение, 2000. 784 c.
11. Машиностроение : Энциклопедия. - T - II-3 : Цветные металлы и силавы. Композиционнье металические матерналы / К. В. Фролов (общ. ред.), О.Г. Сенаторова, И.Н.Фридляндер, О.Е.Осинцев (ред.-сост.). - М. : Машиностроение, 2001. - 880 с.
12. Машиностроение : Энциклопедия. - T. IV-1 : Детали машин. Конструкционная прочность. Трение, иэнос, смазка / К. В. Фролов (общ. ред.), Д. Н. Решетов (ред.-сост). - М. : Машиностроение, 1995. - 864 с.
13. Новые материалы / научн. ред. Ю.С.Карабасов. - М. : Изд-во МИСиС, 2002. - 736 c .
14. Солнцев Ю.П. Специальные материалы в машиностроении : учебиик / Ю.П. Солнцев, В.Ю.Пирайнен, С.А. Вологжанина. - СПб. : Химницат, 2007. - 784 с.
15. Солнцев Ю. П. Стали для Севера и Сибири / Ю.П. Солнцев, Т.И. Титкия. - СПб. : Химиздат, 2002. - 352 с.
16. Технология конструкционных материалов : учебник / [А. М. Дальский, Т. М. Барсукова, Л. Н. Бухаркин и др.]. - 5-е изд. - М. : Машиностроение, 2005. -512 с.
17. Хокинг М., Васантасари В., Сидки П. Металлические и керамические покрытия: [пер. с англ.] / М. Хокинг, В. Васантасари, П.Сидки. М. : Мир, 2000. - 518 с.
18. Лахтин Ю. М. Материаловедение / Ю. М. Лахтин, В. П. Леонтьев. М. : ЭКОЛИТ, 2011. - 528 с.
19. Солнцев Ю. П. Нанотехнологии и специапнные материалы / [Ю. П. Солнцев, Е. И. Пряхин, С.А. Вологжанина, А. П. Петкова]: - СПб. : Химиздат, 2009. - 336 c.
20. Полмеар Я. Легкие сплавы. От традиционных до нанокристаллов / Я. Полмеар. - М. : Техносфера, 2008. - 464 с.
21. Уорден K. Новые интеллектуальные материалы и конструкции / К. Уорден. - М. : Техносфера, 2006. - 224 с.
22. Petzold J. Applications of nanocrystalline softmagnetic materials for modern electronic devices // ScriptaMateriallia, 2003. - V. 48. - P. 895-901.

ОГЛАВЛЕНИЕ

Предисловие 3
Раздел I. МЕТАЛЛОВЕДЕНИЕ
Глияа 1. Основные способы обработки металлов 4
1.1. Основы литейного производства 4
1.2. Обработка металлов давлением 13
1.3. Сварочное производство 24
1.4. Обработка резанием 33
Глим 2. Строение и свойства металлов 41
2.1. (ощая характеристика металлов и сплавов 41
2.2. Кристаллическое строение металлов 42
2,3. Лефекты строения кристалиических тел 46
2.4. Іроцесс кристаллизации 54
2.5. Снойства металлов и сплавов 57
2.6. Уıругая и пластическая деформашия 58
2.7. Хрупкое и вязкое разрушение 59
2.8. Фикторы, определяющие характер разрушения 63
2.9. Никлеп и рекристаллизация 66
2.10. Мстоды исследований и испытаний материалов 70
Глав 3. Фазы и структура металлических сплавов 100
3.1. Хнрактеристика основных фаз в сплавах 100
3.2. Сוруктура сплавов 103
1,3. Диффузия и структура сплавов 105
1.4. Пути упрочнения сталей и сплавов 107
1.5. Диаграммы состояния (фазового равновесия) сплавов 113
I'mane 4. Железо п его сплавы 131
4.1. Диаграмма состояния системы мелезо-углерод 131
4.2. Улеродистые стали 140
4.3. Чугуны 147
Улави 5. Термическая обработка стали 157
5.1. Основы теории термической обработки 157
3.2. Технология термической обработки стали 178
1.3. Iloверхностное упрочнение стальных изделий 192
Гвавя 6. Промышленные стали и сплавы 202
6.1. Јссированные стали 202
0.2. Миркировка сталей 205
6.3. Конструкционные стали 209
6.4. Иıструментальные стали и сплавы 225
Глава 7. Стали и силавы со спецнальньмн сводствами 240
7.1. Коррозия и коррозионно-стойкие материалн 240
7.2. Жаростойкие и жаропрочные стали и сплавн 259
7.3. Хладостойкие стали 274
7.4. Стали и сплавы с особыми физическими свойствами 289
Глава 8. Цветине металлы и сплавы 317
8.1. Магний и его сплавы 317
8.2. Алюминий и его сплавы 321
8.3. Титан и его сплавы 331
8.4. Медь и ее сплавы 341
8.5. Припои 348
8.6. Свойства и применение сплавов цветных металлов чрри :низких температурах 349
Раздел II. КЕРАМИЧЕСКИЕ, КОМПОЗИЦИОННЫЕ И ПОРОННКОВЫЕ'МАТЕРИАЛЫ
Глава 9. Керамнческие матерналы 356
9:1. Керамическая технология м влассификация керамики 356
9.2. Свойства и применение керамических материалов 361
Слава 10. Композиционине мятерралыы 370
10.1. Общая характеристика и классификация 370
10.2. Дисперсно-упрочненные композиционные материалы 372
і10:3. Волокнистые композиционные материалы 374
10.4. Слоистые композиционные материалы 378
10.5. Свойства и применение композимионндх материалов 379
Слава 11. Поропиковые материапм 385
11.1. Общие сведения 385
11.2. Конструкционные материалы 386
11.3. ТІорошковые антифрикционные матрриалы 388
11.А. Фрикционные материалы 389
11.5. П甲ристые фильтруюцие элементы 390
11.6. Пиструментальные порошковые стали 391
11.7. सарбмдостали 393
Раздел III. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ
Глава 12. Iฉаимеры 395
12.1. Состав и строение полимеров 395
12.2. Основные свойства полимеров 398
Глава 13. Плаешческие массы 401
13.1. Общая характеристика пластических масс 401
13.2. Термопластичные пластмассы 403
13.3. Термореактивные пластмассы 409
Глава 14. Резины 415
14.1. Общие сведения 415
14.2. Основные свойства резин и каучуков 416
Глава 15. Клеящие материалы 419
15.1. Общая характеристика клеяших материалов 419
15.2. Состав и свойства клеящих материалов 419
Глава 16. Лакокрасочные материалы 424
16.1. Общая характеристика лакокрасочных материалов 424
16.2. Свойства лакокрасочных материалов 424
Глава 17. Стекло 428
17.1. Общие сведения 428
17.2. Основные свойства стекла 429
Глава 18. Древесина 432
18.1. Строение и химический состав древесины 432
18.2. Физические и механические свойства древесины 433
18.4. Изделия из древесины 435
18.5. Долговечность и консервация древесины 436
Раздел ІV. ИЗНОС И ИЗНОСОСТОЙКИЕ МАТЕРИАЛЫ
Глава 19. Классификацня и виды износа 438
19.1. Общие сведения 438
19.2. Классификашия и виды изнашивания 438
19.3. Износ сопряженных деталей, образуюших пары трения 442
Глава 20. Смазочные материалы 447
Глава 21. Износостойие стали 451
21.1. Влияние химического состава на износостойкость стали 451
21.2. Подшипниковые стали 452
21.3. Графитизированные стали 455
21.4. Высокомарганцовистые аустенитные стали 457
21.5. Метастабильные хромомарганцевые аустенитные стали 458
Главя 22. Металлокерамические твердые сплавы 460
Глава 23. Антифрикционные материалы 464
23.1. Металлические материалы 464
23.2. Неметаллические и комбинированные материалы 469
23.3. Минералы 472
23.4. Керамические материалы 473
Глава 24. Наноструктурные покрытия 475
24.1. Технологии нанесения нанопленок и нанопокрыттй 475
24.2. Строение и свойства наноструктурных покрытий 478
24.3. Наноструктурные покрытия для машиностроения 482
24.4. Сверхтвердые покрытия из нанокомпозитов 485
Список литературы 491

Учебное издание

Солнцев Юрий Порфнрьевич,

 Вологжанина Светлава Антониновна, Иголкин Алексей Фёдорович
Материаловедение

Учебния

11-е издание, стереотипное
Редактор С. И. Зубкова
Технический редактор Н. И. Горбачева
Компьютерная верстка: Д. В. Федотов
Корректоры С.Ю.Свиридова, Т. Н. Морозова
Изд. № 111108197. Подписано в печать 25.09.2015. Формат 60×90/16.
Гарнитура «Таймс». Бумага офс. № 1. Печать офсетная. Усл. печ. л. 31,0.
Тираж 1000 окз. Заказ № O-3038.
ООО «Издательский ценғр «Академия». www.academia-moscow.ru
129085, Москва, пр-т Мира, 101В, стр. 1.
Тел./факс: (495) 648-0507, 616-00-29.
Санитарно-эпидемиологическое заключение № POCC RU. AE51. H 16679 ог 25.05.2015.
Отпечатано в полном соответствии с качеством
чредоставленното электронного оригинал-макета
в типографии филиала АО «ТАТМЕДИА» «ПИК «Идел-Іресс».
420066, г. Казань, ул. Декабристов, 2.
E-mail: idelpress@mail.ru

МАТЕРИАЛОВЕДЕНИЕ

Издательский центр «Академия»
www. academia-moscow. ru

[^0]: - - метастабильная диаграмма состояния $\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$; - - - стабильная диаграмма состояния $\mathrm{Fe}-\mathrm{C}$

[^1]: $M_{\mathrm{h}}, M_{\mathrm{k}}$ - соответственно начало и конец мартенситного превращения

[^2]: ${ }^{1}$ Видманштеттова структура - особая структура доэвтектоидной стали, в которой феррит образует сплошную или прерывистую сетку с иглами, проходящими через перлитные зерна. Такая структура возникает при перегреве в процессе отжита или горячей деформации.

[^3]: ${ }^{1}$ Водородный потенциат может быть измерен практически с помощью водородного электрода, представляющего собой платиновую проволоку, погруженную в раствор соляной кислоты с концентрацией ионов водорода 1 моль/л и обтекаемую газообразным водородом.

[^4]: ${ }^{1}$ Абляция (от лат. ablatio - отнимание, отнесение) - унос массы с поверхности твердого тела потоком горячих газов.

[^5]: * $\mathrm{S} \leq 0,02 ; \mathrm{P} \leq 0,027 ; \mathrm{Ni} \leq 0,3 ; \mathrm{Cu} \leq 0,25 ; \mathrm{Ni}+\mathrm{Cu} \leq 0,5$.

[^6]: * Микротвердость.
 ** Литой или горячепрессованнын.
 *** Спеченный или горячепрессованный.

